SUPPLEMENTARY INFORMATION

The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal rearrangements at a chromosome arm

Pilar Ayuda-Durán¹, Fernando Devesa¹, Fábia Gomes¹, Joana Sequeira-Mendes², Carmelo Ávila-Zarza³, María Gómez², and Arturo Calzada^{1,*}

¹ Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid, 28049, Spain

² Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid, 28049, Spain

³Department of Statistics, Universidad de Salamanca, Salamanca, 37007, Spain

Supplementary Tables 1 and 2; Supplementary Figure legends and Supplementary Figures 1-5.

Supplementary Table 1. Yeast strains

Strain	Genotype	Source
YAC36	W303-1a MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100	K. Labib
YAC37	W303-1b MATα ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100	K. Labib
RDKY3615	S288C MATa ura3-52, leu2 Δ 1 trp1 Δ 63 his3 Δ 200 lys2 Δ Bgl hom3-10 ade2 Δ 1 ade8 YEL069::URA3	Chen and Kolodner, 99
YAC177	S288C yjl193w::hphNT	This study
YAC188	W303-1a yjl193w::hphNT	This study
YAC198	W303-1a sic1::(TRP1)GAL1,10p-SIC1	This study
YAC217	S288C sic1::(TRP1)GAL1,10p-SIC1	This study
YAC272	W303-1a <i>bar1∆::URA3</i>	This study
YAC276	W303-1a bar1∆::URA3 sic1::(TRP1)GAL1,10p-SIC1	This study
YAC300	S288C cdh1Δ::HIS3	This study
YAC304	S288C sic1::(TRP1)GAL1,10p-SIC1 cdh1∆::HIS3	This study
YAC308	W303-1a cdh1∆::HIS3	This study
YAC314	W303-1a cdh1Δ::HIS3 sic1::(TRP1)GAL1,10p-SIC1	This study
YAC571	S288C sic1Δ::HIS3	This study
YAC768	W303-1a ura3Δ::KanMX4 ars507Δ::ARS305	This study
YAC796	W303-1a leu2::pRS305SIC1p-SIC1	This study
YAC797	W303-1a sic1::(TRP1)GAL1,10p-SIC1 leu2::pRS305SIC1p-SIC1	This study
YAC799	W303-1a cdh1Δ::HIS3 leu2::pRS305SIC1p-SIC1	This study
YAC800	S288C leu2::pRS305SIC1p-SIC1	This study
YAC801	S288C sic1::(TRP1)GAL1,10p-SIC1 leu2::pRS305SIC1p-SIC1	This study
YAC803	S288C cdh1Δ::HIS3 leu2::pRS305SIC1p-SIC1	This study
YAC810	W303-1a ura3Δ::KanMX4 cdh1Δ::HIS3 ars507Δ::ARS305	This study
YAC828	W303-1a ura3Δ::KanMX4 sic1::(TRP1)GAL1,10p-SIC1 ars507Δ::ARS305	This study
YAC1158	W303-1a sic1Δ::HIS3	This study

Supplementary Table 2. Maintenance of origin efficiency in the absence of Cdh1 or Sic1 is independent on normal origin efficiency, firing timing, or chromosomal location.

	Genomic		Replication Index		Oninin officiants
Origin	location (1)	Analysed by 2D gels (1)	Heavy:Light (2)	Copy Number (3)	Origin efficiency in this study (4)
ARS306	III-75	Yes	0	0.045	Reduced
ARS305	III-39	Yes	0.033	0.119	Unaffected
ARS432	IV-1159	This study	0.034	0.008	Reduced
ARS607	VI-199	Yes	0.036	0.151	Reduced
ARS508	V-94	This study	0.064	0.114	Unaffected
ARS1014	X-417	This study	0.108	0.096	Unaffected
ARS507	V-59	This study	0.165	0.14	Reduced
ARS603.5	VI-119	Yes	0.197	0.214	Reduced **
ARS1-ARS416	IV-463	Yes	0.231	0.186	Reduced
ARS501-ARS522	V-550	Yes	0.399	-	Unaffected
ARS608	VI-217	Yes	-	-	No firing
ARS302	III-15	Yes	-	-	No firing
ARS303	III-15	Yes	-	-	No firing
ARS320	III-16	Yes	-	-	No firing
ARS503	V-7	This study	-	-	No firing
ARS504	V-9	This study	-	-	No firing
ARS504.2	V-12	This study	-	-	Increased*/Reduced**
proARS506 [#]	V-18	This study	-	-	No firing
ars507∆::ARS305	V-59	This study	n.d.	n.d.	Unaffected

(1) See www.OriDB.com

(2) Raghuraman et al. (62).

(3) Yabuki et al. (86).

(4) As detected in 2D blots in either $\triangle cdh1$ or Sic1-depleted cells, versus control cells.

Likely ARS

* in $\Delta cdh1$ cells

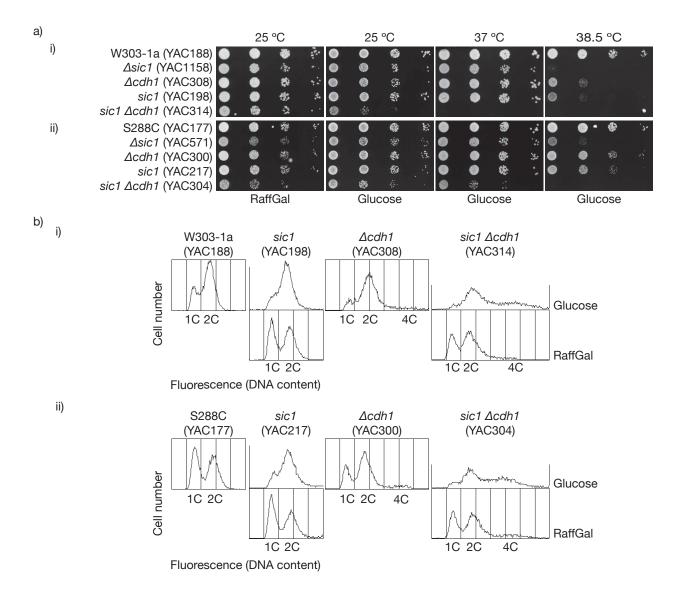
** in sic1 cells

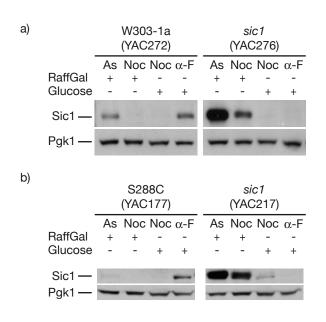
n.d. Not determined

62. Raghuraman, M.K., Winzeler, E.A., Collingwood, D., Hunt, S., Wodicka, L., Conway, A., Lockhart, D.J., Davis, R.W., Brewer, B.J. and Fangman, W.L. (2001) Replication dynamics of the yeast genome. Science, 294, 115-121.

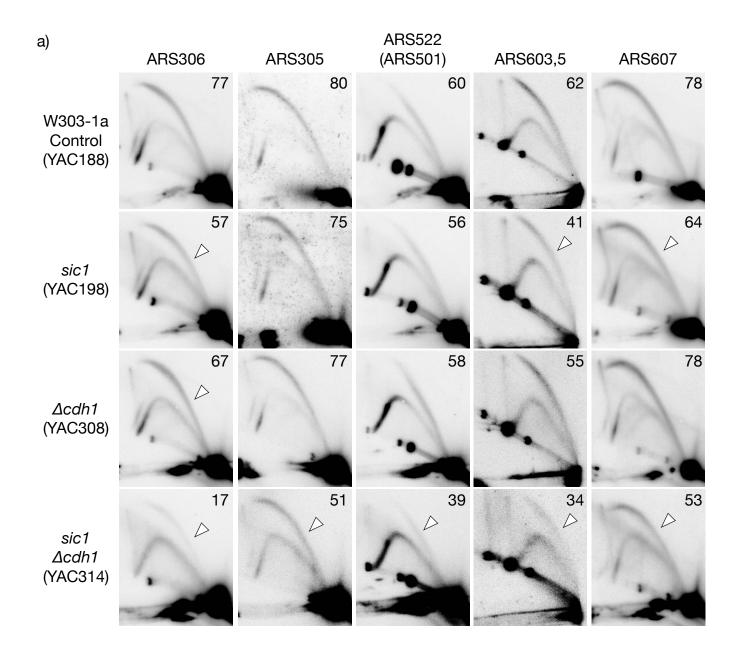
86. Yabuki, N., Terashima, H. and Kitada, K. (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells, 7, 781-789.

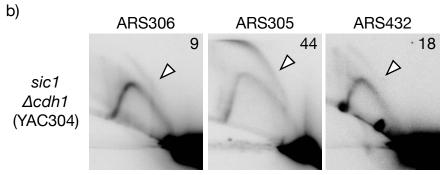
SUPPLEMENTARY FIGURE LEGENDS


Supplementary Figure 1. Cell growth and cell cycle distribution analysis of cells lacking Cdh1 and Sic1. (a) Dilution spotting of control, single, and double mutants in the indicated conditions in W303-1a (i) and S288C (ii) cells. (b) FACS analysis of cells of the indicated strains of W303-1a (i) and S288C (ii) backgrounds in logarithmic growth. *sic1* cells are shown in expressing (RaffGal, so that Sic1 is overexpressed) and repressing conditions (after switching to glucose for 4 hours, and Sic1 is depleted). Cultures in glucose correspond to cells employed for 2D gel analysis. Note S288C cells show milder phenotypes for cells lacking Cdh1 or Sic1.


Supplementary Figure 2. Depletion of Sic1 upon addition of glucose to *GAL1,10p-SIC1* cells. (a) Sic1 levels in control and *GAL1,10p-SIC1* W303-1a, and (b) S288C cells, in raffinose-galactose or glucose as indicated. As, asynchronous cells; Noc, nocodazole; α -F, alpha-factor. Pgk1 levels are shown as a loading control. Note a less efficient Sic1-depletion in S288C cells than in W303-1a cells. *sic1* cells are shown in expressing (RaffGal) and repressing conditions (Glucose).

Supplementary Figure 3. Origin firing activity in $\Delta sic1$ cells. 2D gels of the indicated origins in control and $\Delta sic1$ cells performed in parallel. Origin efficiencies are indicated in the upper right corner. When firing efficiency loses are detected in $\Delta sic1$ cells relative to wt cells, white arrowheads denote the active, bubble-arcs, and black arrowheads the passive Y-arcs,


Supplementary Figure 4. (a) Repetition of some 2D gels for the indicated origins in control, single and double mutants, performed in parallel to evaluate reproducibility. (b) Repetition of some 2D gels from Figure 1B in double mutant cells of the S288C background. Origin efficiencies are indicated in the upper right corner. Open arrowheads show loss of efficiency relative to control cells.


Supplementary Figure 5. Analysis of fork direction at a region adjacent to ARS305 as in Figure 1C. The restriction fragment analysed -HindIII-BamHI (3.04 kb, chr. III, coordinates 41817-44862 '*downstream ARS305*')-, the EcoRI in-gel digestion (chr. III, 42444), the probe *downstream ARS305* (44213-44681 chr. III), and signal quantifications were performed as indicated (see Material and methods).

