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Supporting Information S3: Quasi-3D assumptions

Based on the concept that the parent branch represents an equilibrium condition, the yz-plane distribution

of a parameter in the parent branch (which could be velocity or haematocrit) should have 4-fold rotational

symmetry, i.e.
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Where x∗p is the x∗ location at the centre of the parent branch ROI and y∗
i is an arbitrary co-ordinate between

−0.5 and 0.5. The haematocrit distribution and PIV methodologies yield parent branch profiles in the xy

plane that can be used to estimate the full yz plane distribution. Profiles in this section are defined by

averaging over the ROI indicated in Figure 2a.

Haematocrit

For the haematocrit distribution, wherein each value in the profile represents the average along the z-axis at

that location:
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For −0.5 ≤ y∗
i ≤ 0.5 and −0.5 ≤ z∗i ≤ 0.5. In practice, the measured haematocrit profiles have a certain

degree of noise and asymmetry. In order to avoid propagating these irregularities into the z-axis, the parent

branch data are first fitted to a profile, derived from the form of the analytical solution for the velocity in a

square microchannel, with simplifications and additions for non-zero wall haematocrit and varying bluntness:
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where h is a weighting parameter related to the average haematocrit, h0 is the haematocrit at the wall and the

exponent m defines the bluntness of the haematocrit profile. The haematocrit profile Hp ± dHp in the parent

branch ROI was mirrored about the x∗ = 0 line and a symmetric profile was calculated from the weighted mean

at each y∗ location. The uncertainty in the profile was given by the weighted standard deviation. This profile

was then fit to Equation S14 using robust weighted non-linear regression in Matlab to give Hsym ± dHsym.

The weights were defined by ( 1
dH2

p
) and dHsym was calculated as the 68% confidence intervals from the fit.

The average root mean square difference between the measured values and the fitted profiles were 5.2% and

3.6% of the average haematocrit for the Dextran and PBS cases respectively.

As the geometry of the microchannel is planar, it can be assumed that the shape of the z-axis distribution

(Hsym) does not change throughout the domain, hence, for branch j
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for the parent, middle and outlet branches, and with the appropriate co-ordinate changes (x∗ and y∗ are

swapped) in the daughter branches. The uncertainty in Hj is given by the chain rule of differentiation
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where the co-ordinates have been omitted from Equation S16 for clarity and dHp is calculated by integrating

dHp across the channel.

Velocity

For velocity, a similar logic can be used, however the measured profile ideally represents the maximum velocity

in the z-axis, Vmax (defined based on the symmetric profile), rather than the mean (as was the case for

haematocrit). Hence, the velocity profile in the parent branch is fit to
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where v is a weighting parameter, related to the average velocity, v0 is the slip velocity and the exponent m

defines the bluntness of the velocity profile. The average root mean square difference between the measured

values and the fitted profiles (a combination of errors from forcing symmetry and the fitting algorithm) were

0.9% and 2.0% of the average of velocity profile for the Dextran and PBS cases respectively.

The yz-plane distributions are calculated according to
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The uncertainty in Vj is given by
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With dVmax calculated as dVsym evaluated at the location of Vmax.
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