Supplemental Materials

Asthma Susceptibility through Prenatal Exposure to Diesel Exhaust

Sarah Manners, BS^a, Rafeul Alam, MD, PhD^{a, b}, David A. Schwartz, MD, MPH^c, Magdalena M. Gorska, MD, PhD^{a, b}

^aNational Jewish Health, Department of Medicine, Division of Allergy and Clinical

Immunology, 1400 Jackson St, Denver, CO, 80206

^bUniversity of Colorado Denver, Department of Medicine, Division of Allergy and Clinical

Immunology, 13001 E 17th Place, Aurora, CO, 80045

^cUniversity of Colorado Denver, Department of Medicine, Division of Pulmonary Sciences and

Critical Care Medicine, 13001 E 17th Place, Aurora, CO, 80045

Supplemental Methods

NK cell depletion in vivo

The experiment involved OVA-immunized offspring of three DEP-exposed mice. Each litter was divided into two groups. Pups from the first group were intraperitoneally injected with 200 μ g of the anti-NK1.1 antibody (clone PK136; BioLegend, San Diego, CA)^{E1-E3}. Pups from the second group received 200 μ g of the mouse IgG2a isotype control antibody (BioLegend). The injections were performed on PND 20, 21 and 22. All pups were intranasally challenged with OVA on PND 23, 24 and 25 as described in the parent protocol.

Measurement of airway hyperresponsiveness

Lung resistance was measured using the FlexiVent apparatus (Scireq, Montreal, CA) as described^{E4-E7}. Resistance values for each methacholine dose were expressed as a percent of baseline (saline inhalation) resistance.

Histology and morphometric analysis

Paraffin-embedded lungs were sectioned and stained with hematoxylin and $eosin^{E4-E7}$. The MetaMorph software was used to measure areas of the peribronchial cellular infiltrate and a perimeter of the bronchial epithelial basement membrane (proxy for airway perimeter)^{E4-E8}. Results are expressed as an inflammation area per 1 μ m of airway perimeter.

OVA-specific IgE ELISA

OVA-specific IgE was measured in serum as described^{E4, E9}. Purified OVA-specific mouse IgE (AbD Serotec, Raleigh, NC) was used for standard curve.

Cytokine ELISA

Cytokine concentration was measured in cell-free supernatants of $BALF^{E5}$. For IFN γ , IL-4, IL-5, IL-6 and TNF α multiplex ELISA was used (Quansys Biosciences, Logan, UT). Concentrations

of IL-13 and IL-17 were determined using traditional ELISA (eBioscience, San Diego, CA and R&D Systems, Minneapolis, MN, respectively).

Real time PCR

RNA was extracted from Trizol lysates using PureLink RNA Mini Kit (Life Technologies, Grand Island, NY). cDNA was synthesized using ImProm-II reverse transcriptase and random primers (all from Promega, Madison, WI). cDNA was amplified and quantified using transcriptspecific primers (Table EI in the Online Repository), the Absolute qPCR SYBR Green mix (Thermo Scientific) and the ABI Prism 7000 Sequence Detection System (Life Technologies)^{E4}.

Flow cytometry

Splenocytes were treated with OVA at 100 μ g/ml for 30h (and monensin at 2 μ M for final 6h), stained with fluorescently-labeled antibodies against CD3, CD4, NK1.1, NKp46 and a cytokine (IL-5, IL-13 or IL-17). Separate splenocyte samples were treated with OVA without monensin and immunostained for CD3, NK1.1, NKp46 and CD69. Cells were analyzed using CyAn ADP cytometer (Beckman-Coulter, Fullerton, CA).

Statistical analyses

Statistical analyses were done using the GraphPad Prism 6 software. Following tests were performed: one-way ANOVA, two-way repeated measures ANOVA and the Holm-Sidak's multiple comparison test. Results are shown as mean \pm standard error of the mean. P<0.05 was considered statistically significant.

Supplemental References

- E1. Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med 2011;208:357-68.
- E2. Geurtsvan Kessel CH, Bergen IM, Muskens F, Boon L, Hoogsteden HC, Osterhaus AD, Rimmelzwaan GF, Lambrecht BN. Both conventional and interferon killer dendritic cells have antigen-presenting capacity during influenza virus infection. PLoS One 2009;4(9):e7187.
- E3. Joncker NT, Shifrin N, Delebecque F, Raulet DH. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J Exp Med 2010;207:2065-72.
- E4. Gorska MM, Liang Q, Stafford SJ, Goplen N, Dharajiya N, Guo L, et al. MK2 controls the level of negative feedback in the NF-kappaB pathway and is essential for vascular permeability and airway inflammation. J Exp Med 2007;204:1637-52.
- E5. Gorska MM, Goplen N, Liang Q, Alam R. Uncoordinated 119 preferentially induces Th2 differentiation and promotes the development of asthma. J Immunol 2010;184:4488-96.
- E6. Goplen N, Karim MZ, Liang Q, Gorska MM, Rozario S, Guo L, et al. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol 2009;123:925-32.e11.
- E7. Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, et al. ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J 2012;26:1934-45.

- E8. Kotsimbos AT, Humbert M, Minshall E, Durham S, Pfister R, Menz G, et al. Upregulation of alpha GM-CSF-receptor in nonatopic asthma but not in atopic asthma. J Allergy Clin Immunol 1997;99:666-72.
- E9. Stafford S, Li H, Forsythe PA, Ryan M, Bravo R, Alam R. Monocyte chemotactic protein-3 (MCP-3)/fibroblast-induced cytokine (FIC) in eosinophilic inflammation of the airways and the inhibitory effects of an anti-MCP-3/FIC antibody. J Immunol 1997;158:4953-60.
- E10. Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol 2008;38:57-67.
- E11. Auten RL, Gilmour MI, Krantz QT, Potts EN, Mason SN, Foster WM. Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring. Am J Respir Cell Mol Biol 2012;46:454-60.
- E12. Reiprich M, Rudzok S, Schütze N, Simon JC, Lehmann I, Trump S, et al. Inhibition of endotoxin-induced perinatal asthma protection by pollutants in an experimental mouse model. Allergy 2013;68:481-9.
- E13. Sharkhuu T, Doerfler DL, Krantz QT, Luebke RW, Linak WP, Gilmour MI. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses. Toxicol Lett 2010;196:12-20.
- E14. Corson L, Zhu H, Quan C, Grunig G, Ballaney M, Jin X, et al. Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice. Allergy Asthma Clin Immunol 2010;6:7.

Transcript		
Name	Forward Primer	Reverse Primer
AhRR	GTGTACATACGCCGGTAGGA	GGTGCCGTTTGGAAGGATTT
Cyp1a1	GACCTTCCGGCATTCATCCT	GCCATTCAGACTTGTATCTCTTGTG
Cyp1b1	AGGATGTGCCTGCCACTATT	CACAACCTGGTCCAACTCAG
Hmox1	GAGCAGAACCAGCCTGAACT	TCAAGGCCTCAGACAAATCCT
IFNγ	GCGTCATTGAATCACACCTGA	CTGGACCTGTGGGTTGTTGA
IL-4	CCATATCCACGGATGCGACA	GACGAGCTCACTCTCTGTGG
IL-5	GAGGCTTCCTGTCCCTACTC	CCCACGGACAGTTTGATTCTT
IL-6	TGTTCTCTGGGAAATCGTGGA	TTCTGCAAGTGCATCATCGT
IL-13	GAGCAACATCACACAAGACCA	GATGTTGGTCAGGGAATCCAG
IL-17	AGACTACCTCAACCGTTCCAC	CACTGAGCTTCCCAGATCACA
Nrf2	CTCAGCATGATGGACTTGGAG	GCCTCCAAAGGATGTCAATCAA
TNFα	CTCTTCTCATTCCTGCTTGTGG	GATGATCTGAGTGTGAGGGTCT
18S rRNA	CGGCGACGACCCATTCGAAC	GAATCGAACCCTGATTCCCCGT

Table EI: Sequences of transcript-specific primers

Table EII. Flevious pienatai DEF/DE exposule model	Table EII: Previo	ous prenatal	DEP/DE ex	posure models
---	-------------------	--------------	-----------	---------------

		Model by Fedulov et al. ^{E10}	Model by Auten at al. ^{E11}	Model by Reiprich et al. ^{E12}	Model by Sharkhuu at al. ^{E13}	Model by Corson et al. ^{E14}
Mouse strain		BALB/c	C57BL/6	BALB/c	BALB/c	BALB/c
Maternal exposure	DEP/DE	Agent: DEP Dose: 50 µg Route: i.n. Frequency: once (GD 14)	 Agent: DEP Dose: 50 µg Route: o.p. Frequency: twice weekly for 3 weeks of pregnancy Agent: DE Dose: 0.5-2 mg/m³ 4 hours/day Route: inhalation Frequency: daily (from GD 9 to GD 17) 	Agent: DEP Dose: 20 µg (30 min before LPS exposure) Route: i.n. Frequency: 3 times per week from GD 7 until delivery	Agent: DE Dose: 0.8 or 3.1 mg/m ³ , 4 hors/day <i>Route:</i> inhalation <i>Frequency:</i> daily (from GD 9 to GD 18)	Agent: DE Dose: 1.09 mg/m ³ , 5 hours/day <i>Route:</i> inhalation <i>Frequency:</i> daily, Monday to Friday during second and third week of pregnancy
	Other treatments			Agent: LPS Dose: aerosolized solution at 1 µg/10 ml, 10 min/day (30 min after DEP exposure) Route: inhalation Frequency: 3 times per week from GD 7 until delivery		Agent: A.fumigatus extract Dose: 62.5 µg Route: i.n. Frequency: seven times (days -20, - 16, -12, -8 and -4 before mating, GD 7, GD 14)
Offspring exposure	Immunization with allergen	Agent: OVA and alum Dose: OVA: 5 µg; alum: 1 mg Route: i.p. Frequency: once (PND 4)		Agent: OVA and alum Dose: OVA: 20 µg; alum: 2 mg Route: i.p. Frequency: twice (postnatal week 6 and 8)	Agent: OVA Dose: 50 µg Route: i.n. Frequency: twice (PND 42 and 43)	Agent: A. fumigatus extract Dose: 62.5 µg Route: i.n. Frequency: 5-6 times (4 days apart, beginning at week 9-10 of age)
	Airway challenge with allergen	Agent: OVA Dose: aerosolized 3% solution Route: inhalation Frequency: Daily for 3 days (PND 13, 14, 15)		Agent: OVA Dose: 20 µg Route: i.n. Frequency: 6 times (days 14-16 and 21-23 after initial immunization)	Agent: OVA Dose: 5 µg Route: i.n. Frequency: three times (PND 54, 55, 56)	
	Other treatments		Agent: ozone Dose: 1 ppm, 3 hours/day Route: inhalation Frequency: 3 days per week for 4 weeks	Agent: LPS Dose: aerosolized solution at 1 µg/10 ml, 10 min/day <i>Route:</i> inhalation <i>Frequency:</i> 3 times per week for first 4 weeks of life		
Effect of maternal DEP/DE exposures		Eosinophilic inflammation of airways, airway hyperreactivity	Augmentation of ozone-induced airway hyperreactivity	Inhibition of LPS- mediated protection against asthma	No effect	Protection from airway eosinophilia

Abbreviations used in the Table EII: DE, diesel exhaust DEP, diesel exhaust particles GD, gestational day i.n., intranasal i.p., intraperitoneal LPS, lipopolysaccharide o.p., oropharyngeal OVA, ovalbumin PND, postnatal day

Supplemental Figure Legends

Figure E1: Expression of cytokine mRNA in the lung. Three offspring groups (PBS-PBS, PBS-OVA and DEP-OVA) were studied. Values for each cytokine transcript were normalized to housekeeping 18S rRNA and expressed as a fraction of this rRNA. Mean values (± SEM) shown from 6-13 mice/group; *, P<0.05; **, P<0.01; ***, P<0.001

Figure E2: CD69 expression on NK cells. OVA-stimulated and immunostained (CD3, NK1.1, NKp46 and CD69) splenocytes were analyzed by flow cytometry. CD69+ NK cells (CD3-NK1.1+NKp46+) are expressed as a percentage of all NK cells. Mean values (± SEM) shown from 6 mice/group; *, P<0.05

Figure E3: Expression of AhR-regulated transcripts. Lungs (A-C) and livers (D-F) from four offspring groups (as in Fig 2) were analyzed for relative expression of AhRR, Cyp1a1 and Cyp1b1 mRNA. Values for each AhR-regulated transcript were normalized and expressed as in Fig E1. Mean values (± SEM) shown from 6-13 mice/group; *, P<0.05; **, P<0.01; ****, P<0.001; ****, P<0.001

Figure E4: Expression of oxidative stress-regulated transcripts. Lungs (A-B) and livers (C-D) from three offspring groups (as in Fig 3 and E1) were analyzed for relative expression of Hmox1 and Nrf2 mRNA. Values for each oxidative stress-regulated transcript were normalized and expressed as in Fig E1. Mean values (\pm SEM) shown from 6-13 mice/group; *, P<0.05; **, P<0.01

