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SUPPLEMENTARY INFORMATION 

Details of generating the different structural ensembles 

RC ensemble. To generate a RC or Pred-SS structural ensemble we used the TraDES software 

package1. TraDES generates a random coil (RC) ensemble of structures by building each 

conformation one residue at a time and picking the dihedral angles according to their probability 

from the Ramachandran plot. This procedure also avoids steric clashes, but does not attempt to 

distinguish between energetically favorable and unfavorable conformations. We used the -kT 

flag during TraDES runs in order to avoid generating right handed structures due to a known 

bug. 

Pred-SS ensemble. There is also an option to bias the TraDES ensemble to preferentially 

sample α-helix or β-sheet regions along the sequence according to a bioinformatics prediction of 

secondary structure, which we label the Pred-SS ensemble. Many bioinformatics tools allow 

prediction of a protein’s secondary structure based on its sequence alone by comparing the 

sequence to known structures in the PDB. We employ the Psi-Pred V3.0 server2, for this 

purpose, feeding it the Aβ40 and Aβ42 sequences and receiving a prediction of either extended, 

helical, or coil structure for each residue, as shown in Table S1. For both peptides, PsiPred 

predicts blocks of extended, β-structure with high confidence, consistent with the structure that 

Aβ adopts in the aggregated fibril state3. This does not guarantee that the resulting conformations 

will contain true cooperative secondary structure (such as β-sheet), since the secondary structure 
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state of each residue is picked independently of other residues by TraDES. The RC and Pred-SS 

ensembles each contain 100,000 structures as recommended in [4]. 

Pred-SS-ENS ensemble. As an example of a knowledge-based approach we consider the 

ENSEMBLE software package, which selects from a large starting pool (basis set) of structures, 

typically generated by TraDES, a subset of 100 conformations that best conform to various NMR 

experimental data supplied to it (see Section 5 of the paper on calculation of experimental 

observables from structures). The Pred-SS-ENS, was selected by the ENSEMBLE program from 

a starting ‘soup’ consisting of the Pred-SS ensemble structures. We supplied Hα, HN, Cα, and Cβ 

chemical shifts, J-coupling constants, RDCs and NOEs for both Aβ40 and Aβ42. We used 

default values of the ENSEMBLE program input parameters and the default output of a 100-

structure ensemble. We ran each ENSEMBLE optimization for 48 hours on a Cray XE6 at 

National Energy Research Scientific Computing Center (NERSC), during which ~500 rounds of 

ENSEMBLE optimization steps were completed. We found that the resulting Pred-SS-ENS 

ensemble satisfied most of the experimental criteria besides RDCs according to the ENSEMBLE 

software. Based on our subsequent analysis, the default convergence criteria for RDCs appear to 

be too strict. J-coupling criteria were not satisfied for Aβ40, while Cα chemical shifts were not 

satisfied for Aβ42, however we selected those ensembles with the best fit to the NMR data 

overall, which we found to be sufficient for quantitative analysis. 

MD ensemble. We created the fourth ensemble with de novo molecular dynamics 

simulations of Aβ40 and Aβ42 using the Amber ff99SB force field5 and aqueous solvent 

represented by the TIP4P-Ew water model6, which we chose because previous studies support its 

clear superiority relative to other biomolecular simulation force fields7. We simulated each 

amyloid-β peptide in a cubic box containing 6,251 water molecules for Aβ42 and 6,136 water 

molecules for Aβ40, with three Na+ ions to neutralize the charge of the peptide. The sander 

module of AMBER8 was used in conjunction with Multi-Reservoir Replica Exchange (MRRE) 

method9 to generate ~2 µs of MD trajectories, from which we created a Boltzmann weighted 

ensemble of 72,632 – 89,469 structures each for Aβ40 and Aβ42 respectively at the experimental 

temperature of 287 K. 

MD-ENS ensemble. After reaching the conclusion that no true cooperative secondary 

structure can be generated from the purely knowledge-based method that selects from a pool of 

random structures, we decided to construct a fifth ensemble that uses a knowledge-based 
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approach combined with MD. For this ensemble (MD-ENS), we employed the same 

ENSEMBLE procedure described above for the Pred-SS-ENS ensemble except that we used the 

de novo MD ensemble as the starting pool of structures from which the experimentally optimized 

100-structure ensemble was selected. NOE data was not included in our final MD ENSEMBLE 

refinement because a more structured ensemble could not satisfy the large number of distance 

restraints. We again had the same problem satisfying RDC convergence criteria, but otherwise 

the MD-ENS ensemble was optimized well to the NMR data after ~500 ENSEMBLE rounds. 

We note that in this paper the MD-ENS ensemble consists of only 100 structures, and not 2,000 

structures as in our previous study10.. 

Details of using the ENSEMBLE software 

For knowledge-based approach we used the ENSEMBLE software package to select a final 

ensemble of 100 structures from a starting pool of structures. The ENSEMBLE method 

formulates energy functions that score structures favorably when they agree with an 

experimental observable and unfavorably when they do not. To generate the Pred-SS-ENS and 

MD-ENS ensembles we performed two sets of ENSEMBLE optimization. The first used the 

Pred-SS ensemble as the starting ‘soup’ of structures while the second used our de novo MD 

ensemble. In our first attempt to select a final ensemble that agreed with experiment we supplied 

multiple atom type chemical shifts, J-coupling constants, RDCs, and NOE contacts that we could 

assign directly from the experimental data for both Aβ40 and Aβ42. For the NOEs, we did not 

have specific distance restraints for the contacts, so we set the distance to a maximum of 7.0 Å 

for each contact. We used default values of the ENSEMBLE program for the experimental 

observable target energies. As recommended by the Forman-Kay group, we set chemical shifts 

and NOE distances to converge first, before converging J-coupling constants or RDCs. We ran 

each ENSEMBLE optimization for 48 hours on a Cray XE6 at NERSC, during which ~500 

rounds of ENSEMBLE optimization steps were completed.  

After this first ENSEMBLE attempt we saw that while the both chemical shifts and NOE 

distance restraints converged for the Pred-SS-ENS ensemble, in the MD-ENS calculation the 

NOE distance restraints did not converge. For the MD-ENS optimization the NOE distance 

restraint energies were extremely high (~800 in the best ensemble, compared with the target 

energy of 49). This was probably due to the approximation of the NOE cross-peaks as simple 
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distance restrains, the large number of NOE distance restraints being optimized (177 for Aβ42 

and 340 for Aβ40), and the fact that the MD starting pool was more diverse than the Pred-SS 

pool. We then attempted a second MD-ENS ENSEMBLE run without the NOE distance 

restraints, and this time the chemical shifts did converge.  

The second stage of the ENSEMBLE runs optimized against J-coupling constants and 

RDCs. This round was able to successfully converged the J-coupling constants to the default 

energy tolerance (except for the Aβ40 Pred-SS-ENS ensemble), but not the RDCs. Although the 

RDC energies had improved (from ~80 to 51 on energy units), their convergence had stagnated 

so as to not meet the ENSEMBLE convergence tolerance of >0.2 Hz, keeping a constant energy 

of ~51, even with additional computation time of ~5000 ENSEMBLE optimization rounds. In 

actuality, the RDCs were sufficiently converged to permit the analysis in sections 5 and 6 of the 

paper, suggesting that the default RDC tolerance was too tight. We therefore selected the final 

ensembles of 100 structures with the lowest energy according to the ENSEMBLE weighting 

function, in order to give the overall best performance against the chemical shift, J-coupling, 

RDC, and, for the Pred-SS-ENS ensemble, NOE data. We then used these final ensembles as the 

Pred-SS-ENS and MD-ENS ensembles in our subsequent analyses. 
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Table S1.  Aβ40 and Aβ42 predicted secondary structure. For Aβ40 and Aβ42 the predicted 

secondary structure and confidence in that prediction are presented29. This corresponds to a 

TraDES ensemble generated with extended dihedral angles for those residues predicted to have 

extended structure. The percent of the TraDES ensemble that has that residue extended 

corresponds to the confidence of the prediction, and the rest of the TraDES ensemble is 

generated with random coil structure. 

 Aβ40    Aβ42    

Residue 
structure 

prediction 
prediction 
confidence 

TraDES % 
extended 

TraDES 
% coil 

structure 
prediction 

prediction 
confidence 

TraDES % 
extended 

TraDES 
% coil 

1 C 9 0 100 C 9 0 100 
2 C 4 0 100 C 4 0 100 
3 C 2 0 100 C 2 0 100 
4 C 1 0 100 C 1 0 100 
5 C 1 0 100 C 1 0 100 
6 C 1 0 100 C 0 0 100 
7 C 4 0 100 C 4 0 100 
8 C 6 0 100 C 6 0 100 
9 C 5 0 100 C 5 0 100 

10 E 0 0 100 E 0 0 100 
11 E 5 50 50 E 5 50 50 
12 E 7 70 30 E 7 70 30 
13 E 7 70 30 E 8 80 20 
14 E 6 60 40 E 6 60 40 
15 E 4 40 60 E 5 50 50 
16 E 8 80 20 E 8 80 20 
17 E 9 90 10 E 9 90 10 
18 E 8 80 20 E 8 80 20 
19 E 8 80 20 E 8 80 20 
20 E 7 70 30 E 7 70 30 
21 E 5 50 50 E 5 50 50 
22 E 0 0 100 E 0 0 100 
23 C 1 0 100 C 1 0 100 
24 C 2 0 100 C 2 0 100 
25 C 7 0 100 C 7 0 100 
26 C 8 0 100 C 8 0 100 
27 C 8 0 100 C 8 0 100 
28 C 4 0 100 C 4 0 100 
29 C 2 0 100 C 2 0 100 
30 E 1 10 90 E 1 10 90 
31 E 8 80 20 E 9 90 10 
32 E 9 90 10 E 9 90 10 
33 E 9 90 10 E 9 90 10 
34 E 9 90 10 E 9 90 10 
35 E 7 70 30 E 7 70 30 
36 E 5 50 50 E 6 60 40 
37 E 0 0 100 E 0 0 100 
38 E 0 0 100 E 0 0 100 
39 E 2 20 80 E 8 80 20 
40 C 9 0 100 E 9 90 10 
41     E 4 40 60 
42         C 9 0 100 
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FIGURES 

Figure S1. Percentage of Aβ42 simulated ensemble in different types of secondary structure by 

residue for the RC ensemble. The red line represents helix, the blue line for anti-parallel sheet, 

and the black line for β-turns. 
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