Supplementary Information

Lithographically Defined Three-dimensional Pore-patterned Carbon with Nitrogen Doping for High-Performance Ultrathin Supercapacitor Applications

Da-Young Kang and Jun Hyuk Moon*

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea

Corresponding author, E-mail: junhyuk@sogang.ac.kr



Figure S1. SEM image of SU8 pore patterns after pyrolytic carbonisation at 900°C in the absence of a silica support. The pore collapse of the film is clearly observed.

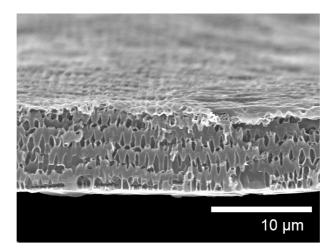


Figure S2. SEM image of the melamine-treated pore patterns without a silica shell.

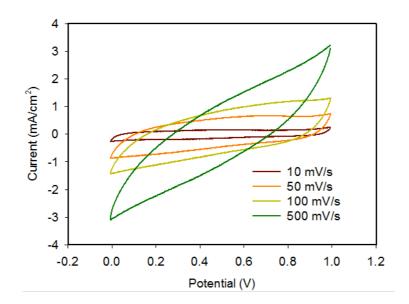


Figure S3. CV curves of the pristine pore-patterned carbon measured at various scan rates in $1 \text{ M H}_2\text{SO}_4$.

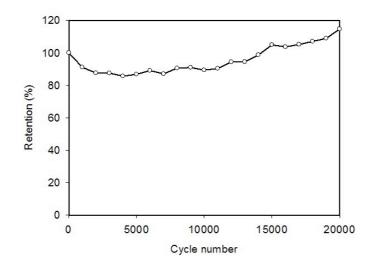


Figure S4. Cycle stability of high-N-doped pore-patterned carbon.

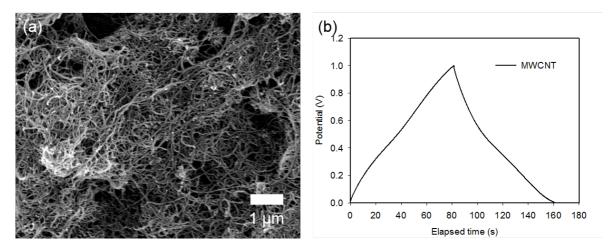


Figure S5. (a) SEM image of commercial MWCNT films (b) Galvanostatic charge/discharge of MWCNT film measured at 1 A/g in 1 M $\rm H_2SO_{4.}$

Chemical	Silica coated	Etched	
С	73.20	92.05	
О	14.46	7.95	
Si	12.33	0	

Table S1. EDS results indicating the carbon, oxygen, and silicon chemical compositions for silica-coated pore-patterned carbons before and after the silica was etched.

	bare	high-N	mid-N	low-N
N/C ratio	0	9.33	6.73	4.70
Pyridinic N (%)	N/A	46.00	39.22	36.81
Pyrrolic N (%)	N/A	25.97	19.02	17.93
Graphitic N (%)	N/A	18.97	31.01	34.43
Oxidized N (%)	N/A	9.06	10.75	10.83

Table S2. The N/C ratio and the fraction of N-6, N-5, N-Q, and N-X configurations for the N-doped samples prepared at various doping temperatures.