

Figure S1. *In planta* expression of effector proteins. Expression of AvrBs3 and GFP fused to an N-terminal c-Myc epitope was confirmed by western blot using an anti-c-Myc antibody. Samples correspond to data presented in Figure 1. The arrow indicates the expected protein size.

Figure S2. *In planta* expression of effector proteins. **(A, B and C)** Stable expression of AvrBs3, AvrBs3 W232 mutant-derivatives and GFP fused to an N-terminal c-Myc epitope was confirmed by western blot using an anti-c-Myc antibody. Samples correspond to data presented in Figure 2B. Note that protein amounts varied between independent experiments and were not correlated with GUS activities. The arrow indicates the expected protein size. Lanes marked with "-" represent loading of GFP samples.

Figure S3. Effect of non-W232 substitutions on AvrBs3 activity. **(A)** Schematic presentation of AvrBs3 and reporter constructs. The amino acid sequence of repeats -1 and 0 is given. Mutated residues R236 and R266 are highlighted in green. **(B)** Relative GUS activities (%) induced by AvrBs3 and derivatives 3 days after *Agrobacterium*-mediated delivery into leaves of *N. benthamiana*. AvrBs3(WT) activity with EBE(T0) was set to 100%. Experiments were performed three times with similar results.

Α

TalC AvrBs3 consensus	1 1 1	MDP MDP MDP	IRPI IRSI IR I	APS TPS PS	PAF PAF PAF	REVI RELI REVI	PGI PGI	PQPI PQPI PQPI	DRVQ DGVQ DVQ)PTA)PTA)PTA		evs evs evs	PAG PAG PAG	SPI GPI 5 PI	DGI DGI DGI	IPAI IPAI	RRTN RRTN RRTN	ISRI ISRI ISRI	'RLE 'RLE 'RLE	PSPE PSPE PSPE	PAP PAP PAP
TalC AvrBs3 consensus	61 61 61	LPAI S <mark>PAI</mark> PAI	TSAG TSAG	SFS SFS SFS	DLI DLI DLI	RQI RQI RQI	TDPS TDPS TDPS	SLLI SLFN SL	TSI TSI TSI	iFDS iFDS iFDS	MP7 LPI SmP	AVG1 PFG7 G	PHI AHHI HI	'EAZ 'EAZ 'EAZ	APAR ATGE A af	GDE WDE DE	EVQS EVQS EVQS	SALI SGLI Sali	RAAD RAAD RAAD	DPE APE PE	PT PT PT
TalC AvrBs3 consensus	121 121 121	VRV MRV VRV	AVTZ AVTZ AVTZ	A ARE Arp	PRA opra	KP/ ikpa	APRI	RRAA	AQPS	DAS	PAA paa	-QVI AQVI AQVI	DLRI DLRI DLRI	'LGY 'LGY	rsqq rsqq rsqq	00–F 000F 00qF	EKIP EKIP EKIP	(PN) (PK) (P)	7RS1 7RS1 7RS1	IVAÇ IVAÇ IVAÇ)нн)нн)нн
TalC AvrBs3 consensus	157 181 181	EALY EALY EALY	/GHO /GHO /GHO	GFTH GFTH GFTH	IAHI IAHI IAHI	VAI VAI VAI	ISRI ISQI IS I	ipa <i>i</i> ipa <i>i</i> ipa <i>i</i>	LG1 LG1	'VAV 'VAV 'VAV	VKYQ VKYQ VKYQ)DMI)DMI)DMI	IAAI IAAI IAAI	IPEA IPEA	THE THE THE	DIN DAIN E IN	/GV(/GV(/GV(re SKQ <mark>(</mark> SKQ <mark>)</mark> SKQ	pea SGA ISGA SGA	at RAI RAI RAI	-1 EA EA
TalC AvrBs3 consensus	217 241 241	LLTV LLTV LLTV	7age 7age 7age	LRG	PPI PPI PPI	'Õ I'I 'Ö I'I	OTGÇ OTGÇ OTGÇ	QLVF QLLF QLvF	(IAF (IAF	r RGG RGG RGG	epe VTA VTA	eat VE VE	0 VHA VHA VHA	ASRN WRN A RN	IAL] IAL] IAL]	'GAI 'GAI 'GAI	PLNI PLNI PLNI	TP TP TP	QVV QVV QVV	7AIA 7AIA 7AIA	ASN ASH AS
TalC AvrBs3 consensus	277 301 301	rep sccr Dccr ccr	eat (QAI (QAI (QAI	ETV ETV	'QRI 'QRI 'QRI	'Tb/	/LCQ /LCQ)AHG)AHG)AHG	2 9 3 2	98 22											
Repeat TalC	01 0 NS N	2 03 G NS	04 HD	05 NI	06 NG	07 NN	08 NG	09 HD	10 NI	11 NN	12 N*	13 NI	14 NN	15 HD	16 NG	17 NI	18 NN	19 N*	20 HD	21 NN	22 NG

AvrBs3 HD NG NS NG NI NI NI HD HD NG NS NS HD HD HD NG HD NG

Figure S4. Amino acid sequence comparison of AvrBs3 and TalC. **(A)** Amino acid comparison of the NTR and repeat 1 of AvrBs3 (1) and TalC (2). The alignment was done using the boxshade server (http://www.ch.embnet.org/software/BOX_form.html). Red lines mark the ends of repeat -1, 0 and 1. **(B)** Comparison of the RVD order in AvrBs3 and TalC.

Figure S6. *In planta* expression of effector proteins. **(A, B and C)** Stable expression of AvrBs3, AvrBs3derivatives and GFP fused to an N-terminal c-Myc epitope was confirmed by western blot using an anti-c-Myc antibody. Samples correspond to data presented in Figure 3. The arrow indicates the expected protein size. Lanes marked with "-" represent loading of GFP samples. Note that protein amounts vary between independent experiments and are not correlated with GUS activities.

Figure S7. (A) Relative activity of AvrBs3-derivatives differing in the RVD1. Relative GUS activities (%) induced by AvrBs3 and derivatives 3 days after *Agrobacterium*-mediated delivery of the constructs into leaves of *N. benthamiana*. The AvrBs3-derivatives were ranked according to their activity; the activity of AvrBs3 with EBE(T₀) was set to 100%. Mean values and the standard deviation of means from two independent experiments with similar results are shown. Color scale: GUS activities higher and smaller than 100%. (B) *In planta* expression of effector proteins. AvrBs3, AvrBs3-derivatives and GFP were expressed as N-terminal c-Myc epitope fusions and analyzed by western blot using an anti-c-Myc antibody. Arrows indicate the expected size of the fusion proteins. Samples correspond to data points presented in Figure 4. Note that protein amounts varied between independent experiments and were not correlated with GUS activities. (C) Relative GUS activities (%) induced by dAvrBs3(HD1) with EBE_{AvrBs3}(N₀ and N₁). Samples were harvested 3 days after *Agrobacterium*-mediated delivery of the constructs into leaves of *N. benthamiana*. AvrBs3(WT) activity with EBE(T₀) was set to 100%. N₀: base at position 0 of the EBE.

Figure S8. *In planta* expression of TALE proteins. Stable expression of AvrBs3, AvrBs3-derivatives, ARTrep18-derivatives and GFP fused to an N-terminal c-Myc epitope was confirmed by western blot using an anti-c-Myc antibody. Arrows indicate the expected protein sizes. **(A)** Expression analysis of samples corresponding to data points presented in Figure 5A and B. **(B)** GUS activities induced by AvrBs3 and derivatives 3 days after *Agrobacterium*-mediated delivery into leaves of *N. benthamiana*. **(C)** Expression analysis of samples corresponding to data presented in Figure 6A. Experiments were performed three times with similar results. N₀: base at position 0 of the EBE.

Figure S9. Summary of the "rep1-effect" based on statistical evaluation. **(A)** Standard deviation of means of AvrBs3(HD1), dAvrBs3(HD1) and dAvrBs3(NS1) activities tested on different EBEs. Mean values of single experiments were normalized to 35S:GUS activity. Normalized mean values were used for determination of the average and standard deviation of means. AvrBs3-derivative activity with EBE(T₀) was set to 100%. Numbers of independent biological replicates (n) are given above the diagram. Asterisks indicate a significant difference in activity of the same AvrBs3-derivative tested with EBE-T₀ (student's t-test; * p-value≤ 0.05; ** p-value≤ 0.01; *** p-value≤ 0.001). **(B)** Summary of the average activities of AvrBs3 and derivatives. Color scale: GUS activities smaller than 100%.

Figure S10. Summary of TALE RVD-base interactions of RVDs used in this study. **(A)** RVDbase interactions are indicated by arrows and dashed lines for hydrogen (H-) bonds and van der Waals interactions, respectively. Arrowheads indicate the direction of H-bond donoracceptor. Classification of RVDs in strong, intermediate and weak RVDs as described (3). The summary of RVDs analyzed and specificities are given in the box on the right. **(B)** Specific contacts between RVDs and corresponding bases are indicated by circles. The colorcode is based on RVD-base specificity. Hydrogen-bonds and van der Waals interactions are indicated in circles and dashed circles, respectively.

Supporting references

- 1. Bonas, U., Stall, R.E. and Staskawicz, B. (1989) Genetic and structural characterization of the avirulence gene *avrBs3* from *Xanthomonas campestris* pv. *vesicatoria. Mol. Gen. Genet.*, **218**, 127-136.
- 2. Yu, Y., Streubel, J., Balzergue, S., Champion, A., Boch, J., Koebnik, R., Feng, J., Verdier, V. and Szurek, B. (2011) Colonization of rice leaf blades by an African strain of *Xanthomonas oryzae* pv. *oryzae* depends on a new TAL effector that induces the rice nodulin-3 *Os11N3* gene. *Mol Plant Microbe Interact*, **24**, 1102-1113.
- 3. Streubel, J., Blücher, C., Landgraf, A. and Boch, J. (2012) TAL effector RVD specificities and efficiencies. *Nat. Biotechnol.*, **30**, 593-595.