The American Journal of Human Genetics, Volume 94 Supplemental Data

Variant Association Tools for Quality Control and Analysis of Large-Scale Sequence and Genotyping Array Data

Gao T. Wang, Bo Peng and Suzanne M. Leal



Figure S1: Rare variant association analysis for simulated BMI phenotype using the BRV method. Analysis of whole exome association was performed for the quantile normal transformed BMI phenotype using the BRV method. For panels a to c results are represented by p-values at  $-\log_{10}$  scale and displayed in quantile-quantile (QQ) (left) and Manhattan (right) plots. Analysis was performed for Europeans (panel a), Asians (panel b) and Meta-analysis of European and Asian results (panel c) using sample-size based method.



Figure S2: Rare variant association analysis for simulated BMI phenotype using the VT method. Analysis of whole exome association was performed for the quantile normal transformed BMI phenotype using the VT method. For panels a to c results are represented by p-values at  $-\log_{10}$  scale and displayed in quantile-quantile (QQ) (left) and Manhattan (right) plots. Analysis was performed for Europeans (panel a), Asians (panel b) and Meta-analysis of European and Asian results (panel c) using sample-size based method.



Figure S3: Rare variant association analysis for simulated BMI phenotype using the WSS method. Analysis of whole exome association was performed for the quantile normal transformed BMI phenotype using the WSS method. For panels a to c results are represented by p-values at  $-\log_{10}$  scale and displayed in quantile-quantile (QQ) (left) and Manhattan (right) plots. Analysis was performed for Europeans (panel a), Asians (panel b) and Meta-analysis of European and Asian results (panel c) using sample-size based method.



Figure S4: Rare variant association analysis for simulated BMI phenotype using the SKAT method. Analysis of whole exome association was performed for the quantile normal transformed BMI phenotype using the SKAT method. For panels a to c results are represented by p-values at  $-\log_{10}$  scale and displayed in quantile quantile (QQ) (left) and Manhattan (right) plots. Analysis was performed for Europeans (panel a), Asians (panel b) and Meta-analysis of European and Asian results (panel c) using metaSKAT method.



**Figure S5: Rare variant association analysis for simulated BMI phenotype using** *VAT stacking***.** Analysis of whole exome association was performed for the quantile normal transformed BMI phenotype using KBAC and KBAC stacked on the VT algorithm, which allows for performing the KBAC method maximizing the test over allele frequencies. For KBAC variants with a MAF <1% were analyzed while for KBAC stacked on the VT algorithm variants with a MAF <5% were analyzed. Results are shown for KBAC analyses for Europeans (panel a) and Asians (panel b), as well as KBAC stacked on the VT algorithm for Europeans (panel c) and Asians (panel d). For panels a to d results are represented by p-values at  $-\log_{10}$  scale and displayed in quantile-quantile (QQ) (left) and Manhattan (right) plots.

## Table S1: The 1000 Genomes samples

| <b>Population Code</b> | <b>Population Description</b>                              | Sample size |
|------------------------|------------------------------------------------------------|-------------|
| CHB                    | Han Chinese in Beijing, China                              | 97          |
| CHS                    | Southern Han Chinese                                       | 100         |
| JPT                    | Japanese in Tokyo, Japan                                   | 89          |
| CEU                    | Utah Residents with Northern and Western European ancestry | 85          |
| TSI                    | Toscani in Italia                                          | 98          |
| FIN                    | Finnish in Finland                                         | 93          |
| GBR                    | British in England and Scotland                            | 89          |
| IBS                    | Iberian population in Spain                                | 14          |
| YRI                    | Yoruba in Ibadan, Nigera                                   | 88          |
| LWK                    | Luhya in Webuye, Kenya                                     | 97          |
| ASW                    | Americans of African Ancestry in SW USA                    | 61          |
| MXL                    | Mexican Ancestry from Los Angeles USA                      | 66          |
| PUR                    | Puerto Ricans from Puerto Rico                             | 55          |
| CLM                    | Colombians from Medellin, Colombia                         | 60          |