Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers

A Submission to the Proceedings of the National Academy of Science USA

PHYSICAL SCIENCES: Chemistry

Xuzhou Yan,^{a,b} Jiang-Fei Xu,^c Timothy R. Cook,^b Feihe Huang,^{a,1} Qing-Zheng Yang,^{c,1} Chen-Ho Tung,^c and Peter, J. Stang^{b,1}

^aState Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

^bDepartment of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States.

^cKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry,

Chinese Academy of Sciences, Beijing 100190, P. R. China

¹To whom correspondence should be addressed.

Email address: stang@chem.utah.edu; fhuang@zju.edu.cn; qzyang@mail.ipc.ac.cn

Table of Contents (13 Pages)

Section A. Materials/General Methods/Instrumentation		S2
Section B. Synthetic Protocols		S2
1.	Synthesis of stiff stilbene ligand Z-1	S2
2.	Synthesis of stilbene-based metallacycle 4	S 4
3.	Synthesis of stilbene-based metallacycle 5	S 7
Section C. Characterization of Metallosupramolecules		S10
1.	³¹ P { ¹ H} NMR spectra of DMCs 4 and 5 and MSPs 6 and 7	S10
2.	Concentration dependence of diffusion coefficients of MSPs 6 and 7	S10
3.	Simulated molecular models of DMCs 4 and 5	S11
4.	Size distributions of MSPs 6 and 7 at different concentrations	S11
5.	Partial ¹ H NMR spectra of MSPs before and after irradiation at 360 nm	S12
6.	Size distributions of MSPs 6 and 7 before and after irradiation at 360 nm	S12
Section D. References		S13

Section A. Materials/General Methods/Instrumentation

All reagents were commercially available and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratory (Andover, MA). Compounds 2, ^{\$1} 3, ^{\$1} and 8^{\$2} were prepared according to the published procedures. NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P{¹H} NMR chemical shifts are referenced to an external unlocked sample of 85% H_3PO_4 (δ 0.0). The two-dimensional diffusion-ordered (2D DOSY) NMR spectra were recorded on a Bruker DRX500 spectrometer. Dynamic light scattering (DLS) was carried out on a Malvern Nanosizer S instrument at room temperature. Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization with a MassLynx operating system. UV-vis spectra were collected on a Shimadzu UV-2550 UV-vis spectrophotometer. The fluorescence experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). Transmission electron microscopy (TEM) investigations were carried out on a JEM-1200EX instrument. The samples for TEM experiments (Fig. 5, images A and B) were prepared by placing one drop of a dichloromethane solution of DMC 4 (or 5) onto a carbon-coated grid. The samples for TEM experiments (Fig. 5, images C and D) were prepared by placing one drop of a dichloromethane solution of MSP 6 (or 7) onto a carbon-coated grid. The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus.

Section B. Synthetic Protocols

1. Synthesis of stiff stilbene ligand Z-1

Into a 150 mL round-bottomed flask were added compound **8** (200 mg, 0.757 mmol), 4-(chloromethyl)pyridine hydrochloride (273 mg, 1.66 mmol), and K₂CO₃ (1.05 g, 7.57 mmol) in 80 mL of CH₃CN. After heating at reflux under N₂ for 16 h, the solvent was removed and CH₂Cl₂ was added. The mixture was washed with water and brine, and then purified by flash column chromatography (dichloromethane/methanol, 100:1 ν/ν) to stilbene ligand **Z-1** as a yellow solid (253 mg, 75%). Mp 126.4–127.6 °C. The ¹H NMR spectrum of **Z-1** is shown in Figure S1. ¹H NMR (CD₂Cl₂, room temperature, 500 MHz) δ (ppm): 8.40 (d, *J* = 5.5 Hz, 4H), 7.66 (d, *J* = 2.0 Hz, 2H), 7.18 (d, *J* = 5.5 Hz, 4H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.70–6.75 (m, 2H), 4.97 (s, 4H), 2.80–2.88 (m, 4H), 2.70–2.773 (m, 4H). The ¹³C NMR spectrum of **Z-1** is shown in Figure S2. ¹³C NMR (CD₂Cl₂, room temperature, 125 MHz) δ (ppm): 32.40, 37.88, 71.23, 112.53, 116.76, 124.06, 128.39, 138.21, 144.26, 144.32, 148.86, 152.51, and 159.29. LRESIMS is shown in Figure S3: *m/z* 447.0 [M + H]⁺. HRESIMS: *m/z* calcd for [M]⁺ C₃₀H₂₆N₂O₆, 446.1994; found 446.1996, error 0.4 ppm.

Figure S1. ¹H NMR spectrum (CD₂Cl₂, room temperature, 500 MHz) of **Z-1**.

Figure S2. ¹³C NMR spectrum (CD₂Cl₂, room temperature, 125 MHz) of **Z-1**.

Figure S3. Electrospray ionization mass spectrum of Z-1.

2. Synthesis of stilbene-based metallacycle 4

In a 1:1 molar ratio, stiff stilbene ligand **1** (2.23 mg, 5.00 µmol) and 180° diplatinum acceptor **2** (6.18 mg, 5.00 µmol) were dissolved in 1.00 mL of CH₂Cl₂ in a 2 mL dram vial. The reaction mixture was allowed to stir for 8 h at room temperature. To the resulting homogeneous solution, diethyl ether was added to precipitate the product, which was then isolated and dried under reduced pressure and re-dissolved in CD₂Cl₂ for characterization. The ¹H NMR spectrum of metallacycle **4** is shown in Figure S4. ¹H NMR (CD₂Cl₂, room temperature, 500 MHz) δ (ppm): 8.50 (d, *J* = 5.5 Hz, 8H), 7.68 (d, *J* = 5.5 Hz, 8H), 7.57 (s, 4H), 7.16 (d, *J* = 8.5 Hz, 4H), 6.92 (s, 8H), 6.76–6.83 (m, 4H), 5.29 (s, 8H), 2.83 (t, *J* = 6.3 Hz, 8H), 2.72 (t, *J* = 6.3 Hz, 8H), 1.12–1.30 (m, 48H), 0.89–1.06 (m, 72H). The ³¹P{¹H} NMR spectrum of metallacycle **4** is shown in Figure S5. ³¹P{¹H} NMR (CD₂Cl₂, room temperature, 202.3 MHz) δ (ppm): 12.79 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2725.0 Hz). ESI-MS is shown in Figure S6: *m/z* 692.26 [M – 40Tf]⁴⁺, 702.77 [M – 30Tf – HOTf + K]⁴⁺, 986.67 [M – 20Tf – HOTf + K]³⁺, 1534.47 [M – 20Tf]²⁺, 1554.48 [M – OTf – HOTf + K]²⁺.

Figure S5. ³¹P {¹H} NMR spectrum (CD₂Cl₂, room temperature, 202.3 MHz) of metallacycle **4**.

Figure S6. Experimental (red) and calculated (blue) electrospray ionization mass spectra of metallacycle 4.

3. Synthesis of stilbene-based metallacycle 5

Scheme S3

In a 1:1 molar ratio, stiff stilbene ligand **1** (2.23 mg, 5.00 µmol) and 180° diplatinum acceptor **3** (6.57 mg, 5.00 µmol) were dissolved in 1.00 mL of CH₂Cl₂ in a 2 mL dram vial. The reaction mixture was allowed to stir for 8 h at room temperature. To the resulting homogeneous solution, diethyl ether was added to precipitate the product, which was then isolated and dried under reduced pressure and re-dissolved in CD₂Cl₂ for characterization. The ¹H NMR spectrum of metallacycle **5** is shown in Figure S7. ¹H NMR (CD₂Cl₂, room temperature, 500 MHz) δ (ppm): 8.52 (d, *J* = 5.0 Hz, 8H), 7.70 (d, *J* = 5.0 Hz, 8H), 7.59(s, 4H), 7.29 (s, 16H), 7.17 (d, *J* = 10.0 Hz, 4H), 6.81–6.83 (m, 4H), 5.32 (s, 8H), 2.84 (t, *J* = 6.3 Hz, 8H), 2.72 (t, *J* = 6.3 Hz, 8H), 1.15–1.28 (m, 48H), 0.94–1.06 (m, 72H). The ³¹P{¹H} NMR spectrum of metallacycle **5** is shown in Figure S8. ³¹P{¹H} NMR (CD₂Cl₂, room temperature, 202.3 MHz) δ (ppm): 13.49 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2692.6 Hz). ESI-MS is shown in Figure S9: *m*/*z* 730.77 [M – 4OTf]⁴⁺, 740.78 [M – 3OTf – HOTf + K]⁴⁺, 1037.69 [M – 2OTf – HOTf + K]³⁺, 1610.50 [M – 2OTf]²⁺, 1630.51 [M – OTf – HOTf + K]²⁺.

Figure S8. ³¹P {¹H} NMR spectrum (CD₂Cl₂, room temperature, 202.3 MHz) of metallacycle **5**.

Figure S9. Experimental (red) and calculated (blue) electrospray ionization mass spectra of metallacycle 5.

Section C. Characterization of Metallosupramolecules

1. ³¹P {¹H} NMR spectra of DMCs 4 and 5 and MSPs 6 and 7

Figure S10. ³¹P{¹H} NMR spectra (CD₂Cl₂, 293 K, 500 MHz): (*A*) discrete metallacycle **4**; (*B*) metallosupramolecular polymer **6**; (*C*) discrete metallacycle **5**; (*D*) metallosupramolecular polymer **7**. c = 5.00 mM.

2. Concentration dependence of diffusion coefficients of MSPs 6 and 7

Figure S11. Concentration dependence of diffusion coefficients D (500 MHz, [D₃]acetonitrile, 293 K) of MSP **6** (A) and MSP **7** (B).

To further substantiate the photoinduced formation of MSPs **6** and **7**, concentration-dependent 2D DOSY experiments were performed. Upon increasing the MSPs concentration, the measured weight-average diffusion coefficients decreased from 9.83×10^{-10} to 7.94×10^{-10} m²s⁻¹ for MSP **6** and 7.21×10^{-10} to 5.01×10^{-10} m²s⁻¹ for MSP **7**.

3. Simulated molecular models of DMCs 4 and 5

Figure S12. Simulated molecular models of DMCs **4** (*A*) and **5** (*B*) by PM6 semiempirical molecular orbital methods. To minimize computational cost, the PEt₃ ligands were modeled as PH_3 .

4. Size distributions of MSPs 6 and 7 at different concentrations

Figure S13. Size distributions of MSPs 6 (A) and 7 (B) at different concentrations.

5. Partial ¹H NMR spectra of MSPs before and after irradiation at 360 nm

Figure S14. Partial ¹H NMR spectra (CD₂Cl₂, 293 K, 500 MHz): (*A*) metallosupramolecular polymer **7**; (*B*) irradiation of sample (*A*) at 360 nm; (*C*) irradiation of sample (*B*) at 387 nm; (*D*) metallosupramolecular polymer **6**; (*E*) irradiation of sample (*D*) at 360 nm; (*F*) irradiation of sample (*E*) at 387 nm. c = 2.00 mM.

6. Size distributions of MSPs 6 and 7 before and after irradiation at 360 nm

Figure S15. Size distributions of MSPs 7 (*A*) and 6 (*B*) before and after irradiation at 360 nm. c = 1.00 mM.

Section D. References

- S1. Manna J, et al. (1997) Nanoscale tectonics: self-assembly, characterization, and chemistry of a novel class of organoplatinum square macrocycles. J Am Chem Soc 119: 11611–11619.
- S2. Akbulatov S, Tian Y, Boulatov R (2012) Force-reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J Am Chem Soc 134: 7620–7623.