# **Supporting Information**

# Kanatsu-Shinohara et al. 10.1073/pnas.1401837111

# SI Materials and Methods

**Cell Culture.** Germ-line stem (GS) cells used in the present study were derived from green mice or ROSA26 mice that were backcrossed to a DBA/2 background (1, 2). We derived *Fbxw7*<sup>f/f</sup> GS cells from 2- to 3-d-old *Fbxw7*<sup>f/f</sup> mice produced from off-spring that resulted from crossing *Fbxw7*<sup>f/f</sup> mice in a C57BL/6 × DBA/2 background. GS cell culture conditions using StemPro-34 SFM (Invitrogen) were described previously (1). The growth factors used included 10 ng/mL human fibroblast growth factor 2 (FGF2), and 15 ng/mL rat glial cell line-derived neurotrophic factor (GDNF) (Peprotech). The cells were regularly maintained on mitomycin C (Sigma)-treated mouse embryonic fibroblasts (MEFs). *N-*[*N*-(3,5-difluorophenacetyl)-L-alanyl]-*S*-phenylglycine t-butyl ester (DAPT) (Wako Pure Chemical Industries) was added at 10  $\mu$ M.

**Immunostaining.** Testes samples were fixed in 4% paraformaldehyde for 2 h and then frozen in Tissue-Tek OCT compound (Sakura Finetechnical). For immunostaining of cryosections, samples were treated with 0.1% Triton X-100 in PBS. After immersing them in blocking buffer (0.1% Tween 20, 3% BSA, and 10% goat serum in PBS) for >1 h, samples were incubated with primary antibodies at 4 °C overnight. Secondary antibodies were incubated for 1 h at room temperature. Samples were counterstained with Hoechst 33342 (Sigma). The images were collected using a confocal microscope (Fluoview FV1000D; Olympus). The antibodies used are listed in Table S1.

**Flow Cytometry.** GS cells were dissociated by incubating in cell dissociation buffer for 5 min (Invitrogen). Propidium iodide (1  $\mu$ g/mL) was added to exclude dead cells. Stained cells were analyzed using a FACSCalibur (BD Biosciences). The antibodies used are listed in Table S1.

**Lentivirus Infection.** Full-length mouse Fbxw7a, human Myc (a gift from H. Saya, Keio University, Tokyo), human Mycn (Addgene), and human *Ccne1* (a gift from C. J. Sherr, St. Jude Children's Research Hospital, Memphis, TN) were cloned into the CSII-EF-IRES2-Venus (IV) vector. Human *Pin1* (Addgene) was cloned into the CSII-EF-IRES2-puro (IP) vector. Lentiviral particles were produced by transient transfection of 293T cells, and GS cells or testis cells were transfected as described previously (3). Virus titers were determined by transfecting 293T cells, and the multiplicities of infection (MOIs) were adjusted to 4.0.

Increases in the number of  $Fbxw7\alpha$ -expressing GS cells were measured by plating  $3 \times 10^5$  cells per 9.5 cm<sup>2</sup> on MEFs. The number of Venus-expressing cells was determined by FACSCalibur (BD Biosciences). For transplantation experiments, green mouse testis cells were transfected with the control or  $Fbxw7\alpha$ -expressing lentiviral construct, and  $6 \times 10^4$  cells were transplanted into seminiferous tubules 2 d after transfection.

For shRNA-mediated gene knockdown (KD), KD vectors were purchased from Open Biosystems. A mixture of lentiviral particles was used to transfect GS cells from ROSA mice or testis cells. pLKO1-Scramble shRNA (Addgene) was used as a control (Open Biosystems). The lentivirus titer was determined using a Lenti-X p24 rapid titer kit (Clontech). The MOIs in the KD experiment were adjusted to 4.0. All KD vectors are listed in Table S2.

Adenovirus Infection. For deletion of *Fbxw7*, dissociated testis cells were exposed to AxCANCre (RIKEN BRC) at a density of  $1 \times 10^6$  cells per 9.5 cm<sup>2</sup>, as described previously (4). After overnight

incubation, the virus was removed on the next day, and cells were used for transplantation. AxCANLacZ (RIKEN BRC) was used as a control. The MOIs were adjusted to 2.0.

**Apoptosis Assay.** For TUNEL staining, a single-cell suspension was concentrated on glass slides by centrifugation with Cytospin 4 (Thermo Electron Corporation). After fixation in 4% paraformaldehyde for 1 h, cells were labeled using an In Situ Cell Death Detection kit (TMR red) (Roche Applied Science) according to the manufacturer's protocol. The nuclei were counterstained with Hoechst 33342 (2  $\mu$ g/mL; Sigma) to determine the percentage of TUNEL-positive nuclei relative to the total number of Hoechst 33342-stained nuclei. Apoptotic cells were quantified by collecting images of stained cells using Photoshop software (Adobe Systems).

Analyses of Recipient Testes. For counting the colony number, recipient mice were killed between 6 and 8 wk after transplantation, and their testes were analyzed by observation under UV light or by staining for  $\beta$ -galactosidase, the *LacZ* gene product, with 5-bromo-4-chloro-3-indolyl- $\beta$ -D-galactopyranoside (X-gal) (Wako Pure Chemical Industries) (2). In experiments using green mice, testes were analyzed under UV fluorescence. A germ-cell cluster was defined as a colony when it occupied the entire basal surface of the tubule and was longer than 0.1 mm. For histological analysis, paraffin-embedded sections were stained with hematoxylin/eosin. The number of tubules with spermatogenesis, as defined by the presence of multiple layers of germ cells in the entire circumference of the tubules, was recorded for one section from each testis.

**Southern Blotting.** Genomic DNA was digested with StuI and transferred and hybridized with exon 4 probe, as described previously (4, 5). The PCR product was subsequently cloned into pGEMT easy vector (Promega). The plasmid was then digested with EcoRI to produce a 322-bp fragment, which was used as a hybridization probe. Band intensity was quantified using NIH image 1.62 software.

**Western Blotting.** Samples were separated by SDS/PAGE, transferred onto Hybond-P membranes (Amersham Biosciences), and incubated with primary antibodies. The antibodies used in the experiments are shown in Table S1. Band intensity was quantified using Multi Gauge version 3.0 software (Fuji Photo Film Co. Ltd.), and expression levels were normalized relative to those of ACTB.

**Gene-Expression Analyses.** Total RNA was isolated using TRIzol (Invitrogen), and first-strand cDNA was synthesized using a Verso cDNA Synthesis Kit (Thermo Fisher Scientific) for RT-PCR. For real-time PCR, the StepOnePlus Real-Time PCR system and *Power* SYBR Green PCR Master Mix were used following the manufacturer's protocol (Applied Biosystems). Transcript levels were normalized relative to those of *Hprt*. PCR conditions were 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s, and 60 °C for 1 min. Each PCR was run at least in triplicate. For RT-PCR, PCR conditions were 95 °C for 10 min, followed by 30 cycles at 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 1 min. The primers used for PCR are listed in Table S3.

**Statistical analyses.** Results are presented as means  $\pm$  SEM. Significant differences between means for single comparisons were determined using the Student *t* test. Multiple comparison analyses were performed using ANOVA followed by Tukey's Honest Significant Difference (HSD) test.

- 1. Kanatsu-Shinohara M, et al. (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. *Biol Reprod* 69(2):612–616.
- Kanatsu-Shinohara M, et al. (2011) Serum- and feeder-free culture of mouse germline stem cells. *Biol Reprod* 84(1):97–105.
- Kanatsu-Shinohara M, et al. (2008) Long-term culture of male germline stem cells from hamster testes. *Biol Reprod* 78(4):611–617.
- Takehashi M, et al. (2007) Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proc Natl Acad Sci USA 104(8):2596–2601.
- Onoyama I, et al. (2007) Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204(12):2875–2888.



**Fig. S1.** Expression of F-box and WD-40 domain protein 7 (FBXW7) in testes. (*A*) Histological appearance of postnatal testes. Arrows indicate gonocytes that are not attached to the basement membrane. (*B–D*) Double immunohistochemistry of FBXW7 and cadherin 1 (CDH1) (*B*), epitherial cell adhesion molecule (EPCAM) (C), or kit oncogene (KIT) (*D*) during postnatal testis development. (Scale bars: *A*, 50 µm; *B–D*, 20 µm.) Stain: *A*, hematoxylin/eosin; *B–D*, Hoechst 33342.



**Fig. 52.** Regulation of *Fbxw7* expression. (*A*) Real-time PCR analysis of *Fbxw7* expression by cytokine supplementation in GS cells. GS cells were cultured without cytokines supplementation (n = 9). (*B*) Western blot analysis of FBXW7 expression by cytokine supplementation in GS cells. GS cells were cultured without cytokines for 3 d, and samples were collected 24 h after cytokine supplementation. (*C* and *D*) Expression of *Fbxw7* (*C*) and FBXW7 (*D*) in germ cells enriched from 10-d-old pup testes. Testis cells were incubated overnight on gelatin-coated plates. Germ cells were enriched by gentle pipetting and cultured on laminin-coated plates for 2 d without GDNF. Samples were collected 24 h after GDNF supplementation. Results of real-time PCR (*C*) (n = 9) and Western blot analysis (*D*) are shown. Increase in FBXW7 expression was  $1.2 \pm 0.2$ -fold (n = 3), and the difference was not significant. (*E*) Real-time PCR analysis of indicated gene expression following depletion by shRNA. (n = 6-9). Cells were recovered 3 d after infection. (*F*). Western blot analysis of *FBXW7* expression following depletion of indicated genes by shRNA. Cells were recovered 3 d after infection. (*G*) Quantification of *FBXW7* expression in GS cells following *Pin1* expression in GS cells (n = 3). Cells were recovered 3 d after infection. (*H*) Real-time PCR analysis of *Pin1* expression was  $1.2 \pm 0.1$ -fold (n = 3), and the difference was not significant.



**Fig. S3.** Overexpression of Fbxw7a in GS cells. (A) Macroscopic appearance of a W recipient testis after transplantation of green mouse testis cells transduced with Fbxw7a. Cells were transplanted 2 d after infection. Colonized areas appear as green stretches of tubules under UV light. (B) Real-time PCR analyses of the indicated genes following Fbxw7a overexpression (n = 6-9). Cells were recovered 3 d after infection. (C) Colony counts after Fbxw7a overexpression and incubation with GDNF. Results of 3 experiments (n = 18). (Scale bar: A, 1 mm.)



**Fig. S4.** Immunohistochemistry of *Fbxw7<sup>t/f</sup>* stimulated by retinoic acid gene 8 (*Stra8*)-*Cre* mouse testes. (*A*) Double immunohistochemistry of FBXW7 and CDH1. (*B*) Double immunohistochemistry of KIT and synaptonemal complex protein 3 (SYCP3). (*C*) Double immunohistochemisty of CDH1 and GATA binding protein 4 (GATA4). (*D*) Double immunohistochemistry KIT and GATA4. (*E*) Immunohistochemical staining of KIT and TUNEL. (*F*) Immunohistochemistry of CDH1 and antigen identified by monoclonal antibody Ki67 (MKI67). (*H*) Double immunohistochemistry of KIT and MKI67. Counterstained with Hoechst 33342 (blue). (Scale bar: 20 μm.) Stain: *A*–*H*, Hoechst 33342.





S A Z d



**Fig. S6.** Phenotype of *Fbxw7* KO GS cells. (*A*) Southern blot analysis of *Fbxw7* KO GS cells 3 wk after AxCANCre infection. (*B*) Immunocytochemistry of MKI67 in *Fbxw7* KO GS cells. Three days after infection. (*C*) Flow cytometric analysis of spermatogonia marker expression. Green lines indicate controls. (*D*) Appearance of *Fbxw7* knockout (KO) GS cells. (*E*) Flow-cytometric analysis of NOTCH1 and NOTCH2 expression (n = 3-4). (*F*) Western blot analysis of NICD1 and NICD2 expression. (G) Effect of DAPT on *Fbxw7* KO GS cell proliferation (n = 6). After overnight inoculation with AxCANCre, virus supernatant was removed, and cells were replated with DAPT after passage. Cell number was determined 3 d after replating. AxCANLacZ was used as a control. (*H*) Real-time PCR analysis of *Rbpj* expression following depletion by shRNA (n = 9). Cells were recovered 3 d after infection. (*I*) Effect of *Rbpj* depletion on *Fbxw7* KO GS cell proliferation (n = 3). *Fbxw7* KO GS cells were infected with shRNA against *Rbpj* and were replated after 24 h. The cells were then incubated with AxCANCre for 24 h. Virus supernatant was removed, and cells were replated in a new dish. Cell number was determined 3 d after replating. AxCANLacZ was used as a control. (*J*) Real-time PCR analysis of NOTCH1 and were replated after 24 h. The cells were then incubated with AxCANCre for 24 h. Virus supernatant was removed, and cells were replated in a new dish. Cell number was determined 3 d after replating. AxCANLacZ was used as a control. (*J*) Real-time PCR analysis of NOTCH1 target gene expression. (n = 9). (*K*) Quantification of Western blot band intensities for FBXW7 substrates (n = 3-4). (Scale bars: *B* and *D*, 20 µm.)



**Fig. 57.** Effect of Fbxw7 deficiency in myelocytomatosis oncogene (MYC) or cyclin E1 (CCNE1) expression. (*A*) Double immunohistochemistry of CDH1 and MYC in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*B*) Double immunohistochemistry of CDH1 and CCNE1 in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*C*) Double immunohistochemistry of CDH1 and CCNE1 in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*C*) Double immunohistochemistry of CDH1 and CCNE1 in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*E*) Double immunohistochemistry of CDH1 and CCNE1 in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*E*) Double immunohistochemistry of CDH1 and CDC25A in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*E*) Double immunohistochemistry of CDH1 and CDC25A in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*E*) Double immunohistochemistry of CDH1 and cyclin-dependent kinase inhibitor (CDKN) 2A in *Fbxw7<sup>tif</sup> Stra8-Cre* testes. (*F*) Macroscopic appearance of recipient testes transplanted with *Fbxw7* KO testis cells after transduction of shRNAs against *Myc/Mycn* or *Ccne1*. (*H*) Colony counts after overexpression of *Fbxw7a* and *Myc*. Results of three experiments (*n* = 16). (*I* and *J*) Effect of *Pin1* depletion by shRNA on MYC and CCNE1 expression. Western blot analysis (*I*) and quantification of band intensities (*J*) are shown (*n* = 3). Cells were recovered 3 d after infection. (*K*) Colony counts after depletion of *Pin1* and *Myc*. Results of three experiments (*n* = 18). (Scale bars: *A*–*E*, 20 µm; *F* and *G*, 1 mm.) Stain: *A*–*E*, Hoechst 33342.

#### Table S1. Antibodies

PNAS PNAS

| Antigen                                                | Name                                                                                              | Company                              |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|
| Immunohistochemistry                                   |                                                                                                   |                                      |
| CDH1                                                   | Alexa fluor 647-conjugated rat anti-human CD324 (E-cadherin)<br>Rat anti-human CD324 (E-cadherin) | eBioscience (clone DECMA-1)          |
| EPCAM                                                  | Allophycocyanin (APC)-conjugated rat anti-mouse CD326 (EpCAM)<br>Rat anti-mouse CD326 (EpCAM)     | BioLegend (clone G8.8)               |
| KIT                                                    | APC-conjugated rat anti-mouse CD117 (c-kit)<br>Rat anti-mouse CD117 (c-kit)                       | eBioscience (clone ACK2)             |
| FBXW7                                                  | Rabbit anti-human Fbxw7                                                                           | Lifespan Biosciences (LS-B2909)      |
| MKI67                                                  | Alexa fluor 488-conjugated mouse anti-human $K_i$ -67                                             | BD Biosciences (clone B56)           |
| SYCP3                                                  | Rabbit anti-human Sycp3                                                                           | Abcam (ab15093)                      |
| GATA4                                                  | Rabbit anti-human GATA4                                                                           | Abcam (ab84593)                      |
| МҮС                                                    | Rabbit anti-human c-Myc                                                                           | Santa Cruz Biotechnology (sc-764)    |
| CCNE1                                                  | Rabbit anti-rat cyclin E1                                                                         | Santa Cruz Biotechnology (sc-481)    |
| CDK4                                                   | Rabbit anti-mouse CDK4                                                                            | Abcam (ab7955)                       |
| CDC25A                                                 | Rabbit anti-human CDC25A                                                                          | Lifespan Biosciences (LS-B1463)      |
| CDKN2A                                                 | Rabbit anti-mouse CDKN2A/p19 ARF                                                                  | Abcam (ab80)                         |
| Secondary reagents                                     |                                                                                                   |                                      |
| Alexa fluor 488-conjugated                             | goat anti-rabbit IgG                                                                              | Invitrogen (cat. no. A11008)         |
| Alexa fluor 568-conjugated                             | goat anti-rabbit IgG                                                                              | Invitrogen (cat. no. A11011)         |
| Alexa fluor 647-conjugated                             | goat anti-rabbit IgG                                                                              | Invitrogen (cat. no. A21245)         |
| Alexa fluor 647-conjugated                             | goat anti-rat IgG                                                                                 | Invitrogen (cat. no. A21247)         |
| Flow cytometry                                         |                                                                                                   | -                                    |
| KIT                                                    | APC-conjugated rat-anti-mouse c-kit                                                               | eBioscience (clone ACK2)             |
| EPCAM                                                  | Rat anti-mouse EpCAM                                                                              | BioLegend (clone G8.8)               |
| ITGA6                                                  | Rat anti-mouseCD49f (α6-integrin)                                                                 | BD Biosciences (clone GoH3)          |
| ITGB1                                                  | Biotin-conjugated hamster anti-rat CD29 (β1-integrin)                                             | BD Biosciences (clone Ha2/5)         |
| GFRA1                                                  | Biotin-conjugated goat anti-rat Gfra1                                                             | R&D systems (BAF560)                 |
| NOTCH1                                                 | Biotin-conjugated goat anti-mouse Notch1                                                          | BioLegend (HMN1-12)                  |
| NOTCH2                                                 | APC-conjugated hamster anti-mouse Notch2                                                          | BioLegend (HMN2-35)                  |
| Secondary reagents                                     |                                                                                                   | -                                    |
| Alexa fluor 647-conjugated hamster IgG isotype control |                                                                                                   | BioLegend (clone HTK888)             |
| APC-conjugated Streptavidin                            |                                                                                                   | eBioscience (17-4317)                |
| APC-conjugated goat anti-rat IgG+IgM                   |                                                                                                   | BD Bioscience (551019)               |
| Western blotting                                       |                                                                                                   |                                      |
| FBXW7                                                  | Rabbit anti-human Fbxw7                                                                           | Lifespan Biosciences (LS-B2909)      |
| MYC                                                    | Rabbit anti-human c-Myc                                                                           | Santa Cruz Biotechnology (sc-764)    |
| MYCN                                                   | Rabbit anti-human <i>N</i> -Myc                                                                   | Cell Signaling (9405)                |
| CCNE1                                                  | Rabbit anti-rat cyclin E1                                                                         | Santa Cruz Biotechnology (sc-481)    |
| Phosphorylated JUN                                     | Rabbit anti-human phospho-c-Jun (Ser63) II                                                        | Cell Signaling (9261)                |
| MCL1                                                   | Rabbit anti-human Mcl-1                                                                           | Abcam (ab32087)                      |
| KLF5                                                   | Rabbit anti-human Klf5                                                                            | Abcam (ab137676)                     |
| MTOR                                                   | Rabbit anti-human mTOR                                                                            | Cell Signaling (2972)                |
| SREBF1                                                 | Rabbit anti-human Srebp1                                                                          | Santa Cruz Biotechnology (sc-367)    |
| АСТВ                                                   | Mouse anti-β-actin antibody                                                                       | Sigma (clone AC-15)                  |
| CCND1                                                  | Mouse anti-human cyclin D1                                                                        | Cell Signaling (2926)                |
| CCND2                                                  | Rabbit anti-cyclin D2                                                                             | Cell Signaling (2924)                |
| CCND3                                                  | Mouse anti-human cyclin D3                                                                        | Cell Signaling (2936)                |
| Phosphorylated MAPK14                                  | Rabbit anti-human phospho-p38 MAPK (Thr180/Tyr182)                                                | Cell Signaling (4511)                |
| Phosphorylated MAP2K1                                  | Rabbit anti-human phospho-MEK1/2 (Ser217/221)                                                     | Cell Signaling (9121)                |
| Phosphorylated AKT                                     | Rabbit anti-human phospho-Akt (Ser473)                                                            | Cell Signaling (9271)                |
| CDKN2B                                                 | Rabbit anti-human CDKN2B (p15)                                                                    | Cell Signaling (4822)                |
| CDKN2A                                                 | Rat anti-mouse CDKN2D (p19)                                                                       | Santa Cruz Biotechnology (sc-32748)  |
| NICD1                                                  | Rabbit anti-activated human Notch1                                                                | Abcam (ab8925)                       |
| NICD2                                                  | Rabbit anti-human Notch2 intracellular domain                                                     | Abcam (ab52302)                      |
| Secondary reagents                                     |                                                                                                   |                                      |
| HRP (horseradish peroxidase                            | e)-conjugated horse anti-mouse IgG                                                                | Cell Signaling (cat. no. 7076)       |
| HRP-conjugated horse anti-r                            | rabbit IgG                                                                                        | Cell Signaling (cat. no. 7074)       |
| HRP-conjugated goat anti-rat IgG + IgM                 |                                                                                                   | Jackson Immunoresearch (112-035-044) |

## Table S2. KD vectors

PNAS PNAS

| Gene   | Vector                                                                         |  |  |
|--------|--------------------------------------------------------------------------------|--|--|
| Taf4b  | TRCN0000241312                                                                 |  |  |
| Zbtb16 | TRCN0000012941                                                                 |  |  |
| Foxo1  | TRCN0000054878, TRCN0000054879, TRCN0000054880, TRCN0000054881, TRCN0000054882 |  |  |
| ld2    | TRCN0000054388, TRCN0000054389, TRCN0000054390                                 |  |  |
| ld3    | TRCN0000071438, TRCN0000071439, TRCN0000071440                                 |  |  |
| ld4    | TRCN0000071444                                                                 |  |  |
| Gilz   | TRCN0000085743, TRCN0000085744, TRCN0000085745, TRCN0000085746, TRCN0000085747 |  |  |
| Мус    | TRCN0000042513, TRCN0000042514, TRCN0000042515, TRCN0000042516                 |  |  |
| Mycn   | TRCN0000042523, TRCN0000042525, TRCN0000042526, TRCN0000042527                 |  |  |
| Ccne1  | TRCN0000077775, TRCN0000077776, TRCN0000077777                                 |  |  |
| Ccne2  | TRCN0000077779, TRCN0000077780, TRCN0000077781, TRCN0000077782                 |  |  |
| Pin1   | TRCN0000012579, TRCN0000012580                                                 |  |  |
| Skp2   | TRCN0000088758, TRCN0000088759, TRCN0000088760, TRCN0000088761, TRCN0000088762 |  |  |
| Крс1   | TRCN0000201178, TRCN0000201651, TRCN0000192171, TRCN0000200959, TRCN0000191626 |  |  |
| Rbpj   | TRCN0000097286, TRCN0000097287, TRCN0000097288                                 |  |  |

### Table S3. PCR primers and genotyping

PNAS PNAS

| Genotyping  |                                   |                           |
|-------------|-----------------------------------|---------------------------|
| Fbxw7       | Forward: TGGTATAGGCTTAACCCTATAGGG |                           |
|             | Reverse: AGCCATCTACTCTCACTCACAG   |                           |
|             | WT, 650 bp; Flox, 900 bp          |                           |
| R26R        | IMR0315: GCGAAGAGTTTGTCCTCAACC    |                           |
|             | IMR0316: GGAGCGGGAGAAATGGATATG    |                           |
|             | IMR0883: AAAGTCGCTCTGAGTTGTTAT    |                           |
|             | WT, ~600 bp; Flox, ~300 bp        |                           |
|             | Forward                           | Reverse                   |
| RT-PCR      |                                   |                           |
| Stra8       | AACGGTATCTCAACTTTTACAAGCA         | ATTTCTCCTCTGGATTTTCTGAGTT |
| Hoxa4       | TGAGCGCTCTCGAACCGCCTATACC         | GATGGTGGTGTGGGCTGTGAGTTTG |
| Crem        | GATTGAAGAAGAAAAATCAGA             | CATGCTGTAATCAGTTCATAG     |
| Piwil1      | ATGATCGTGGGCATC                   | AGGCCACTGCTGTCATA         |
| Clgn        | ATATGCGTTTCCAGGGTGTTGGAC          | GTATGCACCTCCACAATCAATACC  |
| Sycp3       | GGTGGAAGAAAGCATTCTGG              | CAGCTCCAAATTTTTCCAGC      |
| Prm         | ACGAAGATGTCGCAGACGGAGGAG          | CATCGGCGGTGGCATTTTTCAAGA  |
| Hprt        | GCTGGTGAAAAGGACCTCT               | CACAGGACTAGAACACCTGC      |
| qPCR        |                                   |                           |
| Hprt        | GCTGGTGAAAAGGACCTCT               | CACAGGACTAGAACACCTGC      |
| Fbxw7       | TGCAAAGTCTCAGATTATACC             | ACTTCTCTGGTCCGCTCCAGC     |
| Fbxw7α      | CTCACCAGCTCTCCTCTCCATT            | GCTGAACATGGTACAAGGCCA     |
| Fbxw7β      | AGAAAATATGGGTTTCTACGG             | TTGCTGAACATGGTACAAGG      |
| Fbxw7γ      | AACCATGGCTTGGTTCCTGTTG            | CAGAACCATGGTCCAACTTTC     |
| Taf4b       | AGATGTTACTAAAGGCAGCC              | GCAAGCTCCAACTGCTGCAA      |
| Zbtb16      | CACACTCAAGAGCCACAAGC              | ATCATGGCCGAGTAGTCTCG      |
| Foxo1       | GTGAAGAGCGTGCCCTACTT              | TCCTTCATTCTGCACTCGAA      |
| ld2         | ACTATCGTCAGCCTGCATCA              | AGCCACAGAGTACTTTGCTA      |
| ld3         | TCGGAACGTAGCCTGGCCAT              | TGGCTAAGCTGAGTGCCTCG      |
| ld4         | GTTCACGAGCATTCACCGTA              | AAGGTTGGATTCACGATTGC      |
| Gilz        | CCCTAGACAACAAGATTGAGC             | CTTCTCAAGCAGCTCACGAA      |
| Pin1        | AGATCACCAGGAGCAAGGAG              | TGAACTGTGAGGCCAGAGAT      |
| Skp2        | GCAAAGGGAGTGACAAAGAC              | TCCCAAGGAGCAGCTCATCT      |
| Крс1        | CTCAGATGCTGAGAAGTCCA              | AGTTTAGCGGTTTCCTGCTG      |
| Cdkn2b      | CAGATCCCAACGCCCTGAAC              | GCAGTTGGGTTCTGCTCCGT      |
| Cdkn2a(p16) | ACATCAAGACATCGTGCGA               | TAGCTCTGCTCTTGGGATTG      |
| Cdkn2a(p19) | GGTTCTGGTCACTGTGAGG               | TGAGCAGAAGAGCTGCTACG      |
| Cdkn1a      | GCAGATCCACAGCGATATCC              | CAACTGCTCACTGTCCACGG      |
| Cdkn1b      | AGGAGAGCCAGGATGTCAGC              | GAATCTTCTGCAGCAGGTCG      |
| Rbpj        | AGCTGAACTTGGAAGGGAAG              | CGCTGTTGCCATAGAACATC      |
| Hes1        | TATTGCCAACTGGGAGCCTG              | TCTAGCCCATTCATTCCTCT      |
| Hes5        | TCCAGAGCTCCAGGCATGGC              | TCTATGCTGCTGTTGATGCG      |
| Hey1        | ACGAGACCATCGAGGTGGAA              | TTCCTGGCCAAAACCTGGGA      |
| Hey2        | CCTTGTGAGGAAACGACCTC              | CATCACTGAGCTTGTAGCGT      |