SUPPLEMENTARY INFORMATION

Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from *Streptomyces noursei*

Mireille Moutiez^{1,*}, Jérôme Seguin¹, Matthieu Fonvielle^{2,3,4}, Pascal Belin¹, Isabelle Béatrice Jacques¹, Emmanuel Favry¹, Michel Arthur^{2,3,4}, and Muriel Gondry^{1,*}

¹ Service d'Ingénierie Moléculaire des Protéines, iBiTec-S, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), 91191 Gif-sur-Yvette Cedex, France

² INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, 75006 France

³ Université Pierre et Marie Curie, UMR S 1138, Paris, France

⁴ Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France

$\texttt{tRNA}^{\texttt{Phe}}$	Forward	5'-TTT AAT ACG ACT CAC TAT AGC CCG GAT AGC TCA GTC GGT						
		AGA GCA-3'						
	Matrix	5'-CTC GGA ATC GAA CCA AGG ACA CGG GGA TTT TCA ATC CCC						
		TGC TCT ACC GAC TGA GCT A-3'						
	Reverse	5'-TG GTG CCC GGA CTC GGA ATC GAA CCA AGG-3'						
tRNA ^{LeuCAA}	Forward	5'-TT T AAT ACG ACT CAC TAT A GC CGA AGT GGC GAA ATC GGT						
		AGA CGC-3'						
	Matrix	5'-GCC GGA CTC GAA CCG GCA CGT ATT TCT ACG GTT GAT TTT						
		GAA TCA ACT GCG TCT ACC GAT TTC GCC A-3'						
	Reverse	5'-TG GTG CCG AAG GCC GGA CTC GAA CCG GCA-3'						
$\texttt{tRNA}^{\texttt{LeuTAG}}$	Forward	5'-TT T AAT ACG ACT CAC TAT A GC GGG AGT GGC GAA ATT GGT						
		AGA CGC-3'						
	Matrix	5'-GCG AGA CTT GAA CTC GCA CAC CTT GCG GCG CCA GAA CCT						
		AAA TCT GGT GCG TCT ACC AAT TTC GCC A-3'						
	Reverse	5'-TG GTG CGG GAG GCG AGA CTT GAA CTC GCA-3'						
tRNA ^{LeuGAG}	Forward	5'-TTT AAT ACG ACT CAC TAT AGC CGA GGT GGT GGA ATT GGT						
		AGA CAC-3'						
	Matrix	5'-AC GGG ACT TGAACC CGT AAG CCC TAT TGG GCA CTA CCA CCT						
		CAA GGT AGC GTG TCT ACC AAT TCC ACC A-3'						
	Reverse	5'-T GGT ACC GAG GAC GGG ACT TGA ACC CGT AAG-3'						
$tRNA^{LeuTAA}$	Forward	5'-TT T AAT ACG ACT CAC TAT A GC CCG GAT GGT GGA ATC GGT						
		AGA CAC-3'						
	Matrix	5'-GC GGG ACT TGA ACC CGC ACA GCG CGA ACG CCG AGG GAT						
		TTT AAA TCC CTT GTG TCT ACC GAT TCC ACC A-3'						
	Reverse	5'-T GGT ACC CGG AGC GGG ACT TGA ACC CGC ACA-3'						
tRNA ^{LeuCAG}	Forward	5'-TT T AAT ACG ACT CAC TAT A GC GAA GGT GGC GGA ATT GGT						
		AGA CGC-3'						
	Matrix	5'-GG GGG ACT TGA ACC CCC ACG TCC GTA AGA ACA CTA ACA						
		CCT GAA GCT AGC GCG TCT ACC AAT TCC GCC A-3'						
	Reverse	5'-T GGT GCG AGG GGG GGG ACT TGA ACC CCC ACG-3'						
$\texttt{tRNA}^{\texttt{LeuCAG*}}$	Forward	5'-TT T AAT ACG ACT CAC TAT A GC GAA GGT GGC GGA ATT GGT						
		AGA CGC-3'						
	Matrix	5'-GG GGG ACT TGA ACC CCC ACG TCC GTA AG G ACA CTA ACA						
		CCT GAA GCT AGC GCG TCT ACC AAT TCC GCC A-3'						
	Reverse	5'-T GGT GCG AGG GGG GGG ACT TGA ACC CCC ACG-3'						
G1C72	Forward	5'-TTT AAT ACG ACT CAC TAT AGC CCG GAT GGT GGA ATC GGT						
tRNA ^{LeuTAA}		AGA CAC-3'						
	Matrix	5'-GC GGG ACT TGA ACC CGC ACA GCG CGA ACG CCG AGG GAT						
		TTT AAA TCC CTT GTG TCT ACC GAT TCC ACC A-3'						
	Reverse	5'-T GGT GCC CGG AGC GGG ACT TGA ACC CGC ACA-3'						
A1U72	Forward	5'-TTT AAT ACG ACT CAC TAT AAC CCG GAT GGT GGA ATC GGT						
$tRNA^{LeuTAA}$		AGA CAC-3'						
	Matrix	5'-GC GGG ACT TGA ACC CGC ACA GCG CGA ACG CCG AGG GAT						
		TTT AAA TCC CTT GTG TCT ACC GAT TCC ACC A-3'						
	Reverse	5'-T GGT ACC CGG AGC GGG ACT TGA ACC CGC ACA-3'						

Table S1.

Oligonucleotides used for *in vitro* transcription of tRNA^{Phe} and tRNA^{Leu} isoacceptors.

Figure S1.

Control of the stability of aa-tRNA concentrations throughout the CDPS enzymatic assays. The concentrations of aminoacylated tRNAs were determined as described in 'Materials and Methods'. All assays contained 5 μ M in both tRNA^{Phe} and tRNA^{Leu}, both PheRS and LeuRS (1 μ M) and 50 μ M Phe and Leu (either Phe/¹⁴C-Leu (for tRNA^{Leu} control) or ¹⁴C-Phe/Leu (for tRNA^{Phe} control)). The reactions were initiated by the addition of PheRS and LeuRS. AlbC (50 nM) was added after 15 min. (**A**) Acylation of wild-type tRNAs: tRNA^{LeuCAG} (black), tRNA^{LeuTAA} (gray), and tRNA^{Phe} obtained by TIV (orange). (**B**) Acylation of tRNA^{LeuCAG} (black), tRNA^{LeuTAA} (gray), G¹-C⁷²-RNA^{LeuTAA} (blue), A¹-U⁷² tRNA^{LeuTAA} (purple) and C¹-G⁷² tRNA^{LeuCAG} (magenta). (**C**) Acylation of wild-type tRNA^{Phe} purified from *E. coli* (brown) and C¹-G⁷² tRNA^{Phe} (sand).

Figure S2.

Time-course synthesis of cFF from various concentrations of Phe-tRNA^{Phe} either obtained by *in vitro* transcription (A) or purified from *E. coli* (B). Enzymatic measurements were performed as described in 'Materials and Methods' with 50 nM AlbC. The points reported belong to three independent sets of experiments. (**A**) Kinetics of the formation of cFF were determined for the following concentrations of [Phe-tRNA^{Phe}]: set 1, 0.139 μ M (black), 0.278 μ M (gray), and 0.385 μ M (orange); set 2, 0.094 μ M (red), 0.188 μ M (violet), 0.282 μ M (light blue), and 0.376 μ M (yellow); set 3, 0.24 μ M (dark blue) and 0.47 μ M (brown). (**B**) Kinetics of the formation of cFF were determined for the following concentrations of [Phe-tRNA^{Phe}]: set 1, 0.24 μ M (black) and 0.4 μ M (gray); set 2, 0.14 μ M (orange), 0.256 μ M (red), 0.513 μ M (violet), and 0.77 μ M (light blue); set 3, 0.785 μ M (yellow) and 0.985 μ M (dark blue).

Figure S3

Sequences of the different tRNAs of *Escherichia coli* (K12) mentioned in this work. tRNA^{LeuCAG} and tRNA^{LeuCAG*} differ by a single nucleotide, underlined in black. Base pairing belonging to acceptor stem are boxed in gray, the D arm is boxed in blue, the anticodon arm is boxed in red, the T arm is boxed in green, and the anticodon is shown in bold black.

Figure S4

Covalent labelling of AlbC by [¹⁴C]Leu transferred from [¹⁴C]G¹-C⁷² Leu-tRNA^{LeuTAA}. pSHaeC06 (pSH) was used as positive control for the formation of leucyl-enzyme and S37A was used as a negative control in this experiment (not shown). The formation of the phenylalanyl-enzyme for AlbC is reported for comparison. Enzymes were incubated with labelled aa-tRNA, as described in 'Materials and Methods', separated on SDS–PAGE, then transferred onto a PVDF membrane that was analysed with a radioimager.

MW	pSH	R80A	R91A	K94A	R98A	R102A	R98A/ R99A
***	and the second sec						

В

Α

Figure S5

Covalent labelling of AlbC variants by [¹⁴C]Leu transferred from [¹⁴C]Leu-tRNA^{LeuCAG}. pSHaeC06 (pSH) was used as a positive control for the formation of leucyl-enzyme and S37A was used as a negative control in this experiment (not shown). Enzymes were incubated with labelled aa-tRNA, as described in 'Materials and Methods', separated on SDS–PAGE, then transferred onto a PVDF membrane that was analysed with a radioimager. (**A**) Variants of the basic patch. (**B**) Variants of the loop and variants of residues neighboring the active site. Proteins were analysed on different gels. pSH was loaded onto each gel as a standard.

1. *Nematostella vectensis* NEMVEscaffold_13 genomic scaffold, Sequence ID: <u>ref[NW_001834401.1]</u>, 1838668 to 1838597

<mark>GACACCG</mark>TG<mark>GCGC</mark>AATGGTA<mark>GCGC</mark>G<mark>TCTGA</mark>CT**CCA**GA<mark>TCAGA</mark>AGGTT<mark>GCGTG</mark>TTCAAAT<mark>CACGT</mark>CGGGGGTC</mark>ACCA

2. *Nematostella vectensis* NEMVEscaffold_13 genomic scaffold, Sequence ID: <u>ref|NW_001834401.1|</u>, 1838521 to 1838450

GACTACGTCGCGCAATGGTAGCGCTTCTCAACTCCAGATCAGAAGGTTGCCGTTTTCAAATCACGTCGTGGTCACCA

3. *Nematostella vectensis* NEMVEscaffold_2 genomic scaffold, Sequence ID: ref[NW_001834412.1], 2087614 to 2087685

GACTCCGTG<mark>GCGC</mark>AATGGTA<mark>GCGC</mark>G<mark>TCTGA</mark>CT**CCA**GA<mark>TCAGA</mark>AGGTT<mark>GCGTG</mark>TTCAAGT<mark>CACGT</mark>CGGGGGTC</mark>ACCA

4. *Nematostella vectensis* NEMVEscaffold_29 genomic scaffold, Sequence ID: ref[NW_001834385.1]1459663 to 1459734

<mark>GACTCCG</mark>TG<mark>GCGC</mark>AATGGTA<mark>GCGC</mark>G<mark>TCTGA</mark>CT**CCA**GA<mark>TCAGA</mark>AGGTT<mark>GCGTG</mark>TTCAAGT<mark>CACGT</mark>CGGGGGTC</mark>ACCA

5. *Nematostella vectensis* NEMVEscaffold_34 genomic scaffold, Sequence ID: <u>ref|NW_001834380.1</u>]1112145 to 1112216

<mark>TGATCAG</mark>TGGGACAATGGTAGCGAT<mark>TCT</mark>C<mark>A</mark>CT**CCA**GA<mark>TCAGA</mark>AGGTT<mark>GCGT</mark>TTTCAAATC<mark>ACGT</mark>CGGGGGTC</mark>ACCA

tRNA^{Trp} (*Drosophila_melanogaster*, chr2R.trna44-TrpCCA) GACTCCGTGGCGCCAACGGTAGCGCCGTCTGACTCCAGATCAGAAGGTTGCGGGGTCCACCA

Figure S6

Putative genomic tRNA^{Trp} sequences of *Nematostella vectensis*. Base pairing belonging to the acceptor stem is highlighted in yellow, the D arm is highlighted in blue, the anticodon arm is highlighted in red, the T arm is highlighted in green, and the anticodon is shown in bold black. TRNA^{Trp} of *Escherichia coli* and *Drosophila melanogaster* are shown for comparison.

tRNA^{Trp} sequences were identified from blastn search in the genome available for *Nematostella vectensis* starting from a tRNA^{Trp} sequence of *Danio rerio* (Zebrafish) (GGACCTTTTGCGCAATGGT.A.GCGCATCTGACTCCAGATCAGAAGGtTGTGTGTGTTCAAATCACGT CAGGTTCA Danio_rerio_chr7.trna144-TrpCCA). The sequences obtained were highly homologous with the sequences of tRNA^{Trp} from *Drosophila melanogaster* (<u>http://gtrnadb.ucsc.edu/</u>).