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Supplementary Note on Analytical Solutions of the Model
This sections gives further details on the models and its analytical solution in different limit-
cases.

Formulation of the model
The model describes the dynamics of the number of elements of a given family Vi(τ) within
an ensemble of i = 1, . . . , N species, in terms of a fictitious time τ where “collisions” occur,
corresponding to (binary) events of (fixed) horizontal transfers. To each transfer event, there
corresponds a number of (fixed) gene duplications and gene losses. The model assumes that
families are independent, and under this assumption, can deal with a single family at a time
without loss of generality. At each time step two randomly chosen genomes i and j interact as
follows

Vi(τ + 1) = Vi(τ) + Λi[Vi(τ)] +Hj[Vj(τ)],

Vj(τ + 1) = Vj(τ) + Λj[Vj(τ)] +Hi[Vi(τ)],
(S1)

where the random function Λ represents the duplications and losses, andH represents horizontal
transfers (which depend on the size of the family in the “donor” genome, as described by the
indices).

We choose to describe the collisions in terms of Multinomial events, i.e. a species draws at
random gene family members for losses and duplications (from its own genome), and transfers
(from the other species’ genome). In other words, Λ[v] =

∑v
k=1X

∗
k and H[v] =

∑v
k=1Xk,

with X∗1 , X
∗
2 , . . . , Xl, X2, . . . independent discrete random variables, and

P{X∗k = −1} = pl, P{X∗k = 1} = pd,

P{X∗k = 0} = 1− (pd + pl) (k ≥ 1);

P{Xk = 1} = ph, P{Xk = 0} = 1− ph (k ≥ 1).

(S2)

If Xk = −1, the k-th gene is lost, while if Xk = +1 it is duplicated. Analogously, if Xk = 1
the k-th gene is transfered from the donor genome. Here, pd,pl and ph are the basic relevant pa-
rameters of the model, representing the (relative) rates of gene duplication, loss, and horizontal
transfer respectively.
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We assume that ph + pd = pl and hence 〈Xk +X∗k〉 = 0 (〈·〉 is the expectation value).
Under this condition, the total number of elements is conserved in mean, i.e.,

〈∑N
i=1 Vi(τ)

〉
=〈∑N

i=1 Vi(0)
〉

. Note that loss has to dominate over duplication (or be the only possible drive)
in order for the condition to be fulfilled. Note also that, since 0 < pl ≤ 1 and pl + pd ≤ 1, one
has the constraint 2pd + ph ≤ 1.

The numerical simulation of the model was coded in C++, and typically solved for an initial
conditions with equal number of family elements of all the genomes, Vi(0) = v0 i =
1, . . . , N , until stationarity was reached. The simulation code is available with the authors upon
request.

Mean-field equation
As described above, the model deals with the dynamics of the number of elements of a given
family Vi(τ) within an ensemble of i = 1, . . . , N species, in terms of a fictitious binary collision
time τ , corresponding to events of fixed horizontal transfers. To each transfer event, there
corresponds a number of fixed gene duplications and gene losses.

The full information about the process at time τ is contained in the N -particle joint prob-
ability distribution PN(v1, v2, . . . , vN , τ). In order to approach the problem analytically, one can
write a kinetic equation for 1-marginal distribution function P1(v, τ) =

∑
v2,...,vN

PN(v, v2, . . . , vN , τ)
involving only one- and two-particle distribution functions, which generates an infinite hierar-
chy of equations of BBGKY type. The standard mean-field approximation to the interacting
particle system model assumes P2(vi, vj, τ) = P1(vi, τ)P1(vj, τ). This approximation, rescal-
ing the time as t = 2τ/N and taking the limit N → ∞, gives the Boltzmann-like kinetic
equation

∂

∂t
Pt(v) = Q(Pt, Pt)(v) (S3)

where Pt(v) = P1(v, t) is the marginal probability density of a single “particle” in the mean-
field limit, and the collision kernel is given by Q(Pt, Pt)(v) = Q+(Pt, Pt)(v)− Pt(v), with

Q+(Pt, Pt)(v) := Prob
{
V1 +

V1∑
i

X∗i +

V2∑
i

Xj = v
}
,

X∗i , Xi, V1, V2 being independent random variables such that P{V1 = v} = P{V2 = v} =
Pt(v). Setting Yi := X∗i + 1, one gets a more transparent expression for the gain part of the
collision kernel Q+, i.e.

Q+(Pt, Pt)(v) = Prob
{ V1∑

i=1

Yi +

V2∑
i=1

Xi = v
}
. (S4)
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Moments and their relaxation dynamics
Considering the probability generating function (pgf) of Pt, P̂t(z) :=

∑
v z

vPt(v), equation
(S3) becomes

∂

∂t
P̂t(z) = P̂t(φX(z))P̂t(φY (z))− P̂t(z) z ∈ (0, 1) (S5)

where φX(z) =
〈
zX1
〉

= zph + 1− ph and φY (z) =
〈
zY1
〉

= z2pd + z(1− pd− pl) + pl are the
pgf of X and Y . Deriving (S5) with respect to z one gets

∂

∂t
D(1)
z P̂t(z) = [D(1)

z P̂t(φX(z))]P̂t(φY (z) + [D(1)
z P̂t(φY (z))]P̂t(φX(z)−D(1)

z P̂t(z).

Recalling that the first derivative of a generating function evaluated in z = 1 gives the first mo-
ment of the distribution, it follows that D(1)

z P̂t(z)|z=1 =
∑
vPt(v) =: M1(t), D(1)

z φX(z)|z=1 =

〈X〉 and D(1)
z φY (z)|z=1 = 〈Y 〉. So that the previous equation for z = 1 gives

∂

∂t
M1(t) = (〈X〉+ 〈Y 〉 − 1)M1(t).

Now 〈X〉 + 〈Y 〉 = ph + 1 + pd − pl = 1 (since ph + pd = pl) and hence Ṁ1(t) = 0. In
conclusion, the mean of the abundance distribution is constant in time,

M1(t) =
∑

vPt(v) = λ

where λ is the initial mean. Analogously, D(2)
z P̂t(z)|z=1 =

∑
v(v − 1)Pt(v) =: M2(t),

D
(1)
z φX(z)|z=1 = 〈X(X − 1)〉 and D(1)

z φY (z)|z=1 = 〈Y (Y − 1)〉. Consequently, the second
derivative (wrt z) of (S5) evaluated in z = 1 gives, after some computations,

∂

∂t
M2(t)+(1−〈X〉2−〈Y 〉2)M2(t) = [〈X(X − 1)〉+ 〈Y (Y − 1)〉]M1(t)+2M1(t)

2 〈X〉 〈Y 〉 .

Now, if V ar(Pt) denotes the variance of the solution Pt, recalling that 1 = (〈X〉 + 〈Y 〉)2 =
〈X〉2 + 〈Y 〉2 + 2 〈X〉 〈Y 〉 and that M2(t) −M1(t)

2 = V ar(Pt) −M1(t), from the previous
equation one obtains

V̇ ar(Pt) = −α(V ar(Pt)− β)

where

α = (1− 〈X1〉2 + 〈Y1〉2) = 2ph(1− ph)

β =
λ[V ar(X1) + V ar(Y1)]

1− 〈X1〉2 − 〈Y1〉2
= λ[1 +

pd
ph(1− ph)

].

Solving this equation one obtains

V ar(Pt) = β + [V ar(P0)− β]e−2ph(1−ph)t. (S6)
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Similar computations can be performed for higher factorial moments

Mk(t) =
∑
v

v(v − 1) . . . (v − k + 1)Pt(v) = D(k)P̂t(z)
∣∣∣
z=1

.

In point of fact,

D(k)[P̂t(φX(z))P̂t(φY (z))]
∣∣∣
z=1

= Mk(t)(〈X1〉k + 〈Y1〉k) +Rk(t)

where Rk(t) is a function of ph, pd and of the Mj(t) for j = 1, . . . , k − 1. Combining this with
(S5) one gets a hierarchy of equations

Ṁk(t) = −αkMk(t) +Rk(t)

with αk = 1− 〈X1〉k − 〈Y1〉k = 1− pkh − (1− ph)k. Recalling that for Ṁ1(t) = 0, in principle
one can solve recursively the hierarchy obtaining the evolution of any moment. By induction it
is easy to see that, for any k, the function Rk is bounded and that Rk(∞) = limt→+∞Rk(t) <
+∞. Since

Mk(t) = e−αktMk(0) +

∫ t

0

e−α(t−s)Rk(s)ds,

one has that the (factorial) moments Mk(t)s are bounded in time and

lim
t→+∞

Mk(t) =
Rk(∞)

1− pkh − (1− ph)k
.

Equation (S6) shows that the variance of the mean-field solution converges exponentially
fast to the variance of the steady state, with rate set by ph(1 − ph), in inverse sweeps of O(N)
collisions (Fig. S1). In practice, for any finite N , an additional diffusional time scale affects the
model. This can be observed in the dynamics of the total abundance of the family Vtot =

∑
i Vi,

which is subject to a random (multiplicative) addition or deletion at each collision. We can
estimate this time scale by assuming a pure diffusion process for the logarithm, with diffusion
constant D. In this case, the variance of Vtot over model realizations will grow as V ar(Vtot) ∼
exp(Dt). For very long times, the variance over realizations can grow larger than the variance
of family abundance over genomes. This happens at a crossover time eDt∗ ∼ N 〈V 〉. Hence,
for times larger than t∗ ∼ log(NVtot), the stationary state may be disrupted by this drift process
(we measured D to increase with decreasing Vtot in simulations, so this should be considered a
lower bound). Since t∗ grows super-linearly with N , the steady state is always well defined for
large enoughN . We do not believe that this part of the model phenomenology has a counterpart
in the empirical system.
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Steady states: Poisson vs overdispersed distributions
If P∞ = Q+(P∞, P∞) is a stationary solution, then (S6) gives

V ar(P∞) = β =
λ[V ar(X1) + V ar(Y1)]

1− 〈X1〉2 − 〈Y1〉2
= λ[1 +

pd
ph(1− ph)

].

This shows that when pd = 0, V ar(P∞) = λ, while V ar(P∞) > λ for pd > 0. In this last case,
the steady state is characterized by a distribution with larger dispersion than a Poisson with the
same average.

When pd = 0, i.e. in absence of duplications, it is easy to show that the stationary solution
P∞ is the Poisson distribution. To see this, recall that the pgf of a Poisson distribution of
mean λ is P̂∞(z) = exp(λ(z − 1)). Since, for pd = 0 one gets φX(z) = zph + 1 − ph and
φY (z) = z(1− ph) + ph, it follows that

Q̂+(P̂∞, P̂∞)(z) = exp(λ(φX(z)− 1)) exp(λ(φY (z)− 1)) = exp(λ(z − 1)) = P̂∞(z).

This shows that the steady-state distribution is Poisson, with the same mean as the initial con-
dition. When pd > 0, no closed form for P∞ is available, although in principle one can recur-
sively determine all the moments. For example, after some computation, one can show that, for
a steady state〈

(V − λ)3
〉

=
∑

(v − λ)3P∞(v) = λ
(

1 +
pd

ph(1− ph)

(
3 + 2

pd
ph

))
(S7)

and hence the skewness is

skew(P∞) =
〈(V − λ)3〉
V ar(P∞)

3
2

=
1√
λ

(
1 + pd

ph(1−ph)

(
3 + 2 pd

ph

))
1 + pd

ph(1−ph)
.

Finally, using standard techniques of kinetic equations [1] one can prove that for every initial
mean λ > 0, there is a unique fixed point P∞ = Q+(P∞, P∞) with finite variance and mean
λ. Moreover, Pt converges to P∞ whenever P0 has finite variance. The precise statement is the
following: for every z ∈ (0, 1] and every t > 0

|P̂t(z)− P̂∞(z)| ≤ |z|2e−2ph(1−ph)t
(

sup
s∈(0,1)

|P̂0(s)− P̂∞(s)|/|s|2
)
.

Mean-field solution in the limit of vanishing pd and ph
Since for pd > 0 no closed form is available for the steady state of the kinetic equation, one
can study equation (S5) for pd → 0 and ph → 0 provided that pd/ph → c. This gives a
more tractable equation and leads to an explicit from for the steady state, which is a Negative-
Binomial distribution. This kind of asymptotic procedure is reminiscent of the the so-called
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“grazing collision” limit for the Boltzmann equation [2, 3]. In kinetic theory, the grazing colli-
sion limit is used to derive the Landau-Coulomb equation starting from the Boltzmann equation.
Roughly speaking, it consists in taking the limit of collisions giving a small but non-vanishing
contribution to the collision integral. In addition to the original Boltzmann equation, the grazing
limit procedure has been applied to other kinetic equations (see e.g. [4, 5]).

In the present context, we suppose that pd = εp∗d and ph = εp∗h. Expanding P̂t(φX(z)) and
P̂t(φY (z)) for ε→ 0, one gets

P̂t(φX(z))P̂t(φY (z))− P̂t(z) = [P̂t(1) + εp∗h(z − 1)∂zP̂t(1) + ε2R1(ε, z)]·
· [P̂t(z) + ε(p∗dz

2 + p∗d + p∗h − (2p∗d + p∗h)z)∂zP̂t(z) + ε2R2(ε, z)]− P̂t(z)

= ελ(z − 1)p∗hP̂t(z) + ε(p∗dz
2 + p∗d + p∗h − (2p∗d + p∗h)z)∂zP̂t(z) + ε2R3(ε, z)

for suitable remainders Ri(ε, z). One can rescale the time setting τ = tε and then consider
ĝτ,ε(z) = P̂τ/ε(z). Writing t in place of τ and pd and ph in place of p∗d and p∗h one obtains

∂tĝt,ε(z) =
1

ε
[ελ(z − 1)phĝt,ε(z) + ε(pdz

2 + pd + ph − (2pd + ph)z)∂zĝt,ε(z) + ε2R3(ε, z)],

and, taking the limit for ε→ 0, one can write

∂tĝt(z) = λ(z − 1)phĝt(z) + (pdz
2 + pd + ph − (2pd + ph)z)∂zĝt(z).

If pd = 0, then
∂tĝt(z) = (z − 1)ph[λĝt(z)− ∂zĝt(z)].

So that the stationary distribution ĝ∞ in the grazing limit satisfies

λĝ∞(z) = ∂zĝ∞(z)

that is ĝ∞(z) = exp(λ(z − 1)). Hence, if pd = 0, as for the corresponding kinetic equation,
the stationary distribution is a Poisson distribution. Once again, for pd = 0, the only relevant
parameter is the initial mean λ. The most interesting case is when pd > 0. Here, since pdz2 +
pd + ph − (2pd + ph)z = pd(z − 1)(z − (pd + ph)/pd),

∂tĝt(z) = (z − 1)
[
λphĝt(z) + pd

(
z − pd + ph

pd

)
∂zĝt(z)

]
and the stationary solution satisfies

λph
(pd + ph)(1− pd

pd+ph
z)
ĝ∞(z) = ∂zĝ∞(z).

This gives

ĝ∞(z) =
(ph/(pd + ph)

(1− pd
pd+ph

z)

)λph
pd .
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In other words, ĝ∞ is the pgf of the negative binomial distribution of mean λ and variance
λ(pd + ph)/ph, that is

g∞(k) =

(
k − r − 1

k

)( ph
pd + ph

)λ ph
pd

( pd
pd + ph

)k
k = 0, 1, . . .

This expression shows that the steady-state distribution depends in this case on the initial mean
abundance λ and on the ratio ph/pd.

Model variants.

Model variant accounting for different genome sizes and theoretical justi-
fication for the binning procedure.
We now consider a variant of the model that accounts for the different sizes of two interacting
genomes in a simplified way. The following argument shows that in this model variant the
stationary abundance distributions at a given genome size are unaffected, which can be taken as
a heuristic justification of the binning procedure adopted in the data analysis.

One can assume that when the species i and j interact, the abundance of family f in species
i – V f

i – changes in

V f
i (τ + 1) = V f

i (τ) + Λi(V
f
i (τ)) +Hi(V

f
j (τ))

with Λi(V
f
i (τ) as before and

Hi(Vj(τ)) =

V fj (τ)∑
k=1

X i,j
k (τ)

where P{X i,j
k (τ) = 1} = phNi(τ)/Nj(τ) and P{X i,j

k (τ) = 0} = 1 − phNi(τ)/Nj(τ), Ni(τ)

andNj(τ) being the total size of the genomes i and j, i.e. Ni =
∑

f V
f
i (τ) andNj =

∑
f V

f
j (τ)

are the sizes of genome i and j respectively. Note that the mean number of horizontal transfers
in a collision (i, j) is

V f
j (τ)

Nj(τ)
phNi(τ),

which means that the transfer probability is proportional to the abundance of family f in the
donor genome j, V f

j /Nj (which is in turn a proxy for its total size in domains). Clearly, in this
model the evolution of the abundance of a family f depends on the evolution of all the other
families.

In order to introduce a simplified, but treatable, model, in which the dynamics of each family
is independent on the dynamics of the other families, we assume that〈

V f
i

〉
∼ βf 〈Ni〉
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and replace phNi(τ)/Nj(τ) with

ph 〈Ni(τ)〉 / 〈Nj(τ)〉 ∼ ph

〈
V f
i (τ)

〉
/
〈
V f
j (τ)

〉
.

In other words, the assumption states that family size is a good proxy for genome size, for
simplicity linear. Empirically, this is justified for metabolic families, but does not happen for
other functional categories [6, 7, 8].

With this simplification, one obtains the usual conservation of the mean.〈
V f
i (τ)

〉
=
〈
V f
i (0)

〉
for every τ and f . Assuming now that the species i = 1, . . . , N are divided in C1, . . . , CM bins
of equal mean abundance, that is

〈
V f
i (0)

〉
= λk(0), for every f in Ck, it is easy to deduce the

corresponding Boltzmann-like equation for Pt(v, k), the probability of finding a genome in bin
k with abundance v. More precisely one can write

∂

∂t
Pt(v, k) =

M∑
l=1

[Q+
k,l(Pt(·, k), Pt(·, l))(v)− Pt(v, k)ρl(t)] , (S8)

where ρl(t) =
∑

v Pt(v, l) is the fraction of species in size bin l at time t,

Q+
k,l(Pt(·, k), Pt(·, l))(v) := Prob

{ V (k)∑
i=1

Yi +
V (l)∑
i

Xk,l
j = v

}
ρkρl,

V (k) has density Pt(v, k)/ρk and V (l) has density Pt(v, l)/ρl, P{Xk,l
j = 1} = 1 − P{Xk,l

j =
1} = phλk(t)ρl(t)/λl(t)ρk(t) and λl(t) =

∑
v vPt(v, l). Note that ρk(0) = |Ck|/(

∑
m |Cm|).

Moreover, it is immediate to see that ρk(t) = ρk(0) = |Ck|/(
∑

m |Cm|) for every t and k and
that also the mean abundances are conserved, that is

λk(t) =
∑
v

vPt(v, k) = λk(0).

Note that also in this model, when pd = 0, the Poisson distribution of mean λk(0), i.e.

P∞(v, k) = ρke
−λk(0)λk(0)v

v!
,

is the stationary solution. To see this, it suffices to use the generating functions, indeed P̂∞(z, k) :=∑
v z

vP∞(v, k) must satisfy

P̂∞(φY (z), k) =
M∑
l=1

P̂∞(φY (z), k)P̂∞(φXkl(z), l)
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where φXkl(z) =
〈
zX

kl
1

〉
= zphλk(0)/λl(0) + 1 − phλk(0)/λl(0) and φY (z) =

〈
zY1
〉

=

z(1− pl) + pl. Now P̂∞(z, k) = exp{λk(0)(z − 1)} and hence

P̂∞(φY (z), k)P̂∞(φXkl(z), l)

= exp{λk(0)[z(1− pl) + pl + pl − 1] + λl(0)[zphλk(0)/λk(0) + 1− phλk(0)/λl(0)− 1]}
= exp{λk(0)(z − 1)}

which proves the claim.

Model Variant with Biased Transfers by Evolutionary Distance
We discuss here a model variant accounting for a lower probability of horizontal exchange for
increasingly distant genomes, which is reported in empirical data [9]. We implemented this
variant in our simulation, by biasing the collisions between genome pairs using information
on their phylogenetic distance. Specifically, we simulated a set of genomes corresponding to
the 1065 bacteria in our dataset, and for each collision, we adopted the interaction probability
between two genomes prob(i, j) ∝ N−1 exp(−βD(i, j)) for i 6= j (prob(i, i) = 0). Here
D(i, j) is a phylogenetic distance (we used a distance based on superfamily usage (it is well
known that the occurrence patterns of domain families reveals phylogenetic relationships [10]),
normalized to lay in the interval [0, 1]), and β sets the decay of the interaction probability.

Our results (Fig. S8) show that the steady state solution for the abundance histogram remains
unvaried by introducing biased gene transfers, until β ' 100. At this range of the bias, each
genome in the sample is allowed to interact with 10 or less other genomes only, and the effective
rate of horizontal exchange becomes too small to support a steady state. Thus, we can safely
conclude that our results are robust with respect to the introduction of a substantial evolutionary
bias in horizontal transfers.
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Supplementary Figures
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Supplementary Figure S1: The relaxation time to the stationary state is is set by ph. The plots
evaluate the number of iterations in a simulation (corresponding to ”collisional” events of hor-
izontal gene exchange, see Eq. S1) to reach the stationary state from the dynamics of the vari-
ance of the family abundance histograms, which we can estimate analytically from the mean-
field equations (Eq. (S3)). In the simulations, the initial condition is chosen with zero variance
(equal abundance of the family in all genomes). (A) For pd = 0, ph sets the relaxation scale (see
Eq. (S6)), squares correspond to ph = 0.1, circles to ph = 0.05. Simulations are carried out for
1000 genomes. (B) Setting pd > 0 affects the steady state but not the relaxation time. In these
simulations ph = 0.1; triangles correspond to pd = 0.09, and diamonds to pd = 0.36. Simula-
tions are carried out for 1000 genomes. (C) The natural time scale of the model are ”collisions”
per genome. The plot is a comparison of a simulation with 1000 genomes (squares) and 10000
genomes (diamonds) for equal parameters (pd = 0, ph = 0.1). The time is rescaled by the
number of genomes which makes the two plots collapse. In all plots, solid lines are mean-field
analytical predictions.
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Supplementary Figure S2: Examples of the three main behaviors existing for the family abun-
dance profiles, shown by the insets. As in Fig. 2 of the main text, each panel compares the
empirical family abundance histogram (steps) of a given SCOP superfamily domain with the
reference Poisson distribution with equal mean (black lines). The plots refer to a group of
93 genomes binned by size (measured in superfamily domains) ranging from 2600 to 3000.
“Poisson-like” family profiles (A) correspond to the Poisson expectation, while “overdispersed”
(B) and “peaked” (C) abundance profiles are characterized by a larger and lower variance re-
spectively. The typical absolute abundance of the three classes of domain families are different,
with families having peaked profiles being less abundant, followed by Poisson-like families and
overdispersed ones.
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Supplementary Figure S3: Robustness of the abundance profile classification with respect to
domain taxonomy. (A) The scatter plot is the same as the one in Fig. 2 of the main text, but
realized using SCOP families instead of superfamilies. The fact that it looks unvaried indicates
that the classification is robust across domain taxonomy levels, as confirmed by the evident
correlation between Qf computed for a superfamily with the same parameter computed for the
corresponding families (B).
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Supplementary Figure S4: The abundance fluctuations of a family do not depend on the genome
size. In this example, the abundance histogram of the superfamily with SCOP number 55424
from the SUPERFAMILY database (green stairs) is plotted against the reference Poisson distri-
bution (black line) with equal average for three different bins of genome size (the size intervals,
in domains, are indicated in the insets, and increase in panel A,B,C with lexicographic order).
While the average class population increases with genome size, the character of the family (in
this case Poisson-like) stays the same. The global observables Qf and Lf are defined in order
to account for the robustness of the family behavior over sliding genome-size windows. Panels
B,C,D show that the classification operated by Qf is robust over the bins. The different panels
plot the values of Qb

f for different bins of genome size for families whose abindance profiles are
are classified as overdispersed (D) Poisson-like (E) and peaked (F). The inset in panel D shows
that the slight trend for small genome size is due to insufficient sampling (few genomes in the
bin).
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Supplementary Figure S5: Family abundance fluctuations for eukaryotic genomes. (A) His-
tograms of Lf (weigthed distance from a Poisson distribution) in Bacteria and Eukaryotes. The
left panel shows the histogram over families of Lf in Bacteria. The right panel is a compari-
son between the histograms in Eukaryotes (red line) and Bacteria (gray line). The histogram
of Bacteria is be bimodal, suggesting the presence of two main separate kinds of abundance
profile. The histogram of Eukaryotes is centered at higher values of Lf and does not show the
bimodality. This indicates that families with clear Poisson-like abundance profile families are
not as clearly identifiable in Eukaryotes as they are in Bacteria. Both histograms were computed
considering well-sampled (wf > 0.99) and non-peaked families (Qf < 2). (B) Comparison of
Lf vs Qf scatterplots in Bacteria and Eukaryotes. Bacteria (left panel) show a clearer V-shape,
which becomes more marked as wf increases. Eukaryotes (right panel) show a less clear rela-
tion, which does not improve as sampling (wf ) increases. This fact suggests that in Eukaryotes
families with Qf ∼ 0 are less prone to actually show consistent Poisson-like abundance pro-
files.
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Supplementary Figure S6: Independent estimates of horizontal transfers within families are in
line with the model prediction from the family abundance profiles. Panels A and B are identical
to Fig. 4B of the main text, but using HGT data from the DarkHorse database [11] (A) Qf −Lf
scatter plot (Fig. 2 of the main text), with color and size of each point corresponding to the
parameter Hf (average fraction of horizontally transferred domains in that family estimated
using data from the DarkHorse database). Points with Hf = 0 are in grey. Compatibly with
the expectation of the model, many horizontal transfers are found for Poisson-like families, i.e.
towards the minimum of this plot. For Qf > 0 (peaked) families tend to have null Hf . (B)
Average of Hf over classes for bins of Qf . Hf increases with decreasing Qf , indicating that an
increasing number of transfer events are found for families with Poisson-like and overdispersed
abundance profiles, compatibly with the model expectations. The insets show the histograms of
Hf for the region connected to them.
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Supplementary Figure S7: Comparison of abundance profiles with an independent evaluation of
horizontal transfers and duplications. We considered the data set from Treangen and Rocha [12],
who estimated the relative contributions of horizontal transfer and duplication to gene family
expansion in a set of closely related complete genomes, and compared them with our classifica-
tion in terms of family abundance profiles. As in Fig. 4A of the main text, points of the Qf −Lf
scatter plot are colored by average fractions of horizontal transfers (Hf , left panel) and duplica-
tions (right panel). Compatibly with the model expectations, colored points are more abundant
in the regions where Qf is negative or close to zero. Grey points have insufficient statistics.
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Supplementary Figure S8: A model variant where collisions are biased by evolutionary distance
yields unvaried results. We simulated N = 1065 genomes biasing their collision probability
according to their evolutionary distance. The parameter β sets the strength of the bias, β = 0
corresponding to the original model without bias. In all the simulations the initial abundance
is set to 100, and the initial variance to zero. In the graphs, the variance of family abundance
is plotted versus model time (in collisions) for the parameters pd = 0.0, ph = 0.05 (left panel)
and pd = 0.09, /, ph = 0.005 (right panel), and different values of β. The steady-state solution
remains unvaried until β ' 100, when interactions are limited to a very a small fraction of
genomes.
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Supplementary Figure S9: Foldability and abundance fluctuations are not correlated. We used
data of size-corrected contact order (SMCO) of SCOP domains computed in ref. [13] relating
them to the order parameter Qf of the corresponding families, which measures the abundance
fluctuations. Contact order is usually considered a proxy for foldability. The scatter-plot (col-
ored by point density) indicates that foldability is not the main explanation for family abundance
fluctuations.
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Supplementary Tables

Supplementary Table S1: Relation of the abundance profile of a family with its biological func-
tion. The table reports the counts for the larger functional categories of domain superfamilies
divided according to their abundance profile histograms following thresholds on Qf (see main
text). P-values for Fisher’s exact tests are reported in parenthesis when significant (P< 0.01), in
green for overrepresentation and in red for underrepresentation. This table considers a classifi-
cation based on the abundance fluctuations of all the 1530 superfamilies in the dataset, without
filters on the sampling.

Total Poisson Overdispersed Peaked Zero Variance
1530 277 193 756 304

General 83 11 15 39 18
Information 173 14 (7.2 · 10−5) 8 (1.8 · 10−4) 128 (2.6 · 10−12) 23 (1.2 · 10−2)
Metabolism 513 143 (4.4 · 10−12) 72 247 51 (4.1 · 10−13)
Processes.EC 59 6 16 (1.7 · 10−3) 17 (8.6 · 10−4) 20 (7.0 · 10−3)
Processes.IC 179 35 32 (1.9 · 10−2) 76 (2.9 · 10−2) 36
Regulation 142 25 27 (1.4 · 10−2) 50 (2.4 · 10−4) 40 (7.9 · 10−3)
Other 173 23 (4.7 · 10−2) 15 86 49 (2.8 · 10−3)
N.A 208 20 (2.1 · 10−4) 8 (4.2 · 10−6) 113 67 (3.6 · 10−6)
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Supplementary Table S2: Relation of the abundance profile of a family with its biological func-
tion. The table reports the counts for the finer functional categories of domain superfamilies
divided according to their abundance profile histograms following thresholds on Qf (see main
text). P-values for Fisher’s exact tests are reported in parenthesis when significant (P< 0.01), in
green for overrepresentation and in red for underrepresentation. This table considers only the
701 families below the noise threshold for the family abundance histograms. The results are
completely consistent for a classification of all the 1530 superfamilies in the data set.

Total Poisson Overdispersed Peaked Zero Variance
701 282 130 281 8

General

Small.molecule.binding 10 5 4 1 (4.5 · 10−2) 0
Ion.binding 2 0 0 2 0
Lipid/membrane.binding 0 0 0 0 0
Ligand.binding 1 0 0 1 0
General 11 5 4 2 0
Protein.interaction 8 2 2 4 0
Structural.protein 0 0 0 0 0

Information

Chromatin.structure 1 0 0 1 0
Translation 71 3 (3.1 · 10−13) 0 (2.0 · 10−7) 66 (6.2 · 10−23) 2
Transcription 12 3 1 8 0
DNA.replication/repair 39 15 4 19 1
RNA.processing 4 0 0 4 (2.5 · 10−2) 0
Nuclear.structure 0 0 0 0 0

Metabolism

Energy 30 14 0 (1.8 · 10−3) 16 0
Photosynthesis 1 1 0 0 0
E-.transfer 10 7 3 0 (5.7 · 10−3) 0
Amino.acids 20 8 0 (1.6 · 10−2) 12 0
Nitrogen 1 1 0 0 0
Nucleotide 28 11 1 (2.2 · 10−2) 15 1
Carbohydrate 17 9 4 4 0
Polysaccharide 6 2 4 (1.3 · 10−2) 0 (4.6 · 10−2) 0
Storage 0 0 0 0 0
Coenzyme 40 20 2 (1.2 · 10−2) 18 0
Lipid 5 4 1 0 0
Cell.envelope 2 1 1 0 0
Secondary.metabolism 8 4 2 2 0
Redox 31 19 (1.3 · 10−2) 9 3 (1.5 · 10−4) 0
Transferases 20 9 5 6 0
Other.enzymes 96 47 (3.9 · 10−2) 19 30 (3.6 · 10−2) 0

Processes.EC

Cell.adhesion 6 1 5 (1.1 · 10−3) 0 (4.6 · 10−2) 0
Immune.response 0 0 0 0 0
Blood.clotting 0 0 0 0 0
Toxins/defense 3 3 0 0 0

Processes.IC

Cell.cycle,.Apoptosis 4 1 0 3 0
Phospholipid 1 1 0 0 0
Cell.motility 6 4 0 2 0
Trafficking/secretion 1 0 0 1 0
Protein.modification 19 4 2 13 (1.1 · 10−2) 0
Proteases 18 7 9 (2.2 · 10−3) 2 (7.5 · 10−3) 0
Ion 19 10 5 4 0
Transport 24 9 10 (6.4 · 10−3) 5 (3.7 · 10−2) 0

Regulation

RNA.binding 8 4 0 4 0
DNA-binding 22 6 12 (1.2 · 10−4) 3 (6.7 · 10−3) 1
Kinases/phosphatases 8 7 (8.5 · 10−3) 1 0 (1.6 · 10−2) 0
Signal.transduction 16 5 8 (3.9 · 10−3) 2 (1.7 · 10−2) 1
Other.regulatory.function 7 3 1 3 0
Receptor.activity 2 1 1 0 0

Other
Unknown.function 42 16 8 16 2
Viral.proteins 1 1 0 0 0

N.A not.annotated 20 9 2 9 0
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