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Supplementary Figure 1. Cell, SF and FA co-alignment following cyclic stretching. a, SFs (red) and FAs (yellow)

in a single cell after 6 hours of cyclic stretching. The REF-52 cell, expressing YFP-tagged paxillin (FA protein), was fixed at

the end of the stretch and stained with TRITC-phalloidin. a’, Blowup of (a) demonstrates that the SFs are orientated at a

similar angle. A further magnification shows that FAs are co-aligned with the SFs anchored to them. The sketch, of a single

FA (yellow) - SF (red) pair, illustrates the joint orientation angle, θ, as well as their polarization direction, ρ. In comparison,

the substrate extensional principal strain is in the direction of the x axis (this usually, but not always, coincides with the

direction of applied stretching). b, Images of single REF-52 cells (one nucleus each), after 6 hours of cyclic stretching, showing

SFs oriented at both mirror-image angles. This result indicates that the reorientation is not driven at the cell level, but rather

involves a smaller part of it. Such mixed orientations are typically observed in cells originally aligned perpendicular to the

direction of the extensional principal strain (i.e. midway between the two mirror-image angles) and can be explained by SF

clusters reorienting independently towards the closer set point angle (see Fig. 4b).
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Supplementary Figure 2. Plots of dθ
dt

for different r values. a, r = 0.2. b, r = 0.5. c, r = 0.8. Red circles mark the

steady state solutions (predicted final orientations), black squares mark the unstable fixed-points and green arrows (only in

(a)) indicate the reorientation directions. For all plots, ε̌xx = 0.1, b = 1.13 and τ = 6.6 sec were used.

Supplementary Note 1: Reorientation under cyclic stretching is driven by dissipative

relaxation of the cell’s passively-stored, two-dimensional, elastic energy

Here we lay out a new theory which accurately captures the dynamics of stress fibres (SFs), focal adhesions (FAs)

and cell reorientation under cyclic stretching. The constraints and thresholds for this effect are discussed in the next

section.

Biaxial cyclic stretching is applied to a 2D elastic substrate, to which cells adhere. The resulting linear elastic

principal strains in the substrate are

εxx(t) = 0.5 · ε̌xx(1− cos(ωt)) and εyy(t) = −r · εxx(t) . (S1)

ε̌xx and ε̌yy are the time-independent strain amplitudes and r (−∞ < r < ∞), the biaxiality strain ratio, is uniform

over the region of interest.

In formulating the theory we make the following justified assumptions:

1. Cells stretch and compress together with the underlying substrate (to which they adhere). For the ∼ 1MPa rigid

substrate primarily used in this study, we assume that the much softer cells [1, 2] pose a negligible perturbation

and inherit the matrix strains.

2. Cells should be treated as 2D objects.

3. Cells should be treated as linear-elastic, anisotropic structures [2].

At the heart of the theory is the notion that the reorientation process is driven by dissipative relaxation of the

cells’ passively-stored, two-dimensional, elastic energy. This energy is pumped into the cells by the cyclic stretching.

In response, we suggest, the cells actively and continuously realign, rotating as long as it is energetically favorable,

with the final orientation angle corresponding to the elastic energy minimum.
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During cyclic stretching, the elastic strain energy density stored in an individual cell, ucell, is given by [3]

ucell =
1

2
(σcell

ρρ ερρ + σcell
θθ εθθ + 2σcell

ρθ ερθ) , (S2)

where a linear elastic relation between the matrix strains, ε, and the resulting cell stresses, σcell, is assumed (assump-

tions 1− 2). In addition, a polar coordinate system is adopted for convenience (see Supplementary Fig. 1a’), with ρ

being the direction of FAs and SFs polarization, and θ its angle relative to the direction of the extensional principal

strain (usually, but not always, the latter coincides with the direction of applied stretching). Substituting the cell

stresses by their anisotropic plane-stress expressions (assumption 2)

σcell
ρρ =

1

1− νcellθρ νcellρθ

· (Ecell
ρρ · ερρ + νcellρθ Ecell

θθ · εθθ) ,

σcell
θθ =

1

1− νcellθρ νcellρθ

· (Ecell
θθ · εθθ + νcellθρ Ecell

ρρ · ερρ) ,

σcell
ρθ = 2µcell

ρθ · ερθ , (S3)

where the cell is modeled as a linear elastic anisotropic structure (assumption 3). Ecell
ρρ (Ecell

θθ ) is the cell Young’s

modulus in the ρ (θ) direction while µcell
ρθ is its in-plane shear modulus. νcellρθ (νcellθρ ) is the cell Poisson’s ratio, where

stress is applied in the ρ (θ) direction and the lateral deformation takes place in the θ (ρ) direction. From the

symmetric form of the stress tensor, we can reduce the number of undetermined cell elastic parameters using the

following relation

νcellρθ Ecell
θθ = νcellθρ Ecell

ρρ . (S4)

Making use of the above equations, we obtain the following expression for the stored elastic energy density

ucell =
1

2(1− νcellθρ νcellρθ )
· {ε2ρρ · [Ecell

ρρ ] + ερρ · εθθ · [2νcellρθ · Ecell
θθ ] + ε2θθ · [Ecell

θθ ] + ε2ρθ · [4(1− νcellθρ νcellρθ ) · µcell
ρθ ]} . (S5)

Through tensor rotation, we transform the principal strains {εxx, εyy} to the polar strains {ερρ, εθθ}

ερρ = εxx[(1 + r) · cos2θ − r] ,

εθθ = εxx[−(1 + r) · cos2θ + 1] ,

ερθ = −εxx[(1 + r)cosθ · sinθ] . (S6)

For simplicity we rewrite Eq. S5 as

ucell =
ε2xx

2(1− νcellθρ νcellρθ )
{(1+r)2 cos4(θ)[A+C−2(B+2D)]+2(1+r) cos2(θ)[(1+r)(B+2D)−(Ar+C)]+(Ar2+C−2Br)}

(S7)

where

A ≡ Ecell
ρρ ,

B ≡ νcellρθ · Ecell
θθ ,

C ≡ Ecell
θθ ,

D ≡ (1− νcellθρ νcellρθ ) · µcell
ρθ . (S8)
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This can be further simplified to the final form

ucell = 0.5 ·K · ε2xx
[
(1 + r) · cos2(θ)− 1

b
+ (1− r)

]2
+ f(r) , (S9)

where f(r) is a function of r with no θ dependence and

b =
A− (B + 2D)

(A+ C)− 2(B + 2D)
,

K =
1

1− νcellθρ νcellρθ

· (A− (B + 2D))2

(A+ C)− 2(B + 2D)
=

b · (A− (B + 2D))

1− νcellθρ νcellρθ

. (S10)

The elastic strain energy density, ucell, has two, mirror-image, stable minima for θ at

cos2(θ̄theory) =
b(r − 1) + 1

r + 1
, (S11)

provided that K > 0 (or A+C > 2(B +2D)). We then interpret these angles of minimum elastic energy , θ̄theory, as

the final FA and SF orientations

θ̄theory = ± arccos

(√
b+

1− 2b

r + 1

)
= ± arctan

(√
r + b · (1− r)

1− b · (1− r)

)
. (S12)

The final orientation angle is therefore a function of two parameters, r and b. The former is experimentally controlled

and determined by the substrate geometry, clamping conditions and Poisson’s ratio while the latter depends on the

cell elastic properties.

Turning to analyze the individual cell reorientation dynamics towards θ̄theory, we note that the cell inertia is negli-

gible compared to the external elastic forces acting on it. Its reorientation, therefore, is solely driven by relaxational

dynamics

dθ

dt
= −1

η
· ∂u

cell

∂θ
, (S13)

where η > 0 is a viscosity-like coefficient. By dimensional analysis, we can substitute η by E · τ , where E is a

characteristic elastic modulus of the cell and τ is a phenomenological time constant. This introduces, in a natural

manner, an intrinsic timescale to the reorientation process

dθ

dt
= − 1

E · τ
· ∂u

cell

∂θ
. (S14)

On the right hand side of this equation is the configurational force acting on the cell , which is derived from the strain

energy pumped into it by the cyclic stretching. The temporal scales involved here depend on the stretching frequency

alone (we assume an elastic substrate response). On the left hand side is the cell response to this force, namely

rotation. As cell rotation (∆θ) takes place through directed formation and disintegration processes of the relevant

(cellular) molecular components, the timescales for recruitment of new molecules, or release of resident ones (∼ 10s

[4, 5]) effectively limit the temporal response of the reorientation. Thus, for the relatively rapid stretch frequencies

analyzed in this work (1/f ≤ 1s), the configurational force on the right hand side may be replaced by its time average

dθ

dt
= − 1

E · τ
· 1
ξ

∫ ξ

0

∂ucell

∂θ
dt , (S15)
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where integration is performed over a characteristic molecular kinetics timescale, ξ (∼ 10s for FAs and actin filament

networks).

Plugging-in the result for the strain energy density found above (Eq. S9), we obtain

dθ

dt
= c ·

1
ξ

∫ ξ

0
ε2xx(t)dt

τ
· (1 + r) · sin(2θ) ·

[
(1 + r) · cos2(θ)− 1

b
+ (1− r)

]
, (S16)

where c = K
bE . Finally, after substituting εxx(t) according to Eq. S1, we arrive at the expression for the reorientation

dynamics, under cyclic stretching, of the joint FA and SF angle, θ

dθ

dt
=

3

8
· c · ε̌

2
xx

τ
· (1 + r) · sin(2θ) ·

[
(1 + r) · cos2(θ)− 1

b
+ (1− r)

]
. (S17)

Reorientation thus takes place according to Eq. S17 until reaching one of the two, mirror-image, stable steady state

solutions, θ̄theory. See figure below for plot of θ̇(θ) at different r values (Supplementary Fig. 2).

Notes:

1. b depends on the anisotropic elastic constants of the cell (or relevant parts of it). We can estimate its range

of magnitudes by addressing two extreme scenarios. For weak anisotropy, the relations between A,B,C and

D are similar to that of an isotropic solid. In that case, b can assume any value. In the other extreme, of

strong anisotropy, Ecell
ρρ ≫ Ecell

θθ , µcell
ρθ and νcellθρ νcellρθ ≈ 0 yield b ∼ 1. In this work we extracted b = 1.13± 0.04,

suggesting that we are close to the strong anisotropy case. The uniformity of b over different substrate rigidities

and cell lines, suggests that the elastic constants A,B,C,D are an intrinsic property of the cell.

2. For the strong anisotropy case, where A ≫ (C − 2 · (B + 2D)), b can be approximated as b ≈ 1 + α · Ecell
θθ

Ecell
ρρ

,

where α = (B+2D
C − 1). This expression highlights the significance of b, providing direct comparison of the two

orthogonal Young’s moduli of the cell: Ecell
θθ and Ecell

ρρ .

3. The value of c can be estimated in a similar manner to b. For weak anisotropy, we obtain c ∼ 0, while for

strong anisotropy its value should be close to unity, c ≈ 1 (where we have also assumed that E ∼ Ecell
ρρ ). In the

manuscript, Eq. S17 was used with c = 1 and the extracted τ values are therefore correct up to a multiplicative

constant of order unity. Moreover, so long as b remains constant under different experimental conditions and

for different cell lines, so should c, which is a function of the same set of elastic constants (A,B,C,D).

4. For the measured b = 1.13 value we obtain from Eq. S10 the following relation between the elastic constants:

0.13A+1.13C = 1.26(B+2D). In addition, as we observe stable steady state solutions for the final orientation

angle, the parameter K must necessarily be positive (see Eq. S9), which translates to A > (B + 2D) and

C < (B + 2D). This last result implies that Ecell
ρρ > Ecell

θθ (A > C) indicating that the rigidity of the cell (or

relevant parts of it) is higher along its long axis.

5. While wood is very different from cells (or relevant cell parts) in composition, size and dimensionality (3D vs

2D) it is, on the other hand, a well characterized anisotropic material [6]. Calculating the predicted b value

for the elastic constants of 15 different types of hardwoods (where by crude analogy the wood’s fibre direction

corresponds to the FA and SF ρ direction), we find an average value of b = 1.15 in surprising similarity with
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our own result. The corresponding average c value for these hardwoods is c = 0.83, in close agrement with the

value used in the manuscript (c = 1). In addition, we obtain α = 1−2. As to the relations between the different

elastic constants: Eρρ ≈ 10− 20 · Eθθ, Eρρ ≈ 10− 20 · µρθ, νθρ ≈ 0.04 and νρθ ≈ 0.4.

6. The cell body orientation analyzed in the manuscript (for polarized cells only) tracks the dark, actin-rich, cell

core. This measure reflects the mean SF angle in that region and was thus analyzed using Eq. S17.

7. SF reorientation is not a process dictated at the cell level, but rather possibly involves smaller parts of it. This

is supported by observations of cells, at the end of cyclic stretching experiments, with SFs which are not all

oriented in the same direction, but rather along both mirror-image angles (Supplementary Fig. 1b).

Supplementary Note 2: Constraints and thresholds for the reorientation process

Smooth cell reorientation does not take place under any cyclic stretching conditions. First we observe that the

stretch amplitude influences both the rotation time and final angular distribution. The overall rotation duration

scales with ε̌−2
xx (Eq. S17) and therefore a cell population that requires an hour to reorient under 10% strain is

expected to prolong to 100 hours under a 1% stretch. As cultured cells typically divide within 24 hours, this rotation

may never complete. Turning to look at the SF angular distribution following cyclic stretching (see e.g. Fig. 1e),

we note that the angular distribution width scales with ε̌−1
xx (will be shown elsewhere). Consequently, this width

will be 10 times larger in the low strain case (presented above) compared to its higher strain counterpart, making

it more difficult to discern over the naturally random cell orientations. In addition, we also expect a cell dependant

threshold amplitude below which cell sensitivity or molecular “noise” will drown out the external stretch signal. At

the other extreme, the elastic response of cells to the applied stretch is limited to a finite amplitude range, beyond

which mechanical damage might take place. Finally, as discussed above, the effective strain transferred to the cells

depends not only on the amplitude of substrate stretch, but also on the substrate rigidity. Thus the same cyclic

matrix strain may drive cell reorientation on one matrix, but have no similar effect on a considerably softer matrix

[7].

The relevant molecular kinetic timescales define a transition frequency below which the response to cyclic stretching

is greatly attenuated. Above this frequency we expect an intermediate stage where molecular “noise” and high cellular

activity (such as high motility) can hinder the reorientation. At frequencies much faster than the molecular kinetic

timescales (∼ 1Hz), complete reorientation should take place, as discussed in the previous section.
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