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Supplementary note 

β and R2 as indices for effect magnitudes 

β, or |β|, is the coefficient (or the absolute value of the coefficient) of genotypes for an eQTL, and 

represents the effect size of a minor allele for means; specifically, how much the mean expression 

level is changed by possessing one minor allele on a log2 scale (i.e., β=1 means that the expression 

levels double per minor allele).  R2 is the proportion of the regression sum of squares to the total 

sum of squares, and this proportion represents the proportion of phenotypic variance explained 

by genotype: i.e., R2 represents how well the genotypes of a SNP explain the variance in an 

expression phenotype. Because we did not scale expression phenotypes by the standard deviation, 

β can be correlated to variability of the phenotype, while R2 is not influenced by variability. We 

showed results for both measures because β and R2 are two different measures for effects of 

predictor variables. When two eQTLs have the same R2 values but different β values, the 

proportion of variance explained by genotypes is the same but the difference in means between 

two genotypes, say genotypes AA and Aa, is different. When two eQTLs have the same β values 

but different R2 values, the difference in means between two genotypes, say genotypes AA and Aa, 

is the same, but the proportion of explained variance is different. β is important because it 

represents effect sizes, not statistical significance. R2 is closely related to P values; with the same 

sample sizes, comparing R2 is equivalent to comparing P values. R2 is also important because it 

represents the narrow-sense heritability, h2, where the SNP is the only genetic factor for the 

phenotype. If there are more than one independent genetic factors, h2 is given by the sum of R2 of 

all the genetic factors. 

In our study, many results showed substantial discordance between β and R2. For example, genic 

and intergenic cis-eQTLs were different in R2 but not obviously different in β (Figure 3A and 3B); 

association with RegolumeDB was significant for R2 but not for β (Figure 4); relationship between 

R2 or β and eQTL-gene distance was also different (Figure 5C and 5F). Regarding these differences, 

we consider that R2 is the better index to represent eQTL effects because R2 was more consistent 

with known biological evidences, and also because β is influenced by variability of phenotype. 



However, as mentioned above, β indicates how an eQTL can change the mean expression levels, 

which might be of greater interest than statistical significance represented by R2. Therefore, we 

showed results for both β and R2. 

Definitions of Case 1-4 for GWAS results  

We defined the following four cases for GWAS results in which cis or trans effects were found for 

reported SNPs. A GWAS result is classified into Case 1 when the GWAS-suggested causative gene 

differs from the gene regulated by the GWAS-identified SNP or when GWAS could not suggest any 

gene because the GWAS-identified SNP fell the intergenic region; Case 2 when expressions of the 

GWAS-reported gene is regulated by the GWAS-identified SNP (i.e., our eQTL map supports the 

involvement of the gene); Case 3 when the eQTL map helped to prioritize multiple genes 

inconclusively reported by the GWAS; or Case 4 when a GWAS-identified SNP influences 

expression of a gene on a different chromosome without cis-effects. Here, we considered the 

GWAS-identified SNP is a trans-eQTL without cis-effects when the following three conditions were 

satisfied: 1) the GWAS-identified SNP was a trans-eQTL (or in LD with a trans-eQTL) for a gene on 

the different chromosome, 2) no SNPs in LD (r2 > 0.8) with the GWAS-identified SNP were cis-

eQTLs; 3) the trans-eQTLs and the most significant local SNP for their target genes were unlinked 

(r2 < 0.009) to confirm that the trans-eQTLs were truly on the different chromosome. The 

threshold for unlinked SNPs was determined based on the distribution of r2 of all pairs of SNPs on 

different chromosomes generated using randomly sampled 5,000 SNPs from our tested SNPs; and 

we chose the 90th percentile as a cutoff. 

Surrogate variable correction and distribution of P values for all 

distant SNPs 

The surrogate variable analysis (SVA) identifies unmodeled latent factors that cause heterogeneity 

in expression data [1]. We identified two significant surrogate variables (SV), and we corrected 

each expressional phenotype for age, gender, and the two SV. It was shown that SVA improved 

eQTL reproducibility [2]. In our data, we identified more trans-eQTLs with SV correction than 

without SV correction (we did not check whether or not more cis-eQTLs are found with SV 



correction). Therefore, we consider that SVA improves eQTL identification. We note, however, 

that adding SV correction to age and gender adjustment changed the distribution of P values of all 

distant SNPs. As shown in Figure SN1, with SV correction, the distribution of P values became 

conservative, with disregarding enrichment of small P values, than expected distribution from 

complete null hypotheses.  

 Figure SN1. Distribution of P values for all distant SNP-probe association tests. A) Without SV 
correction, B) with SV correction 

Gene structure-based functional classification of SNPs 

We annotated with ANNOVAR’s default definitions and precedence of SNP functional categories 

(the numbers represent the precedence): exonic(1): variants overlaps a coding exon; splicing(1): 

variant is within 2-bp of a splicing junction in an intron; ncRNA(2): variant overlaps a transcript 

without coding annotation in the gene definition; 5’ UTR(3): variant overlaps a 5' untranslated 

region; 3’ UTR(3): variant overlaps a 3' untranslated region; intronic(4): variant overlaps an intron; 

upstream(5): variant overlaps 1-kb region upstream of transcription start site; downstream(5): 

variant overlaps 1-kb region downstream of transcription end site; intergenic(6): variant is in 

intergenic region. Functions only available from ncRNA databases were also included. We also 

used ANNOVAR’s default definitions of exonic functional categories in order of precedence as 

follows: stopgain, variant that leads to the immediate creation of stop codon at the variant site; 



stoploss, variant that leads to the immediate elimination of stop codon at the variant site; 

nonsynonymous SNV, a single nucleotide change that cause an amino acid change; synonymous 

SNV, a single nucleotide change that does not cause an amino acid change. Functional changes 

caused by indels were not shown here because no SNP was assigned to these categories. 

Exclusion of possible false eQTLs caused by outliers or violation of 

normality assumption 

To exclude possible false discoveries caused by outliers or violation of normality assumption made 

for a linear regression, non-parametric tests or inverse normal transformation is commonly used. 

We considered applying either method to assure that our eQTLs are not false discoveries caused 

by such reasons. To employ more stringent method for our data, we evaluated the two methods; 

1) Kruskal-Wallis test [3], and 2) linear regression following rank-based inverse normal 

transformation [4] (INT+LR). We tested pairs of the most significant local SNP and transcript with 

each method (Figure SN2), and compared with a linear regression (LR), which was performed as 

described in Methods (Figure SN2). The significance thresholds for LR was determined by the 

permutation FDR (as described in Methods), and those for Kruskal-Wallis test and INT+LR were 

determined based on a receiver operating characteristic (ROC) curve analysis [5] (the closest point 

to the upper-left corner) using the significance by LR as a golden standard. We identified 200 and 

155 possible false positives with Kruskal-Wallis test (P < 0.00015) and INT+LR (P<2E-05), 

respectively (those in the lower-right region in Figure SN2). Therefore, we employed Kruskal-Wallis 

test, which gave more stringent criteria. 



 

Figure SN2. Detection of possible false positives due to outliers or violation of normality 
assumption. P values with Kruskal-Wallis test (A) or linear regression following rank-based inverse 
normal transformation (INT+LR) (B) are plotted against P values with linear regression (LR). X and Y 
axes are truncated at 10. The red lines indicate significance threshold for each method. The 
contour lines indicate proportion of tests that were significant with both methods with respective 
cutoffs. 
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