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ABSTRACT:  Additional information on tandem mass spectrometry experiments, roughness test 
of various surfaces, unsaturated fatty acid and phosphatidylcholine surface oxidation, N2 
protection and darkroom experiments and proposed structures of the CID MS fragments are 
provided.
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Experimental methods. 

Additional materials. Plates with Silica gel 60 HPTLC coated on aluminum or glass were 
purchased from EMD Chemicals Inc. (Gibbstown, NJ). Microscope glass slides and aluminum 
foils were purchased from Fisher Scientific (Pittsburgh, PA). All HPLC grade solvents were 
purchased from Merck (Darmstadt, Germany). 

HPTLC. ST standards dissolved in CHCl3/CH3OH (1:1, v/v) were applied by means of a 
microliter syringe (Hamilton Co., Reno, NV), as 3-mm spots on silica gel-coated plates. Plates 
for the analysis of acidic glycosphingolipids (GSLs) were developed with solvent system A 
(CHCl3/CH3OH/0.2% CaCl2 (55:45:10, v/v/v)). The bovine brain total lipid extract was 
developed with solvent system B (CHCl3/CH3OH/H2O/CH3COOH (90:50:5:2, v/v/v/v)). 
Duplicate spots of each lipid sample were deposited on a silica TLC plate and the plate was cut 
into two pieces after development. One piece was stained as a reference for the determination of 
the elution positions for the lipids of interest, and the other piece was used for TLC-MS analysis. 
Primuline staining reagent was applied for the detection of lipids. 

Direct sampling TLC-MS. The liquid extraction surface analysis (LESA™) device for the 
TriVersa NanoMate (Advion BioSciences, Inc., Ithaca, NY) was coupled to the nanoESI source 
of a QSTAR Pulsar i Q-o-TOF MS (AB Sciex, Foster City, CA) that was operated in the 
negative ion mode. Typical LESA-MS experimental conditions were spray voltage, -1.5 kV; N2 
delivery gas pressure, 0.8 psi; and solvent system C ((CH3)2CHOH/CH3OH/H2O (9:1:1, v/v/v)) 
as the extracting solvent mixture. A total volume of 8 μL of extracting solvent C was used for 
each extraction, with 6 μL being dispensed by a pipette tip held at 0.8 mm above the surface, to 
form a liquid-surface junction and facilitate liquid extraction of the analytes. The liquid junction 
was held in place for 1 s and then 1.5 μL of the solution was aspirated back into the tip. CID was 
performed with nitrogen gas to fragment the compounds of interest. The collision energy was set 
between -30 to -90 V, depending on the lipid structures. Typically, dissociation of singly-charged 
STs needed higher energy (~ -90 V) than multiply-charged gangliosides or singly-charged 
phospholipids (~ -50 V). The GD1a standard was employed for MS/MS calibration. Mass 
accuracy for the Q-Star Q-o-TOF MS in both MS and MS/MS modes was better than 15 ppm.   

Characterization of surface roughness. The topography and roughness were characterized for 
samples deposited onto a microscope glass slide and the matte side of aluminum foil, using white 
light interferometry (Model NT-1100, Veeco) in the vertical scanning interferometry (VSI) mode 
with a 20X objective lens and a modulation threshold of 0.5%. A contact stylus profilometer 
(Model Dektak 6M, Veeco) with a load force of 5 mg was used for measuring the roughness of 
the silica TLC plate samples. At least three independent measurements were taken to calculate 
the average roughness (Ra) and standard deviation for all samples. The samples were also 
mounted on conductive carbon tape, sputter coated with gold, and examined with a Tescan Vega 
3 scanning electron microscope. 
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Supplementary results and discussion. 

Surface oxidation of fatty acids 

In order to confirm that the surface lipid oxidation observed for ST is common to other 
lipid classes as well, stearic acid C18:0, oleic acid C18:1 (9Z), linoleic acid C18:2 (9Z, 12Z), 
lignoceric acid C24:0 and nervonic acid C24:1 (15Z) were examined on aluminum foil, since 
fatty acids represent the “simplest” lipids (Fig. S-9). No oxidation was observed on the saturated 
fatty acids (Fig. S-9a and 9d). Fig. S-9b shows the spectrum recorded for the products from 
oxidation of oleic acid after 1-h exposure to ambient air. [M - H]- ions were observed that 
corresponded to a shortened fatty acid containing a terminal aldehyde (m/z 171.10), or a second 
carboxyl moiety (m/z 187.10), as well as the residual intact starting material (m/z 281.25).  
Nervonic acid was also cleaved at its double bond position and showed signals at m/z 255.20, 
and 271.19 (Fig. S-9e). Because [M – H]- the aldehyde product of nervonic acid (C15H27O3

-, m/z 
255.1966) and the background palmitic acid (C16H31O2

-, m/z 255.2330) are isobaric, the nervonic 
acid oxidation products were reanalyzed by FT-ICR MS to resolve these species and thereby 
remove any ambiguity regarding formation of the aldehyde (Fig. S-10). Over time, the 
abundances of the peaks corresponding to the aldehyde products were increased in the spectra 
and the intensities of their signals were compared to the signal from the remaining fatty acid 
(Fig. S-10b). The oxidation of linoleic acids resulted in the generation of only one set of 
products, observed at m/z 171.10, and 187.10 (Fig. S-9c) without the “step-by-step” cleavages 
reported by Harrison and Murphy for their OzID investigation of a phosphatidylcholine (PC) 
with multiple double bonds.1 When the amount of oxidant is sufficient, both double bonds may 
react, at apparently similar rates, and be cleaved immediately and, as a result, the other small 
neutral pieces may not be detectable. 

Interestingly, no ozonide was produced from these fatty acids. To check whether the 
ozonide is produced quickly, the fatty acids were deposited on aluminum foil and the formation 
of ozonides in the fatty acids was tracked for 5 min, 10 min, and 20 min by nanoESI-MS analysis 
with the TriVersa NanoMate. However, no such products were detected (data not shown). Since 
singlet oxygen reacts much faster on the isolated olefin, as discussed above, the fatty acids react 
more quickly with singlet oxygen than with ozone and the amount of the ozonides generated 
under these conditions might be undetectable. During ozone oxidation of carbon-carbon double 
bonds, primary ozonide formation is considered to be the rate-limiting step.2,3 Furthermore, it is 
possible that, once formed, the ozonide is quickly cleaved. The cleavage may occur so rapidly 
that the ozonide intermediates cannot be detected. The presence of the aldehyde and carboxyl 
acid pair is sufficient to elucidate the original position of the double bond in fatty acids, even 
though no observed signal corresponds to the postulated ozonide intermediate.  
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base of d18:1/C24:1 ST. (c) MS/MS spectrum obtained for the precursor ion at m/z 710.4 that 
can be assigned as the aldehyde formed at the double bond in the sphingoid base of d18:1/C24:0 
ST. (d) CID MS/MS spectrum of m/z 936.6 corresponding to the ozonide formed at the double 
bond position in the fatty acyl chain of d18:1/C24:1 ST.  (e) CID MS/MS spectrum of m/z 984.6 
corresponding to di-ozonide formed on the double bonds in both the fatty acyl chain and the 
sphingoid base of d18:1/C24:1 ST. This spectrum was collected from the surface of aluminum 
foil after deposition of d18:1/C24:1 ST followed by exposure under ambient air after 1 hour. (f) 
CID MS/MS spectrum of the precursor ion m/z 938.6 assigned as the ozonide formed on the 
double bond in the long chain base of d18:1/C24:0 ST. Structures of the CID fragments are 
shown in the structure list in Figure S-11. 
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74 Da that may correspond to a glyceryl ester on the phosphate or an experimental artifact. The 
asterisk (*) and black square (), respectively, indicate fragments from the different precursor 
ion sources. Structures of the CID fragments are shown in the structure list in Figure S-11. 
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