

Multi-parametric MRI followed by targeted prostate biopsy for men with suspected prostate cancer: a clinical decision analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-004895
Article Type:	Research
Date Submitted by the Author:	20-Jan-2014
Complete List of Authors:	 Willis, Sarah; London School of Hygiene & Tropical Medicine, Department of Health Services Research & Policy Ahmed, Hashim; Division of Surgery and Interventional Sciences, University College London Moore, Caroline; University College London, Division of Surgery and Interventional Sciences Donaldson, Ian; University College London, Division of Surgery and Interventional Sciences Donaldson, Ian; University College London, Division of Surgery and Interventional Sciences Emberton, Mark; UCLH NHS FT, Urology Miners, Alec; London School of Hygiene and Tropical Medicine, Department of Health Services Research & Policy van der Meulen, Jan; London School of Hygiene and Tropical Medicine, Department of Health Services Research & Policy
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Health economics
Keywords:	biopsy, diagnosis, decision trees, Magnetic resonance imaging < RADIOLOGY & IMAGING, prostatic neoplasms

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ge 1 of 25	BMJ Open
	Multi-parametric MRI followed by targeted prostate biopsy for men with suspected
	prostate cancer: a clinical decision analysis
	Sarah R Willis, Hashim U Ahmed, Caroline M Moore, Ian Donaldson, Mark Emberton, Alec H
	Miners, Jan van der Meulen
	Department of Health Services Research & Policy, London School of Hygiene & Tropical
	Medicine, 15-17 Tavistock Place, London, WC1H 9SH.
	Sarah R Willis, Research Fellow
	Alec H Miners, Senior Lecturer
	Jan van der Meulen, Professor of Clinical Epidemiology
	Division of Surgery and Interventional Sciences, University College London, London UK and
	Department of Urology, University College London Hospitals NHS Foundation Trust, London
	Hashim U Ahmed, MRC Clinician Scientist
	Caroline M Moore, Consultant Urologist
	Ian Donaldson, Clinical Research Fellow
	Mark Emberton, Director
	Correspondence to: S Willis <u>sarah.willis@lshtm.ac.uk</u>
	Keywords: biopsy; diagnosis; decision trees; magnetic resonance imaging; prostatic
	neoplasms
	Word count of abstract: 226
	Word count of text: 2,452

The Corresponding Author, Ms Sarah Willis, has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

BMJ Open

ABSTRACT (226 words)

Objective: To compare the diagnostic outcomes of the current approach of TRUS-guided biopsy in men with suspected prostate cancer to an alternative approach using multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive.
Design: Clinical decision analysis was used to synthesise data from recently emerging evidence in a format that is relevant for clinical decision making.
Population: A hypothetical cohort of 1000 men with suspected prostate cancer.

Interventions: mpMRI and if positive MRI-targeted biopsy compared to TRUS-guided biopsy in all men.

Outcome measures: We report the number of men expected to undergo a biopsy as well as the numbers of correctly identified patients with or without prostate cancer. A probabilistic sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of statistical uncertainty in the diagnostic parameters.

Results: In 1000 men, mpMRI followed by MRI-targeted biopsy "dominates" TRUS-guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men being correctly identified as having clinically significant cancer (320 versus 250), and fewer men being falsely identified (20 versus 50). The mpMRI-based strategy dominated TRUS-guided biopsy in 90% of the simulations of the sensitivity analysis.

Conclusions: Our analysis demonstrates that mpMRI followed by MRI-targeted biopsy is likely to result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate cancer should focus on providing precise estimates of key diagnostic parameters.

STRENGTHS AND LIMITATIONS OF THE STUDY (127 words)

- There are no clinical studies that directly compare the standard diagnostic approach using TRUS biopsy in all men with suspected prostate cancer with an approach where mpMRI is used to select men for biopsy and to guide the biopsy needle towards a suspicious lesion.
- Our decision analysis brings together emerging evidence on the diagnostic accuracy of TRUS biopsy, mpMRI and MRI-targeted biopsies.
- A probabilistic sensitivity analysis demonstrates that the MRI strategy was most effective in 90% of the simulations. However this sensitivity analysis did not assess the impact of structural uncertainties.
- This analysis focuses purely on short term clinical outcomes following different testing options. Ultimately, the optimal diagnostic strategy for men with suspected prostate cancer will depend on the impact of both costs and quality-adjusted life expectancy.

 BMJ Open

INTRODUCTION

Prostate cancer is the most common male cancer in most developed countries. Incidence rates have risen rapidly over the past 15 years, in part due to the increase in prostate specific antigen (PSA) testing. PSA testing remains controversial since it does not necessarily indicate prostate cancer and many men diagnosed with prostate cancer will not die from the disease. It is increasingly accepted that a distinction should be made between prostate cancer that is unlikely to cause harm ("clinically insignificant" disease) and cancer which, if untreated, may cause symptoms or lead to death ("clinically significant" disease). Although there is no consensus on what constitutes clinically significant disease, it is usually described in terms of cancer volume and the extent of cell differentiation (cancer grade) [1-3].

The optimal strategy for diagnosing clinically significant prostate cancer is the focus of a rapidly developing body of research. The standard diagnostic approach for men with suspected prostate cancer is to offer them a transrectal ultrasound (TRUS)-guided prostate biopsy taking 10 to 12 cores [4-6]. The ultrasound guidance ensures the biopsy needles are guided to zones within the gland, but generally not to a suspicious lesion that is more likely to contain cancer. Imaging the prostate of all men before biopsy has been proposed, but it remains controversial in some centres partly due to doubts about the performance and reproducibility of multi-parametric MRI (mpMRI). This alternative diagnostic pathway, already being implemented by some NHS providers, would require all men with raised PSA to have an mpMRI but only those with a suspicious lesion to undergo an MRI-targeted biopsy. Men who are negative on mpMRI would receive no further investigation. During

MRI-targeted biopsy, the biopsy needle is either directed by the clinician's interpretation of the mpMRI results ("cognitive registration") or by using computing technology that digitally overlays the target information derived from the mpMRI directly onto the ultrasound image ("computer-aided registration"). Irrespective of the image-registration technique, an MRIbased approach to diagnosis has two potential advantages: patients with no lesion on mpMRI would avoid a prostate biopsy and using mpMRI for targeting may improve the detection of clinically significant cancers.

We summarise what can be understood from recently emerging evidence in a format that is relevant for clinical decision making. We carried out a decision analysis to compare a simplified version of the current standard diagnostic approach (TRUS-guided biopsy) with an approach where mpMRI is used to select men for biopsy and to guide the biopsy needle towards the area of suspected cancer. We estimate the number of biopsies that could be avoided with pre-biopsy mpMRI and the number of correctly identified patients with and without clinically significant prostate cancer.

METHDOS

Decision analysis

We used a decision tree to compare the standard diagnostic pathway (TRUS-guided biopsy for all) with a new pathway (mpMRI for all, then MRI-targeted biopsy if positive). The tree, presented in Figure 1, was evaluated to reveal the expected outcomes associated with each option, for a hypothetical cohort of 1000 men. The probability estimates used to populate the decision tree were derived from recent studies which reported data that reflected the conditional nature of the parameters and used an appropriate reference test [7-9]. All of these data are limited in some way, but assumptions were made so that any biases would favour the current diagnostic approach.

Target population

The target population for the decision analysis was men with increased serum PSA levels or abnormal findings on digital rectal examination who had never had a prostate biopsy.

Clinically significant disease

For our base-case analysis we defined clinically significant disease according to widely used, and arguably somewhat conservative, criteria: a minimum volume of 0.2cc or cell differentiation corresponding to a Gleason score of 3+4 or higher [10]. The prevalence of clinically significant disease in our target population is uncertain, but we estimated it to be 50% of all men with suspected prostate cancer, based on a prospective analysis of men

undergoing a first prostate biopsy [11]. We varied the prevalence of clinically significant disease in a sensitivity analysis.

TRUS-quided biopsy

The gold standard used to establish the presence or absence of clinically significant disease whole-mount pathological data - is usually only available for men who test positive and then go on to have radical surgery [7 8 12]. Therefore we used data from a study which carried out computer simulations to estimate the performance characteristics of TRUS-guided biopsy by comparing them to reconstructed whole-mount pathology obtained from patients undergoing surgery for bladder cancer, which revealed they also had prostate cancer [13]. The spectrum of disease in this sample population is likely to include more early-stage disease than would be expected in an unscreened UK population, and thus this bias will favour the current diagnostic approach.

The sensitivity of TRUS-guided biopsy, when criteria proposed by Epstein were used to interpret the diagnostic result, was approximately 50%[13]. According to Epstein, a biopsy result is positive for significant cancer if the maximum cancer core length from biopsy is at least 3mm or if the Gleason score is 3+4 or higher[10]. The corresponding specificity of TRUS-guided biopsy was estimated to be approximately 90%, which represents the proportion of men correctly identified with insignificant disease (men with no prostate cancer were not included in the study population).

BMJ Open

mpMRI and MRI-targeted biopsy

We estimated the diagnostic accuracy of the MRI-based strategy by combining the estimates for mpMRI and MRI-targeted biopsy. A recent systematic review of the literature revealed two studies on MRI in biopsy-naïve men with suspected prostate cancer [8 14 15]. The accuracy of mpMRI could only be estimated from data reported in one of these publications: a large study involving 555 men which compared pre-biopsy mpMRI results with TRUS-guided biopsy and/or MRI-targeted biopsy as a proxy for true disease status[14]. We used these data to estimate the sensitivity of mpMRI at 80% and the specificity 60%. A more recent study shows these values may in fact underestimate the performance of mpMRI[16].

The accuracy of MRI-targeted biopsy was taken from a study that compared MRI-targeted biopsy with cognitive registration to 20-sector template-prostate mapping [17]. This study was used since all men in the study population had a lesion on mpMRI and therefore allowed us to capture the sequential nature of the diagnostic approach. The study showed that when the biopsies were classified according to the Epstein criteria, the sensitivity was approximately 80% and the specificity 80%[17]. The specificity that this study reported for the MRI-targeted biopsy is lower than our estimate of the 90% specificity of TRUS-guided biopsy. However, the use of MRI-targeting instead of TRUS-guided biopsy should have no impact on men without clinically significant disease, and therefore we assumed that MRI-targeted biopsy should be as good as – but not better than – TRUS-guided biopsy at correctly identifying men without clinically significant prostate cancer. We therefore

assumed that the specificity of the MRI-targeted biopsy is 90%, the same as that of TRUSguided biopsy.

Sensitivity Analysis

We carried out a one-way sensitivity analysis by varying the prevalence of clinically significant disease from 0 to 1, keeping all other variables constant. This sensitivity analysis was intended to demonstrate the extent to which the optimal diagnostic strategy depends on the prevalence of clinically significant disease.

The estimates used to describe the performance of the diagnostic tests in our decision analysis are uncertain. To assess the robustness of our results, we carried out a probabilistic sensitivity analysis using Monte Carlo simulation varying the sensitivities and specificities of the three tests (TRUS-guided biopsy, mpMRI, and MRI-targeted biopsy) simultaneously over 2000 iterations, sampling from beta distributions to characterise the uncertainty in the test accuracy data [13 14 17]. We determined the beta distributions by assuming that the sensitivities and specificities were observed in populations consisting of 50 men with and 50 men without clinically significant disease. We substantially widened the distributions (by assuming a small population of men) in order to increase the uncertainty associated with the test performance parameters. We ignored the correlation between sensitivity and specificity and kept the disease prevalence constant at 50%.

RESULTS

The decision tree demonstrated that the use of TRUS-guided biopsy in a hypothetical cohort of 1000 men with suspected prostate cancer would result in 300 positive and 700 negative biopsy results, which would correctly identify 250 men with clinically significant prostate cancer and 450 men without the disease (Table 2).

The use of mpMRI and MRI-targeted biopsy in the same cohort would result in 600 men undergoing a biopsy with 340 positive and 260 negative biopsy results (Table 2). This diagnostic strategy would correctly identify 320 men as having significant prostate cancer and 480 without the disease.

Multi-parametric MRI followed by MRI-targeted biopsy can therefore be said to clinically dominate TRUS-guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men being correctly identified as having clinically significant disease (320 versus 250), and fewer men being falsely identified with the disease (20 versus 50).

Figure 2 provides a visual representation of the one-way sensitivity analysis showing the total number of people receiving the wrong diagnosis (the sum of the number of patients with a false-positive or a false-negative result) as a function of the prevalence of clinically significant disease. The MRI-based approach resulted in a lower number of patients wrongly diagnosed than with TRUS-guided biopsy for all men, at all prevalence rates. Below a

prevalence of 5%, doing nothing is the "optimal" strategy as it leads to the lowest number of men with the wrong diagnosis. Above a prevalence of 70%, treating all men is optimal.

When the sensitivities and specificities of the three tests were varied simultaneously in 2000 simulations for the probabilistic sensitivity analysis, the diagnostic approach using mpMRI and MRI-targeted biopsy clinically dominated in 90% of the simulations, whereas TRUS-guided biopsy dominated in 0.4% of the simulations. The remaining 9.6% of simulations reveal a trade-off between correctly identifying more men with clinically significant cancer and correctly identifying more men without significant disease.

BMJ Open

DISCUSSION

Our decision analysis revealed that mpMRI of the prostate followed by MRI-targeted biopsy if positive would result in fewer and better biopsies than a strategy using only TRUS-guided biopsy. Indeed, the results show that this MRI-based strategy would reduce the number of biopsies by about one third (600 compared to 1000 biopsies), increase the number of men identified with clinically significant cancer by about 30% (320 compared to 250 patients), and reduce the number of men falsely identified with the disease by 60% (20 compared to 50).

When we accounted for uncertainty in the sensitivity and specificity estimates of the three diagnostic tests, we found that the dominance of the MRI strategy was robust. However, the probabilistic sensitivity analysis did not assess the impact of the inherent "structural" uncertainties. For example, the ongoing debate about the definition of clinically significant cancer, varying diagnostic thresholds used to decide whether mpMRI or biopsy results are positive or negative, and the use of imperfect gold-standard tests.

The National Institute for Health and Care Excellence (NICE), has recently updated its guidance on the diagnosis of prostate cancer patients[7]. Our estimate of the sensitivity of 50% for TRUS-guided biopsy is close to the estimate of 45% used in its analysis. However, we estimated the specificity of the TRUS-guided biopsy to be 90%, whilst NICE assumed it to be 100% [7]. While both of these specificity estimates are somewhat speculative, we felt that the specificity estimate needs to reflect that patients who have clinically insignificant

prostate cancer may have biopsy results that are interpreted as suggestive of clinically significant cancer. We also assumed that this "error" is as likely with TRUS-guided as with MRI-targeted biopsies and therefore we used the same false-positive rate for TRUS-guided and for MRI-targeted biopsies. These choices were made deliberately in order to underestimate the comparative effectiveness of the proposed diagnostic strategy using mpMRI.

The results of our analysis are based on a simplification of the choices facing urologists in the diagnosis of prostate cancer. In their evaluation, NICE considered a strategy of mpMRI and biopsy for all men, including targeted biopsies for all men with a lesion on MRI. This perhaps highlights the reticence of health care professionals to do 'less' rather than 'more'. A major challenge therefore will be the implementation of a strategy that requires a negative diagnostic test result to be followed by no immediate further investigation.

In this analysis we focussed purely on short term clinical outcomes following different testing options. Ultimately however the optimal diagnostic strategy for men with suspected prostate cancer will depend on the impact of both costs and quality-adjusted life expectancy. The cost of the diagnostic procedures alone may in fact be about the same for the two diagnostic strategies. If all men receive an mpMRI (£200 in 2011-12 UK NHS prices) and 60% of these men also receive a biopsy (£540 in 2011-12 UK NHS prices) the mpMRIbased strategy will result in an average cost of £524 per man, assuming TRUS-guided biopsy and MRI-targeted biopsy are equivalent in cost[18]. This compares to £540 per man with TRUS-guided biopsy. Of course the true costs of the two strategies include the long term

BMJ Open

costs and consequences of further investigations and treatments which need to be taken into account in future economic modelling.

Despite the complexity of these downstream pathways, estimates of diagnostic performance and disease prevalence will be key drivers of the clinical and cost effectiveness of the whole of prostate cancer care. Systematic reviews of the prostate biopsy and imaging literature have revealed a large number of small studies characterised by poor reporting and important biases [7-9 12]. In our analysis we only used very recently published studies that capture the emerging evidence on how well TRUS-guided biopsy, mpMRI and MRI-targeted biopsy perform and estimate disease prevalence. Future research efforst in prostate cancer need to focus on providing accurate and precise estimates of these parameters. Studies need to consistently distinguish between significant and insignificant cancer, represent the sequential nature of diagnostic tests and should adhere to high standards of reporting such as the START guidelines for MRI[19 20]. Without these studies, it will be hard to accurately evaluate the role of targeted biopsy or any new strategy for diagnosing prostate cancer.

CONCLUSIONS

Our analysis demonstrates that mpMRI followed by MRI-targeted biopsy is likely to result in fewer and better biopsies than TRUS-guided biopsy. We found that the MRI-based strategy correctly identified more men with significant prostate cancer and correctly identified more men without the disease in 90% of the simulations in our probabilistic sensitivity analysis. Estimates of disease prevalence and diagnostic performance will be key drivers of a full economic analysis, so research efforts should focus on providing precise estimates of these crucial parameters.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The authors would like to thank Yipeng Hu and Veeru Kasivisvanathan for their assistance in providing additional data for the analysis. We also acknowledge the research support Mark Emberton receives from the United Kingdom's National Institute of Health Research UCL/UCLH Biomedical Research Centre, London.

This publication presents independent research commissioned by the Health Innovation Challenge Fund (HICF-T4-310), a parallel funding partnership between the Wellcome Trust and the Department of Health. The views expressed in this publication are those of the authors and not necessarily those of the Wellcome Trust or the Department of Health.

AUTHOR CONTRIBUTIONS

JvdM, SW, AM, HA, ME made substantial contributions to the conception and design of the work; SW, HA, CM and ID acquired the data; SW, JvdM, HA, CM and ID analysed and interpreted the data; SW and JvdM drafted the work and HA, CM, ID, ME, AM provided critical revision of the manuscript; ME, HA, CM, JvdM, SW and AM obtained funding and JvdM and AM provided supervision. All authors have read and approved the final manuscript and agree to be accountable for all aspects of the work.

FUNDING

This publication presents independent research commissioned by the Health Innovation Challenge Fund (HICF-T4-310), a parallel funding partnership between the Wellcome Trust and the Department of Health. The views expressed in this publication are those of the authors and not necessarily those of the Wellcome Trust or the Department of Health.

All authors have completed the ICMJE uniform disclosure

at <u>www.icmje.org/coi_disclosure.pdf</u> and declare: financial support for the submitted work from the Wellcome Trust and the Department of Health (for all authors); Prof. Mark Emberton is a consultant/investigator for USHIFU, STEBA Biotech, Sanofi Aventis, GlaxoSmithKline and Angiodynamics, is a consultant for Sophiris and is a director of Mediwatch PLC. Mr. Hashim Ahmed is an investigator for USHIFU, Angiodynamics and Advanced Medical Diagnostics (AMD). Ms. Caroline Moore has received research grants from GlaxoSmithKline, the Wellcome Trust and Advanced Medical Diagnostics (AMD), is a consultant/investigator for STEBA Buiotech and has been paid for lecturing by Sanofi. Prof. Jan vanderMeulen, Dr. Alec Miners and Ms. Sarah Willis have no other interests to disclose.

Ethical approval was not required for this study. The data inputs and decision tree structure are explained in full so no additional data is available.

REFERENCES

- Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J Urol 2011;186(2):458-64 doi: S0022-5347(11)03560-9 [pii]
- Stamey TA, Freiha FS, McNeal JE, et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 1993;71(3 Suppl):933-8
- Goto Y, Ohori M, Arakawa A, et al. Distinguishing clinically important from unimportant prostate cancers before treatment: value of systematic biopsies. J Urol 1996;156(3):1059-63
- Prostate Cancer Risk Management Programme. Undertaking a transrectal ultrasound guided biopsy of the prostate. Secondary Undertaking a transrectal ultrasound guided biopsy of the prostate 2006 2006.
 www.cancerscreening.nhs.uk/prostate/pcrmp01.pdf.
- 5. National Institute for Health and Clinical Excellence. Prostate cancer diagnosis and treatment. NICE clinical gudeline 58. London, 2008.
- Heidenreich A, Bellmunt J, Bolla M, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 2011;59(1):61-71
- 7. National Institute for Health and Care Excellence. Prostate cancer (update): guideline consultation. London: NICE, 2013.
- Moore CM, Robertson NL, Arsanious N, et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 2013;63(1):125-40
- 9. Mowatt G, Scotland G, Boachie C, et al. The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. Health Technol Assess 2013;17(20):1-
- Epstein JI, Walsh PC, Carmichael M, et al. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage t1c) prostate cancer. JAMA 1994;271(5):368-74
- 11. Kuru TH, Roethke MC, Seidenader J, et al. Critical Evaluation of Magnetic Resonance Imaging Targeted, Transrectal Ultrasound Guided Transperineal Fusion Biopsy for Detection of Prostate Cancer. J Urol 2013;**190**(4):1380-6 doi:
- 12. Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 2006;**175**(5):1605-12

13. Lecornet E, Ahmed HU, Hu Y, et al. The accuracy of different biopsy strategies for the detection of clinically important prostate cancer: a computer simulation. J Urol 2012;**188**(3):974-80

- 14. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 2011;**108**(8 Pt 2):E171-8
- 15. Park BK, Park JW, Park SY, et al. Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostatespecific antigen and no previous biopsy. AJR American journal of roentgenology 2011;**197**(5):W876-81
- 16. Kuru TH, Roethke MC, Seidenader J, et al. Critical Evaluation of Magnetic Resonance Imaging Targeted, Transrectal Ultrasound Guided Transperineal Fusion Biopsy for Detection of Prostate Cancer. The Journal of Urology 2013;**190**(4):1380-86
- 17. Kasivisvanathan V, Dufour R, Moore CM, et al. Transperineal Magnetic Resonance Image Targeted Prostate Biopsy Versus Transperineal Template Prostate Biopsy in the Detection of Clinically Significant Prostate Cancer. J Urol 2013 **189**(3):860-6
- 18. Department of Health. National Schedules of Reference Costs: financial year 2011 to 2012. London, 2013.
- Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003;138(1):W1-
- 20. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of Reporting for MRI-targeted Biopsy Studies (START) of the Prostate: Recommendations from an International Working Group. European Urology 2013;**64**(4):544-52

Structure of the decision tree

Figure 2

One-way sensitivity analysis showing the expected number of patients with wrong diagnoses according to the prevalence of clinically significant disease in a cohort of 1000 men. See text for further explanation.

Table 1

Diagnostic accuracy estimates of TRUS-guided biopsy, mpMRI and MRI-guided biopsy used

in the base case analysis

Index Test	Sensitivity	Specificity	Reference test	Source and patient population
TRUS-guided biopsy	50% (16/34 patients, 95% Cls: 30-65)	90% (57/62 patients, 95% Cls: 82-97)	Whole-mount pathology	Lecornet 2012[13]: Simulated biopsy results on digitally reconstructed prostates of 96 men who had undergone surgery for bladder cancer which revealed prostate cancer.
mpMRI	80% (252/302, 95% Cls: 79-87)	60% (154/253 patients, 95% Cls: 45-67)	TRUS-guided extended systematic biopsies (10-12 core) plus two targeted biopsies for those with any area suspicious on MPMRI	Haffner 2011[14]: 555 men with suspected localised prostate cancer but no prior biopsy.
MRI-targeted biopsy	80% (94/121 patients, 95% Cls: 72-87)	90% Assumed to be equivalent to the specificity of TRUS- guided biopsy, (57/62 patients, 95% Cls: 82-97)	20 sector-TPM	Kasivisvanathan 2012 [17]: 182 men who had a suspicious lesion on MPMRI; 78 of whom were biopsy naive, 32 had a prior negative biopsy and 72 had a prior positive biopsy.

TRUS – transrectal ultrasound, TPM- template mapping biopsy, mpMRI – multi-parametric magnetic resonance imaging, MRI-TB – MRI-targeted biopsy. Data inputs were rounded to the nearest 5%.

Table 2

Results of the decision analysis for a cohort of 1000 men comparing TRUS-guided biopsy

with mpMRI and MRI-targeted biopsy.

	TRUS-guided	mpMRI then MRI-targeted
	biopsy	biopsy
No of biopsies	1000	600
Patients with clinically significant cancer &	250	320
correctly identified (True Positive)		
Patients with clinically significant cancer &	250	180
wrongly identified (False Negative)		
Patients with non-significant disease &	450	480
correctly identified (True Negative)		
Patients with non-significant disease &	50	20
wrongly identified (False Positive)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Multi-parametric MRI followed by targeted prostate biopsy for men with suspected prostate cancer: a clinical decision analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-004895.R1
Article Type:	Research
Date Submitted by the Author:	09-May-2014
Complete List of Authors:	 Willis, Sarah; London School of Hygiene & Tropical Medicine, Department of Health Services Research & Policy Ahmed, Hashim; Division of Surgery and Interventional Sciences, University College London Moore, Caroline; University College London, Division of Surgery and Interventional Sciences Donaldson, Ian; University College London, Division of Surgery and Interventional Sciences Donaldson, Ian; University College London, Division of Surgery and Interventional Sciences Emberton, Mark; UCLH NHS FT, Urology Miners, Alec; London School of Hygiene and Tropical Medicine, Department of Health Services Research & Policy van der Meulen, Jan; London School of Hygiene and Tropical Medicine, Department of Health Services Research & Policy
Primary Subject Heading :	Diagnostics
Secondary Subject Heading:	Health economics
Keywords:	biopsy, diagnosis, decision trees, Magnetic resonance imaging < RADIOLOGY & IMAGING, prostatic neoplasms

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Multi-parametric MRI followed by targeted prostate biopsy for men with suspected
2	prostate cancer: a clinical decision analysis
3	Sarah R Willis, Hashim U Ahmed, Caroline M Moore, Ian Donaldson, Mark Emberton, Alec H
4	Miners, Jan van der Meulen
5	
6	Department of Health Services Research & Policy, London School of Hygiene & Tropical
7	Medicine, 15-17 Tavistock Place, London, WC1H 9SH.
8	Sarah R Willis, Research Fellow
9	Alec H Miners, Senior Lecturer
10	Jan van der Meulen, Professor of Clinical Epidemiology
11	
12	Division of Surgery and Interventional Sciences, University College London, London UK and
13	Department of Urology, University College London Hospitals NHS Foundation Trust, London
14	Hashim U Ahmed, MRC Clinician Scientist
15	Caroline M Moore, Consultant Urologist
16	Ian Donaldson, Clinical Research Fellow
17	Mark Emberton, Director
18	
19	Correspondence to: S Willis <u>sarah.willis@lshtm.ac.uk</u>
20	Keywords: biopsy; diagnosis; decision trees; magnetic resonance imaging; prostatic
21	neoplasms
22	Word count of abstract: 228
23	Word count of text: 3,175
	1

Note: This publication presents independent research commissioned by the Health
Innovation Challenge Fund (HICF-T4-310), a parallel funding partnership between the
Wellcome Trust and the Department of Health. The views expressed in this publication are
those of the authors and not necessarily those of the Wellcome Trust or the Department of
Health.
The Corresponding Author, Ms Sarah Willis, has the right to grant on behalf of all authors

and does grant on behalf of all authors, an exclusive licence (or non exclusive for

32 government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit

this article (if accepted) to be published in BMJ editions and any other BMJPGL products and

34 sublicences such use and exploit all subsidiary rights, as set out in our licence.

BMJ Open

36	ABSTRACT (228 words)
37	Objective: To compare the diagnostic outcomes of the current approach of TRUS-guided
38	biopsy in men with suspected prostate cancer to an alternative approach using
39	multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive.
40	Design: Clinical decision analysis was used to synthesise data from recently emerging
41	evidence in a format that is relevant for clinical decision making.
42	Population: A hypothetical cohort of 1000 men with suspected prostate cancer.
43	Interventions: mpMRI and if positive MRI-targeted biopsy compared to TRUS-guided biopsy
44	in all men.
45	Outcome measures: We report the number of men expected to undergo a biopsy as well as
46	the numbers of correctly identified patients with or without prostate cancer. A probabilistic
47	sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of
48	statistical uncertainty in the diagnostic parameters.
49	Results: In 1000 men, mpMRI followed by MRI-targeted biopsy "clinically dominates" TRUS-
50	guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men being
51	correctly identified as having clinically significant cancer (320 versus 250), and fewer men
52	being falsely identified (20 versus 50). The mpMRI-based strategy dominated TRUS-guided
53	biopsy in 86% of the simulations in the probabilistic sensitivity analysis.
54	Conclusions: Our analysis suggests that mpMRI followed by MRI-targeted biopsy is likely to
55	result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate
56	cancer should focus on providing precise estimates of key diagnostic parameters.
57	
58	STRENGTHS AND LIMITATIONS OF THE STUDY (132 words)
	3

There are no clinical studies that directly compare the standard diagnostic approach
 using TRUS-guided biopsy in all men with suspected prostate cancer with an approach
 where mpMRI is used to select men for biopsy and to guide the biopsy needle towards
 a suspicious lesion against an accepted gold standard.

 Our decision analysis brings together emerging evidence on the diagnostic accuracy of TRUS-guided biopsy, mpMRI and MRI-targeted biopsies.

A probabilistic sensitivity analysis demonstrates that the mpMRI-based strategy was
 most effective in 86% of the simulations. However this sensitivity analysis did not assess
 the impact of structural uncertainties.

This analysis focuses purely on short term clinical outcomes following different testing
 options. Ultimately, the optimal diagnostic strategy for men with suspected prostate
 cancer will depend on the impact on both costs and quality-adjusted life expectancy.

BMJ Open

72 INTRODUCTION

74	Prostate cancer is the most common male cancer in most developed countries. Incidence
75	rates have risen rapidly over the past 15 years, in part due to the increase in prostate
76	specific antigen (PSA) testing. The use of PSA testing remains controversial as it lacks both
77	sensitivity and specificity for the detection of prostate cancer. ¹² Despite the high incidence,
78	many men diagnosed with prostate cancer will not die from the disease so it is accepted
79	that a distinction should be made between prostate cancer that is unlikely to cause harm
80	("clinically insignificant" disease) and cancer which, if untreated, may negatively impact
81	quality of life or lead to death ("clinically significant" disease). Whist there is currently no
82	agreed threshold of significance, most commentators agree that clinically significant disease
83	should be declared when disease exceeds a certain volume or is populated by histological
84	patterns that exhibit poor differentiation (Gleason score). ³⁻⁵
85	
86	The optimal strategy for diagnosing clinically significant prostate cancer is the focus of a
87	rapidly developing body of research. The standard diagnostic approach for men with
88	suspected prostate cancer is to offer them a transrectal ultrasound (TRUS)-guided prostate
89	biopsy taking 10 to 12 cores. ⁶⁻⁸ The ultrasound guidance ensures the biopsy needles are
90	guided to zones within the gland which are considered to have an equal probability of
91	harbouring disease. An alternative to this is to identify areas of the prostate that are more
92	likely to contain cancer, and to sample from these during biopsy. The test that is currently
93	gaining most favour in conferring this information is multi-parametric MRI (mpMRI). ⁹
94	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

95	An MRI-based approach to diagnosis would require all men with raised PSA to have an
96	mpMRI. Men who are negative on mpMRI would receive no further biopsy. The men with a
97	suspicious lesion on mpMRI would undergo an MRI-targeted biopsy. During MRI-targeted
98	biopsy, the biopsy needle can be directed by the clinician using prior mpMR images and
99	real-time ultrasound ("visual or cognitive registration"), by using assistive technology that
100	digitally overlays the target information derived from the mpMRI directly onto the
101	ultrasound image ("computer-aided registration" or "image fusion") or the biopsy can be
102	performed within the MR scanner itself ("in-bore biopsy" or "MR-guided MR biopsy").
103	Irrespective of the image-guided technique, an mpMRI-based approach to diagnosis has
104	three potential advantages. First, patients with no lesion on mpMRI could avoid a prostate
105	biopsy. Second, patients with clinically insignificant disease would avoid diagnosis and
106	subsequent inappropriate treatment which carries risk of side-effects and no benefit in
107	terms of survival. Third, using mpMRI for targeting may improve the detection of clinically
108	significant cancers and improve risk stratification.
109	
110	The UK's National Institute of Health and Care Excellence (NICE) has recently acknowledged
111	the utility of mpMRI, but stopped short of a recommendation to offer pre-biopsy mpMRI to
112	all men. ⁷ It remains controversial partly due to doubts about the performance and
113	reproducibility of mpMRI. Despite this, many providers have adopted an image-guided
114	biopsy approach in response to a man presenting with an elevated PSA. ¹⁰
115	
116	We summarise what can be understood from recently emerging evidence in a format that is
117	relevant for clinical decision making. We carried out a decision analysis to compare a
	e

BMJ Open

1		
2 3 4	118	simplified version of the current standard diagnostic approach (TRUS-guided biopsy) with an
5 6	119	approach where mpMRI is used to select men for biopsy and to guide the biopsy needle
7 8	120	towards the area of suspected cancer. We estimate the number of biopsies that could be
9 10 11	121	avoided with pre-biopsy mpMRI and the number of correctly identified patients with and
12 13	122	without clinically significant prostate cancer.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	123	
40 41		
42 43		
44 45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		
57		
58 59		7

124	
125	
126	Decision analysis
127	We used a decision tree to compare the standard diagnostic pathway (TRUS-guided biopsy
128	for all) with a new pathway (mpMRI for all, then MRI-targeted biopsy if positive). The tree,
129	presented in Figure 1, was evaluated to reveal the expected outcomes associated with each
130	option, for a hypothetical cohort of 1000 men by multiplying the prevalence estimates of
131	our target condition by sensitivity and specificity estimates of the diagnostic tests. The test
132	accuracy estimates used to populate the decision tree were derived from recent studies
133	which reported data that reflected the conditional nature of the parameters and used an
134	appropriate reference test. ^{11 12} All of these data are limited in some way, but assumptions
135	were made so that any biases would favour the current diagnostic approach.
136	
137	Target population
138	The target population for the decision analysis was men with increased serum PSA levels or
139	abnormal findings on digital rectal examination who had never had a prostate biopsy.
140	
141	Clinically significant disease
142	For our base-case analysis we defined clinically significant disease according to widely used,
143	and arguably somewhat conservative, criteria: a minimum volume of 0.2cc or cell
144	differentiation corresponding to a Gleason score of 3+4 or higher. ¹³ The prevalence of
145	clinically significant disease in our target population is uncertain, but we estimated it to be
146	50% of all men with suspected prostate cancer, based on a prospective analysis of men

BMJ Open

147	undergoing a first prostate biopsy. ¹⁴ The remaining 50% are assumed to have clinically
148	insignificant disease or no cancer. We varied the prevalence of clinically significant disease
149	in a sensitivity analysis.
150	
151	TRUS-guided biopsy
152	The gold standard used to establish the presence or absence of clinically significant disease -
153	whole-mount pathological data - is usually only available for men who test positive and then
154	go on to have radical surgery. ⁷¹¹¹⁵ Therefore we used data from a study which carried out
155	computer simulations to estimate the performance characteristics of TRUS-guided biopsy by
156	comparing them to reconstructed whole-mount pathology obtained from patients
157	undergoing surgery for bladder cancer, which revealed they also had prostate cancer. ¹⁶ The
158	spectrum of disease in this sample population is likely to include more early-stage disease
159	than would be expected in an unscreened UK population, and thus this bias will favour the
160	current diagnostic approach.
161	
162	The sensitivity of TRUS-guided biopsy, when criteria proposed by Epstein were used to
163	interpret the diagnostic result, was approximately 50%. ¹⁶ According to Epstein, a biopsy
164	result is positive for significant cancer if the maximum cancer core length from biopsy is at
165	least 3mm or if the Gleason score is 3+4 or higher. ¹³ The corresponding specificity of TRUS-
166	guided biopsy was estimated to be approximately 90%, which represents the proportion of
167	men correctly identified with insignificant disease (men with no prostate cancer were not
168	included in the Lecornet et al. study population). ¹⁶
169	
BMJ Open

170	
171	mpMRI and MRI-targeted biopsy
172	We estimated the diagnostic accuracy of the MRI-based strategy by combining the test
173	accuracy estimates for mpMRI and MRI-targeted biopsy. A recent systematic review of the
174	literature revealed two studies on mpMRI in biopsy-naïve men with suspected prostate
175	cancer. ^{11 17 18} Only one of these studies reported data at the level of detail required to
176	estimate sensitivity and specificity of mpMRI: a large study involving 555 men which
177	compared pre-biopsy mpMRI results with TRUS-guided biopsy and/or MRI-targeted biopsy
178	as a proxy for true disease status. ¹⁷ We used these data to estimate the sensitivity of
179	mpMRI at 80% and the specificity, 60%. A more recent study shows these values may in
180	fact underestimate the performance of mpMRI. ¹⁴
181	
182	The accuracy of MRI-targeted biopsy was taken from a study that compared MRI-targeted
183	biopsy with cognitive registration to 20-sector template-prostate mapping. ¹⁹ This study was
184	used since all men in the study population had a lesion on mpMRI and therefore allowed us
185	to capture the sequential nature of the diagnostic approach. The study showed that when
186	the biopsies were classified according to the Epstein criteria, the sensitivity was
187	approximately 80% and the specificity 80%. ¹⁹ The specificity that this study reported for the
188	MRI-targeted biopsy is lower than our estimate of the specificity of TRUS-guided biopsy
189	(90%). ¹⁹ However, the use of MRI-targeting instead of TRUS-guided biopsy should have no
190	impact on men without clinically significant disease, and therefore we assumed that MRI-
191	targeted biopsy should be as good as – but not better than – TRUS-guided biopsy at
192	correctly identifying men without clinically significant prostate cancer. We therefore used
	10

BMJ Open

193	90% as the specificity estimate for MRI-targeted biopsy in the decision analysis, the same as
194	that of TRUS-guided biopsy. We assessed the impact this had on the overall diagnostic
195	results in a sensitivity analysis.
196	
197	Sensitivity Analysis
198	We carried out a one-way sensitivity analysis by varying the prevalence of clinically
199	significant disease from 0 to 1, keeping all other variables constant. This sensitivity analysis
200	was intended to demonstrate the extent to which the optimal diagnostic strategy depends
201	on the prevalence of clinically significant disease. We also carried out two sensitivity
202	analyses to assess the impact of specific test performance estimates of the mpMRI-based
203	strategy on overall diagnostic outcomes. In the first scenario (scenario i) we used a pooled
204	estimate of mpMRI test performance from a recent meta-analysis (mpMRI sensitivity 74%,
205	mpMRI specificity 88%). ²⁰ In the second scenario (scenario ii) we investigated the impact of
206	our assumption that MRI-targeting has no impact on men without clinically significant
207	disease (by using a specificity of 80% for MRI-targeted biopsy as reported by
208	Kasivisvanathan and colleagues rather than our base case estimate of 90%). ¹⁹
209	
210	Although these sensitivity analyses provide some insight into the specific impact of
211	individual parameters, the estimates used to describe the performance of all the diagnostic
212	tests are associated with significant uncertainties. Therefore, to assess the robustness of our
213	results, we performed a probabilistic sensitivity analysis using Monte Carlo simulation
214	varying the sensitivities and specificities of the three tests (TRUS-guided biopsy, mpMRI, and
215	MRI-targeted biopsy) simultaneously over 2000 iterations, sampling from beta distributions
	11

BMJ Open

	BMJ Open
216	to characterise the uncertainty in the test accuracy data (see table 1). We determined the
217	beta distributions by assuming that the sensitivities and specificities were observed in
218	populations consisting of 50 men with and 50 men without clinically significant disease. We
219	substantially widened the distributions (by assuming a small population of men) in order to
220	increase the uncertainty associated with the test performance parameters. We ignored the
221	correlation between sensitivity and specificity and kept the disease prevalence constant at
222	50%.
223	
224	
225	
	12
	For poor rovious only - http://bmionon.hmi.com/site/shout/suidalines.yhttp:/
	For peer review only - http://binjopen.bmj.com/site/about/guidelines.xntml

227

RESULTS

1

BMJ Open

2
2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
39
10
41
42
43
44
45
46
47
48
/0
73 50
50
51
52
53
54
55
56
57
57
50
59
60

246

228	The decision tree estimated that the use of TRUS-guided biopsy in a hypothetical cohort of
229	1000 men with suspected prostate cancer – and an estimated 50% prevalence of clinically
230	significant disease – would result in 300 positive and 700 negative biopsy results, which
231	would correctly identify 250 men with clinically significant prostate cancer and 450 men
232	without the disease (Table 2). It follows that 250 men with significant prostate cancer would
233	be missed by TRUS-guided biopsy and 50 men who do not have significant prostate cancer
234	would wrongly receive a diagnosis.
235	
236	The use of mpMRI and MRI-targeted biopsy in the same cohort would result in 600 men
237	undergoing a prostate biopsy with 340 positive and 260 negative biopsy results (Table 2).
238	This strategy would correctly identify 320 men as having significant prostate cancer and 480
239	without the disease. In other words, the use of the mpMRI-based strategy would fail to
240	diagnose significant cancer in 180 men (= 500 - 320), which is the result of significant
241	prostate cancer that were missed by mpMRI in addition to significant cancers that were
242	identified on the mpMRI but were missed by MRI-targeted biopsy. 20 men (= 500 - 480) who
243	do not have clinically significant prostate cancer would wrongly receive a diagnosis.
244	
245	Multi-parametric MRI followed by MRI-targeted biopsy can be said to "clinically dominate"

247 being correctly identified as having clinically significant disease (320 versus 250), and fewer

TRUS-guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men

248 men being falsely identified with the disease (20 versus 50).

Page 14 of 64

BMJ Open

249	
250	Figure 2 provides a visual representation of the one-way sensitivity analysis showing the
251	total number of people receiving the wrong diagnosis (the sum of the number of patients
252	with a false-positive or a false-negative result) as a function of the prevalence of clinically
253	significant disease. The mpMRI-based approach resulted in a lower number of patients
254	wrongly diagnosed than with TRUS-guided biopsy for all men, at all prevalence rates. Below
255	a prevalence of 5%, doing nothing is the "optimal" strategy as it leads to the lowest number
256	of men with the wrong diagnosis. Above a prevalence of 70%, treating all men is optimal.
257	
258	Table 3 demonstrates that assuming a sensitivity of 74% and a specificity of 88% as
259	estimates of the test performance of mpMRI (instead of a sensitivity of 80% and a specificity
260	of 60% used in the base case analysis) found that the mpMRI-based strategy resulted in far
261	fewer biopsies than our base case estimation (430 instead of 600), but slightly worse
262	diagnostic outcomes for men with significant disease (296 correctly identified instead of
263	320), which was still better than the current standard of care (250 correctly identified).
264	Table 3 also shows that using a lower specificity for MRI-targeted biopsy (80% instead of
265	90%) resulted in 40 men (instead of 20) without clinically significant disease wrongly
266	identified as having significant cancer, but this is still less than the 50 men that would be
267	wrongly identified using the standard diagnostic approach using TRUS-guided biopsy alone.
268	
269	When the sensitivities and specificities of the three tests were varied simultaneously in 2000
270	simulations for the probabilistic sensitivity analysis, the diagnostic approach using mpMRI
271	and MRI-targeted biopsy clinically dominated in 86% of the simulations, whereas TRUS-
	14

BMJ Open

3	
4	
5	
6	
1	
0	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45	
46	
47	
48 70	
49 50	
51	
52	
53	
54	
55	
56	
5/	
20 50	
60 60	

272 guided biopsy dominated in 0.8% of the simulations. Within the remaining 13.2% of

- 273 simulations, the choice between the mpMRI-based strategy and TRUS-guided biopsy is not
- 274 clear as there was a 'trade-off' between outcomes. That is, either the mpMRI-based strategy
- 275 correctly identified more men with clinically significant cancer but fewer men without
- 276 clinically significant disease than TRUS-guided biopsy, or vice-versa.
- 277

DISCUSSION

2	7	9
~	'	2

280	Our decision analysis suggests that mpMRI of the prostate followed by MRI-targeted biopsy
281	if positive could result in fewer and better biopsies than a strategy using only TRUS-guided
282	biopsy. The results suggest that the mpMRI-based strategy could reduce the number of
283	biopsies by about one third (600 compared to 1000 biopsies), increase the number of men
284	identified with clinically significant cancer by about 30% (320 compared to 250 patients),
285	and reduce the number of men falsely identified with the disease by 60% (20 compared to
286	50). These results are in line with those of recent clinical studies comparing similar
287	strategies, albeit not against a gold standard of pathology or template biopsy. ^{21 22}
288	
289	When we accounted for uncertainty in the sensitivity and specificity estimates of the three
290	diagnostic tests, we found that the dominance of the mpMRI-based strategy was robust.
291	However, the probabilistic sensitivity analysis did not assess the impact of inherent
292	"structural" uncertainties, such as the ongoing debate about the definition of clinically
293	significant cancer, various diagnostic thresholds used to decide whether mpMRI or biopsy
294	results are positive or negative, and the use of imperfect gold-standard tests.
295	
296	The National Institute for Health and Care Excellence (NICE), has recently updated its
297	guidance on the diagnosis and management of men with prostate cancer. ⁷ Our estimate of
298	the sensitivity of 50% for TRUS-guided biopsy is close to the estimate of 45% used in its
299	analysis. ⁷ However, we estimated the specificity of the TRUS-guided biopsy to be 90%,
300	whilst NICE assumed it to be 100%. While both of these specificity estimates are somewhat
	16

Page 17 of	64	BMJ Open
1		
2 3 4	301	speculative, we believed that the specificity estimate needed to reflect that patients who
5	302	have clinically insignificant prostate cancer may have biopsy results that are interpreted as
7 8	303	suggestive of clinically significant cancer. We also assumed that this "error" is as likely with
9 10 11	304	TRUS-guided as with MRI-targeted biopsies and therefore we used the same false-positive
12 13	305	rate for TRUS-guided and for MRI-targeted biopsies. These choices were made deliberately
14 15 16	306	in order to underestimate the comparative effectiveness of the proposed diagnostic
17 18	307	strategy using mpMRI. In addition we used data on the test accuracy of MRI-targeted biopsy
19 20	308	from a study which used visual registration techniques. It has been suggested that
21 22 23	309	computer-aided registration techniques may be more accurate, ⁷ although recent RCT data
24 25	310	showed no statistically significant difference in detection rates. ²³
26 27	311	
28 29 30	312	The results of our analysis are based on a simplification of the choices facing urologists in
31 32	313	the diagnosis of prostate cancer. In their evaluation, NICE considered a strategy of mpMRI
33 34 25	314	and biopsy for all men, including targeted biopsies for all men with a lesion on mpMRI. This
36 37	315	perhaps highlights the reticence of health care professionals to do 'less' rather than 'more',
38 39	316	which may be influenced by concern over medical liability. A major challenge therefore will
40 41 42	317	be the implementation of a strategy that requires a negative diagnostic test result to be
43 44	318	established and then followed by no immediate further investigation. New guidelines based
45 46	319	on the results of forthcoming randomised controlled trials (such as PROMIS) and expert
47 48 49	320	consensus may be required to avoid a "creep" in the numbers of unnecessary biopsies. ²⁴
50 51	321	
52 53	322	In this analysis we focussed purely on short term clinical outcomes following different
54 55 56	323	testing options. Ultimately however the optimal diagnostic strategy for men with suspected
57 58		17
59 60		

BMJ Open

2
Z
3
Λ
-
5
6
7
2
8
9
10
10
11
12
13
10
14
15
16
47
17
18
19
20
20
21
22
22
23
24
25
26
20
27
28
20
29
30
31
20
32
33
34
0 - 7
35
36
37
00
38
39
40
44
41
42
43
11
44
45
46
47
41
48
49
50
50
51
52
52
ეკ
54
55
50
96
57
58
50
29
60

1

324	prostate cancer will depend on the impact on both costs and quality-adjusted life
325	expectancy. The cost of the diagnostic procedures may in fact be about the same for the
326	two diagnostic strategies. If all men receive an mpMRI (± 200 in 2011-12 UK NHS prices) and
327	60% of these men also receive a biopsy (£540 in 2011-12 UK NHS prices) the mpMRI-based
328	strategy will result in an average cost of £524 per man, assuming TRUS-guided biopsy and
329	MRI-targeted biopsy are equivalent in cost. ²⁵ This compares to £540 per man with TRUS-
330	guided biopsy. Of course the true costs of the two strategies include the long term costs and
331	consequences of further investigations and treatments which need to be taken into account
332	in future economic modelling. Initial estimates from a published economic evaluation
333	suggest a mpMRI-based strategy is likely to be highly cost-effective in the Netherlands ²⁶
334	although uncertainties, particularly around long term health outcomes, remain. ²⁷
335	
336	Despite the complexity of the downstream pathways, estimates of diagnostic performance
337	and disease prevalence will be key drivers of the clinical and cost effectiveness of the whole
338	of prostate cancer care. Systematic reviews of the prostate biopsy and imaging literature
339	have revealed a large number of small studies characterised by poor reporting and
340	important biases. ^{7 11 12 15} In our analysis we only used very recently published studies that
341	capture the emerging evidence on how well TRUS-guided biopsy, mpMRI and MRI-targeted
342	biopsy perform and estimate disease prevalence. Future research efforts in prostate cancer
343	need to focus on providing accurate and precise estimates of these parameters. Studies
344	need to consistently distinguish between significant and insignificant cancer, represent the
345	sequential nature of diagnostic tests and should adhere to high standards of reporting such
346	as the START guidelines for MRI. ^{28 29} Without these studies, it will be hard to accurately

2 3	347	evaluate the role of targeted biopsy or any new strategy for diagnosing prostate cancer in
4 5 6	348	future.
8 7 8 9 10	349	
11 12 13 14 15 16 17 18 19 20 21 22 32 42 52 62 7 82 90 31 22 33 43 53 63 7 83 940 41 42 43 44 546 47 89 50 51 52 53 45 56 7 89 60		

CONCLUSIONS

- Our analysis suggests that mpMRI followed by MRI-targeted biopsy may result in fewer and
- better biopsies than TRUS-guided biopsy. We found that the mpMRI-based strategy
- correctly identified more men with significant prostate cancer and correctly identified more
- men without the disease in 86% of the simulations in our probabilistic sensitivity analysis.
- Estimates of disease prevalence and diagnostic performance will be key drivers of a full
- economic analysis, so research efforts should focus on providing precise estimates of these
- crucial parameters.

BMJ Open

1			
2 3 4	359	ACKNOWLEDGEMENTS	
5 6	360	The authors would like to thank Yipeng Hu and Veeru Kasivisvanathan for their assistance in	ı
7 8 9	361	providing additional data for the analysis. We also acknowledge the research support Mark	
10 11	362	Emberton receives from the United Kingdom's National Institute of Health Research	
12 13	363	UCL/UCLH Biomedical Research Centre, London.	
14 15 16	364		
17 18	365	This publication presents independent research commissioned by the Health Innovation	
19 20 21	366	Challenge Fund (HICF-T4-310), a parallel funding partnership between the Wellcome Trust	
22 23	367	and the Department of Health. The views expressed in this publication are those of the	
24 25	368	authors and not necessarily those of the Wellcome Trust or the Department of Health.	
26 27 28	369	FUNDING	
29 30	370	This work was funded by the Health Innovation Challenge Fund (Wellcome Trust and UK	
31 32	371	Department of Health) Award Number: HICF-T4-310	
১১ ३४	372	AUTHOR CONTRIBUTIONS	
35	373		
36 37	374	JvdM, SW, AM, HA, ME made substantial contributions to the conception and design of the	
38 39 40	375	work; SW, HA, CM and ID acquired the data; SW, JvdM, HA, CM and ID analysed and	
40 41 42	376	interpreted the data; SW and JvdM drafted the work and HA, CM, ID, ME, AM provided	
43 44	377	critical revision of the manuscript; ME, HA, CM, JvdM, SW and AM obtained funding and	
45 46 47	378	JvdM and AM provided supervision. All authors have read and approved the final	
48 49	379	manuscript and agree to be accountable for all aspects of the work.	
50 51	380		
52 53 54	381		
55 56 57 58 59 60	382	2	1

383	COMPETING INTERESTS
-----	----------------------------

All authors have completed the ICMJE uniform disclosure at www.icmje.org/coi disclosure.pdf and declare: financial support for the submitted work from the Wellcome Trust and the Department of Health (for all authors); Prof. Mark Emberton is a consultant/investigator for USHIFU, STEBA Biotech, Sanofi Aventis, GlaxoSmithKline and Angiodynamics, is a consultant for Sophiris and is a director of Mediwatch PLC. Mr. Hashim Ahmed is an investigator for USHIFU, Angiodynamics and Advanced Medical Diagnostics (AMD). Ms. Caroline Moore has received research grants from GlaxoSmithKline, the Wellcome Trust and Advanced Medical Diagnostics (AMD), is a consultant/investigator for STEBA Buiotech and has been paid for lecturing by Sanofi. Prof. Jan vanderMeulen, Dr. Alec Miners and Ms. Sarah Willis have no other interests to disclose. Ethical approval was not required for this study. The data inputs, the decision tree structure and the calculations are given in full so no additional data are available DATA SHARING STATEMENT The data inputs, the decision tree structure and the calculations are given in full so no additional data are available. FIGURE LEGENDS Figure 1: Structure of the decision tree Figure 2: One-way sensitivity analysis showing the expected number of patients with wrong diagnoses according to the prevalence of clinically significant disease in a cohort of 1000 men. See text for further explanation. Table 1: Diagnostic accuracy estimates of TRUS-guided biopsy, mpMRI and MRI-targeted biopsy used in the base case analysis. TRUS – transrectal ultrasound, TPM- template mapping biopsy, mpMRI – multi-parametric magnetic resonance imaging, MRI-TB – MRI-targeted biopsy. Data inputs were rounded to the nearest 5%. Beta distributions were estimated using the integer form in Excel according to the parameters α and β .

BMJ Open

1		
2 3 4	410	Table 2: Details of calculations and results of the decision analysis for a cohort of 1000 men
5 6	411	comparing TRUS-guided biopsy with mpMRI and MRI-targeted biopsy. 'prev' – prevalence;
7 8	412	'no_in_cohort' – number of men in cohort; 'sensTRUS' – sensitivity of TRUS-guided biopsy; 'specTRUS' –
9 10	413	specificity of TRUS-guided biopsy; 'sensMRI' – sensitivity of mpMRI; 'specMRI' – specificity of mpMRI;
11 12	414	'sensMRITB' – sensitivity of MRI-targeted biopsy; 'specMRITB' – specificity of MRI-targeted biopsy.
13 14 15	415	Table 3: Results of sensitivity analyses in a cohort of 1000 men
16 17	416	
18 19	417	
20 21		
22		
23		
25		
26 27		
28		
29 30		
31		
32		
33 34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47 48		
49		
50		
51		
53		
54 55		
56		
57		
58 59		23
~~		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

418 419	REFERENCES
420	 Wolf AM, Wender RC, Etzioni RB, et al. American Cancer Society guideline for the early
421	detection of prostate cancer: update 2010. CA Cancer J Clin 2010;60(2):70-98.
422	 Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostate
423	cancer. JAMA 2009;302(15):1685-92.
424	 Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using
425	template prostate mapping biopsy. J Urol 2011;186(2):458-64.
426	 Stamey TA, Freiha FS, McNeal JE, et al. Localized prostate cancer. Relationship of tumor
427	volume to clinical significance for treatment of prostate cancer. Cancer 1993;71(3
428	Suppl):933-8.
429	 Goto Y, Ohori M, Arakawa A, et al. Distinguishing clinically important from unimportant
430	prostate cancers before treatment: value of systematic biopsies. J Urol
431	1996;156(3):1059-63.
432	 Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. part 1:
433	screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol
434	2014;65(1):124-37.
435 436	7. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and treatment (CG 175). London, 2014.
437	 Prostate Cancer Risk Management Programme. Undertaking a transrectal ultrasound
438	guided biopsy of the prostate. 2006.
439	<u>www.cancerscreening.nhs.uk/prostate/pcrmp01.pdf</u> .
440	 Lee DJ, Ahmed HU, Moore CM, et al. Multiparametric magnetic resonance imaging in the
441	management and diagnosis of prostate cancer: current applications and strategies.
442	Curr Urol Rep 2014;15(3):390.
443 444	10. Emberton M. Has magnetic resonance-guided biopsy of the prostate become the standard of care? Eur Urol 2013; 64 (5):720-1.
445	 Moore CM, Robertson NL, Arsanious N, et al. Image-guided prostate biopsy using
446	magnetic resonance imaging-derived targets: a systematic review. Eur Urol
447	2013;63(1):125-40.
448	12. Mowatt G, Scotland G, Boachie C, et al. The diagnostic accuracy and cost-effectiveness
449	of magnetic resonance spectroscopy and enhanced magnetic resonance imaging
450	techniques in aiding the localisation of prostate abnormalities for biopsy: a
451	systematic review and economic evaluation. Health Technol Assess 2013;17(20):1-
452	281.

BMJ Open

2		
3	453	13. Epstein JI, Walsh PC, Carmichael M, et al. Pathologic and clinical findings to predict
4 5	454	tumor extent of nonpalpable (stage t1c) prostate cancer. JAMA 1994; 271 (5):368-74.
6	455	14. Kuru TH, Roethke MC, Seidenader J, et al. Critical Evaluation of Magnetic Resonance
7	456	Imaging Targeted, Transrectal Ultrasound Guided Transperineal Fusion Biopsy for
8	457	Detection of Prostate Cancer, 1 Urol 2013: 190 (4):1380-6
9 10	137	
11	458	15. Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the
12	459	investigation of prostate cancer: a systematic review. J Urol 2006: 175 (5):1605-12.
13		
14	460	16. Lecornet E, Ahmed HU, Hu Y, et al. The accuracy of different biopsy strategies for the
15	461	detection of clinically important prostate cancer: a computer simulation. J Urol
16	462	2012: 188 (3):974-80.
17	-	
10	463	17. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial
20	464	biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy
21	465	for significant prostate cancer detection. BIU Int 2011: 108 (8 Pt 2):F171-8.
22	100	
23	466	18. Park BK, Park JW, Park SY, et al. Prospective evaluation of 3-T MRI performed before
24	467	initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-
25	468	specific antigen and no previous biopsy. AIR American journal of roentgenology
20 27	469	2011: 197 (5):W876-81
21	105	
29	470	19. Kasivisvanathan V. Dufour R. Moore CM, et al. Transperineal Magnetic Resonance Image
30	471	Targeted Prostate Biopsy Versus Transperineal Template Prostate Biopsy in the
31	472	Detection of Clinically Significant Prostate Cancer, 1 Urol 2013 189 (3):860-6
32	., -	
33	473	20. de Rooii M. Hamoen EH. Futterer JJ. et al. Accuracy of multiparametric MRI for prostate
34	474	cancer detection: a meta-analysis. AIR American journal of roentgenology
35 26	475	2014· 202 (2)·343-51
30 37	475	
38	476	21. Pokorny MR. de Rooii M. Duncan E. et al. Prospective Study of Diagnostic Accuracy
39	477	Comparing Prostate Cancer Detection by Transrectal Ultrasound-Guided Biopsy
40	478	Versus Magnetic Resonance (MR) Imaging with Subsequent MR-guided Bionsy in
41	479	Men Without Previous Prostate Bionsies Fur LIrol 2014
42	475	Wen Without Herious Hostate Biopsies. Euroror 2014.
43	480	22. Siddigui MM, Rais-Bahrami S, Truong H, et al. Magnetic resonance imaging/ultrasound-
44 45	481	fusion bionsy significantly upgrades prostate cancer versus systematic 12-core
45	482	transrectal ultrasound bionsy. Fur Urol 2013: 64 (5):713-9
47	402	
48	483	23. Wysock JS. Rosenkrantz AB. Huang WC. et al. A Prospective. Blinded Comparison of
49	484	Magnetic Resonance (MR) Imaging-Ultrasound Fusion and Visual Estimation in the
50	185	Performance of MR-targeted Prostate Bionsy: The PROFILS Trial Fur Lirol 2013
51	405	renormance of wirk targeted frostate biopsy. The river of that Eurofor 2015.
52	486	24. PROstate MRI Imaging Study (PROMIS). Current Controlled Trials Web site
53 54	487	ISBCTN16082556/16082556 http://www.controlled-trials.com/
55	.07	
56	488	
57		
58		25
59		
60		

3	
4	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
19	
20	
21	
22	
23	
24	
20	
20	
21	
20	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

- 489 25. Department of Health. National Schedules of Reference Costs: financial year 2011 to 490 2012. London, 2013.
- 491 26. de Rooij M, Crienen S, Witjes JA, et al. Cost-effectiveness of Magnetic Resonance (MR) 492 Imaging and MR-guided Targeted Biopsy Versus Systematic Transrectal Ultrasound-Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care 493 Perspective. Eur Urol 2013. 494

495 27. Willis S, Miners A, van der Meulen J. Re: de Rooij M, et al. Cost-effectiveness of Magnetic 496 Resonance (MR) Imaging and MR-guided Targeted Biopsy Versus Systematic 497 Transrectal Ultrasound–Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care Perspective. [eLetter]. European Urology, April 22 2014. 498

- 499 28. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of 500 diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003;138(1):W1-501 12.
- 502 29. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of Reporting for MRI-targeted 503 Biopsy Studies (START) of the Prostate: Recommendations from an International 15, 504 Working Group. European Urology 2013;64(4):544-52.
- 505
- 506

2 3	507	
4 5 6	508	
7 8		
9 10		
11 12		
13 14		
15 16 17		
18 19		
20 21		
22 23		
24 25		
26 27 28		
20 29 30		
31 32		
33 34		
35 36		
37 38 20		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51 52		
52 53		

509 Table 3

510 Diagnostic accuracy estimates of TRUS-guided biopsy, mpMRI and MRI-targeted biopsy used

511 in the base case analysis

Index Test	Sensitivity	Specificity	Reference test	Source and patient
				population
TRUS-	50%	90%	Whole-mount	Lecornet 2012 ¹⁶ :
guided	(16/34	(57/62	pathology	Simulated biopsy results
biopsy	patients,	patients,		on digitally reconstructed
	95% Cls:	95% Cls:		prostates of 96 men who
	27-73)	78-97)		had undergone surgery for
	α =25, β=25	α =45, β=5		bladder cancer which
				revealed prostate cancer.
mpMRI	80%	60%	TRUS-guided	Haffner 2011 ¹⁷ : 555 men
	(252/302,	(154/253	extended	with suspected localised
	95% Cls:	patients, 95%	systematic	prostate defined as raised
	66-90)	Cls:	biopsies (10-12	PSA of >3-4ng/ml and/or
	α =40, β=5	45-76)	core) plus two	abnormal DRE with no
		α =30, β=20	targeted biopsies	clinical or biological
			for those with any	suspicion of stage T>3 or
			area suspicious on	mets and had no prior
			mpMRI (score ≥3)	biopsy.
MRI-	80%	90%	20 sector-TPM	Kasivisvanathan 2013 ¹⁹ :
targeted	(94/121	Assumed to be		182 men who had a
biopsy	patients,	equivalent to		suspicious lesion on
	95% Cls:	the specificity		mpMRI; 78 of whom were
	66-90)	of TRUS-		biopsy naive, 32 had a
	α =40, β=10	guided biopsy,		prior negative biopsy and
		(57/62		72 had a prior positive
		patients, 95%		biopsy.
		Cls:		
		78-97) <i>α =45,</i>		
		<i>β=5</i>		

513 TRUS – transrectal ultrasound, TPM- template mapping biopsy, mpMRI – multi-parametric

514 magnetic resonance imaging, MRI-TB – MRI-targeted biopsy. Data inputs were rounded to

BMJ Open

 515 the nearest 5%. Beta distributions were estimated using the integer form in Excel according

- 516 to the parameters α and β .
- 517 Table 4
- 518 Details of calculations and results of the decision analysis for a cohort of 1000 men

519 comparing TRUS-guided biopsy with mpMRI and MRI-targeted biopsy.

	TRUS-guided biopsy	mpMRI then MRI-targeted biopsy
No of biopsies	1000 (all men)	600 = P(MRI+ D+) + P(MRI+ D-) = (sensMRI *prev*no_in_cohort)+ ((1-specMRI)*(1-prev)*no_in_cohort)) = (0.8*0.5*1000)+((1-0.6)*(1-0.5)*1000)
Patients with clinically significant cancer & correctly identified (True Positive)	250 =P(TRUS+ D+) =sensTRUS*prev*no_in_cohort =0.5*0.5*1000	320 =P(MRI+ D+).P(MRITB+ D+) =sensMRI *sensMRITB*prev*no_in_cohort =0.8*0.8*0.5*1000
Patients with clinically significant cancer & wrongly identified (False Negative)	250 =p(TRUS+ D-) =(1-sensTRUS)*prev*no_in_cohort =(1-0.5)*0.5*1000	180 =P(MRI- D+) + P(MRI+ D+).P(MRITB- D+) =((1-sensMRI)*prev*no_in_cohort) + (sensMRI*(1-sensMRITB)*prev*no_in_cohort) =((1-0.8)*0.5*1000) + (0.8*(1-0.8)*0.5*1000)
Patients with insignificant prostate cancer or no prostate cancer & correctly identified (True Negative)	450 =P(TRUS- D-) =specTRUS *(1-prev)*no_in_cohort =0.9*(1-0.5)*1000	480 =P(MRI- D-)+P(MRI+ D-).P(MRITB- D-) =(specMRI *(1-prev)*no_in_cohort) + ((1-specMRI)*specMRITB*(1-prev)*no_in_cohort) =(0.6*(1-0.5)*1000) + ((1-0.6)*0.9*(1-0.5)*1000)
Patients with insignificant prostate cancer or no prostate cancer & wrongly identified (False Positive)	50 =P(TRUS+ D-) =(1-specTRUS)*(1-prev)* no_in_cohort =(1-0.9)*0.5*1000	20 =P(MRI+ D-).P(MRITB+ D-) =(1-specMRI)*(1-specMRITB)*(1-prev)*no_in_cohort =(1-0.6)*(1-0.9)*(1-0.5)*1000

521 'prev' – prevalence; 'no_in_cohort' – number of men in cohort; 'sensTRUS' – sensitivity of TRUS-guided biopsy;

'specTRUS' – specificity of TRUS-guided biopsy; 'sensMRI' – sensitivity of mpMRI; 'specMRI' – specificity of

523 mpMRI; 'sensMRITB' – sensitivity of MRI-targeted biopsy; 'specMRITB' – specificity of MRI-targeted biopsy.

524 Table 3

525 Results of sensitivity analyses in a cohort of 1000 men

Scenario	Base case analysis		Scenario i: (mpMRI sensitivity 74%, specificity 88%)		Scenario ii: (MRI-targeted biopsy sensitivity 80%, specificity 80%)	
Strategy	TRUS- guided biopsy	mpMRI then MRI- targeted biopsy	TRUS- guided biopsy	mpMRI then MRI- targeted biopsy	TRUS- guided biopsy	mpMRI then MRI- targeted biopsy
No of biopsies	1000	600	1000	430	1000	600
Patients with clinically significant cancer & correctly identified (True Positive)	250	320	250	296	250	320
Patients with clinically significant cancer & wrongly identified (False Negative)	250	180	250	204	250	180
Patients with insignificant prostate cancer or no prostate cancer & correctly identified (True Negative)	450	480	450	494	450	460
Patients with insignificant prostate cancer or no prostate cancer & wrongly identified (False Positive)	50	20	50	6	50	40

2 3	1	Multi-parametric MRI followed by targeted prostate biopsy for men with suspected
4 5 6	2	prostate cancer: a clinical decision analysis
7 8	3	Sarah R Willis, Hashim U Ahmed, Caroline M Moore, Ian Donaldson, Mark Emberton, Alec H
9 10	4	Miners, Jan van der Meulen
12 13	5	
14 15	6	Department of Health Services Research & Policy, London School of Hygiene & Tropical
16 17 18	7	Medicine, 15-17 Tavistock Place, London, WC1H 9SH.
19 20	8	Sarah R Willis, Research Fellow
21 22	9	Alec H Miners, Senior Lecturer
23 24 25	10	Jan van der Meulen, Professor of Clinical Epidemiology
26 27	11	
28 29 30	12	Division of Surgery and Interventional Sciences, University College London, London UK and
31 32	13	Department of Urology, University College London Hospitals NHS Foundation Trust, London
33 34 25	14	Hashim U Ahmed, MRC Clinician Scientist
35 36 37	15	Caroline M Moore, Consultant Urologist
38 39	16	Ian Donaldson, Clinical Research Fellow
40 41 42	17	Mark Emberton, Director
43 44	18	
45 46	19	Correspondence to: S Willis <u>sarah.willis@lshtm.ac.uk</u>
47 48 49	20	Keywords: biopsy; diagnosis; decision trees; magnetic resonance imaging; prostatic
50 51	21	neoplasms
52 53 54	22	Word count of abstract: 228
55 56	23	Word count of text: <mark>3,175</mark>
57 58		

BMJ Open

24	Note: This publication presents independent research commissioned by the Health
25	Innovation Challenge Fund (HICF-T4-310), a parallel funding partnership between the
26	Wellcome Trust and the Department of Health. The views expressed in this publication are
27	those of the authors and not necessarily those of the Wellcome Trust or the Department of
28	Health.
29	
30	The Corresponding Author, Ms Sarah Willis, has the right to grant on behalf of all authors
31	and does grant on behalf of all authors, an exclusive licence (or non exclusive for
32	government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit
33	this article (if accepted) to be published in BMJ editions and any other BMJPGL products and
34	sublicences such use and exploit all subsidiary rights, as set out in our licence.
35	
36	All authors have completed the ICMJE uniform disclosure
37	at <u>www.icmje.org/coi_disclosure.pdf</u> and declare: financial support for the submitted work
38	from the Wellcome Trust and the Department of Health (for all authors); Prof. Mark
39	Emberton is a consultant/investigator for USHIFU, STEBA Biotech, Sanofi Aventis,
40	GlaxoSmithKline and Angiodynamics, is a consultant for Sophiris and is a director of
41	Mediwatch PLC. Mr. Hashim Ahmed is an investigator for USHIFU, Angiodynamics and
42	Advanced Medical Diagnostics (AMD). Ms. Caroline Moore has received research grants
43	from GlaxoSmithKline, the Wellcome Trust and Advanced Medical Diagnostics (AMD), is a
44	consultant/investigator for STEBA Buiotech and has been paid for lecturing by Sanofi. Prof.
45	Jan vanderMeulen, Dr. Alec Miners and Ms. Sarah Willis have no other interests to disclose.
46	

2	•-	
3	47	Ethical approval was not required for this study. The data inputs, the decision tree structure
5	48	and the calculations are given in full so no additional data are available.
6		
7		
8		
9		
10		
12		
13		
14		
15		
16 17		
17 18		
19		
20		
21		
22		
23 24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
30 37		
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47		
48 40		
51		
52		
53		
54 55		
56		
57		
58		3
59		
60		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
44	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
31	
25	
30	
36	
37	
38	
39	
40	
41	
42	
12	
40 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

	ABSTRACT	(<mark>228</mark>	words)
--	----------	--------------------	--------

50

49

1 2

51	Objective: To compa	are the diagnostic outco	omes of the current appr	oach of TRUS-guided
J T	Objective. To compa	are the diagnostic outco	mes of the current appr	oach or mog-guideu

- 52 biopsy in men with suspected prostate cancer to an alternative approach using
- 53 multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive.
- 54 **Design:** Clinical decision analysis was used to synthesise data from recently emerging
- 55 evidence in a format that is relevant for clinical decision making.
- 56 **Population:** A hypothetical cohort of 1000 men with suspected prostate cancer.
- 57 **Interventions:** mpMRI and if positive MRI-targeted biopsy compared to TRUS-guided biopsy
- 58 in all men.
- 59 **Outcome measures:** We report the number of men expected to undergo a biopsy as well as
- 60 the numbers of correctly identified patients with or without prostate cancer. A probabilistic
- 61 sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of
- 62 statistical uncertainty in the diagnostic parameters.
- 63 **Results:** In 1000 men, mpMRI followed by MRI-targeted biopsy "clinically dominates" TRUS-
- 64 guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men being
- 65 correctly identified as having clinically significant cancer (320 versus 250), and fewer men
- 66 being falsely identified (20 versus 50). The mpMRI-based strategy dominated TRUS-guided
- 67 biopsy in <mark>86%</mark> of the simulations in the probabilistic sensitivity analysis.
- 68 **Conclusions:** Our analysis suggests that mpMRI followed by MRI-targeted biopsy is likely to
- 69 result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate
- 70 cancer should focus on providing precise estimates of key diagnostic parameters.

71

1 r

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32 22	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43 11	
45	
46	
47	
48	
49	
50	
51	
52	
つづ 5/	
55	
56	
57	
58	
59	
60	

72 STRENGTHS AND LIMITATIONS OF THE STUDY (132 words)

- There are no clinical studies that directly compare the standard diagnostic approach 73 using TRUS-guided biopsy in all men with suspected prostate cancer with an approach 74 where mpMRI is used to select men for biopsy and to guide the biopsy needle towards 75 76 a suspicious lesion against an accepted gold standard.
- 77 Our decision analysis brings together emerging evidence on the diagnostic accuracy of 78 TRUS-guided biopsy, mpMRI and MRI-targeted biopsies.
- 79 • A probabilistic sensitivity analysis demonstrates that the mpMRI-based strategy was most effective in 86% of the simulations. However this sensitivity analysis did not assess 80 81 the impact of structural uncertainties.
- 82 This analysis focuses purely on short term clinical outcomes following different testing
- 83 options. Ultimately, the optimal diagnostic strategy for men with suspected prostate
- 84 cancer will depend on the impact on both costs and quality-adjusted life expectancy.
- 85

rateg, costs and q.

0
2
3
4
F
5
6
7
0
0
9
10
11
11
12
13
11
14
15
16
17
17
18
19
20
20
21
22
23
20
24
25
26
20
27
28
29
23
30
31
32
02
33
34
35
200
36
37
38
00
39
40
41
10
42
43
44
15
40
46
47
<u>10</u>
40
49
50
51
51
52
53
54
55
56
57
57
58
59
60
00

86 INTRODUCTION

87

1

88	Prostate cancer is the most common male cancer in most developed countries. Incidence
89	rates have risen rapidly over the past 15 years, in part due to the increase in prostate
90	specific antigen (PSA) testing. The use of PSA testing remains controversial as it lacks both
91	sensitivity and specificity for the detection of prostate cancer. ¹² Despite the high incidence,
92	many men diagnosed with prostate cancer will not die from the disease so it is accepted
93	that a distinction should be made between prostate cancer that is unlikely to cause harm
94	("clinically insignificant" disease) and cancer which, if untreated, may negatively impact
95	quality of life or lead to death ("clinically significant" disease). Whist there is currently no
96	agreed threshold of significance, most commentators agree that clinically significant disease
97	should be declared when disease exceeds a certain volume or is populated by histological
98	patterns that exhibit poor differentiation (Gleason score). ³⁻⁵
99	
100	The optimal strategy for diagnosing clinically significant prostate cancer is the focus of a
101	rapidly developing body of research. The standard diagnostic approach for men with
102	suspected prostate cancer is to offer them a transrectal ultrasound (TRUS)-guided prostate
103	biopsy taking 10 to 12 cores. ⁶⁻⁸ The ultrasound guidance ensures the biopsy needles are
104	guided to zones within the gland which are considered to have an equal probability of
105	harbouring disease. An alternative to this is to identify areas of the prostate that are more
106	likely to contain cancer, and to sample from these during biopsy. The test that is currently
107	gaining most favour in conferring this information is multi-parametric MRI (mpMRI). ⁹
108	

60

BMJ Open

3 4	109	An MRI-based approach <mark>to diagnosis</mark> would require all men with raised PSA to have an
5 6	110	mpMRI. Men who are negative on mpMRI would receive no further biopsy. The men with a
7 8 9	111	suspicious lesion on mpMRI would undergo an MRI-targeted biopsy. During MRI-targeted
10 11	112	biopsy, the biopsy needle can be directed by the clinician using prior mpMR images and
12 13	113	real-time ultrasound ("visual or cognitive registration"), by using assistive technology that
14 15 16	114	digitally overlays the target information derived from the mpMRI directly onto the
17 18	115	ultrasound image ("computer-aided registration" or "image fusion") or the biopsy can be
19 20	116	performed within the MR scanner itself ("in-bore biopsy" or "MR-guided MR biopsy").
21 22 23	117	Irrespective of the image-guided technique, an mpMRI-based approach to diagnosis has
24 25	118	three potential advantages. First, patients with no lesion on mpMRI could avoid a prostate
26 27	119	biopsy. Second, patients with clinically insignificant disease would avoid diagnosis and
28 29 30	120	subsequent inappropriate treatment which carries risk of side-effects and no benefit in
31 32	121	terms of survival. Third, using mpMRI for targeting may improve the detection of clinically
33 34 25	122	significant cancers and improve risk stratification.
36 37	123	
38 39	124	The UK's National Institute of Health and Care Excellence (NICE) has recently acknowledged
40 41 42	125	the utility of mpMRI, but stopped short of a recommendation to offer pre-biopsy mpMRI to
42 43 44	126	all men. ⁷ It remains controversial partly due to doubts about the performance and
45 46	127	reproducibility of mpMRI. Despite this, many providers have adopted an image-guided
47 48 49	128	biopsy approach in response to a man presenting with an elevated PSA. ¹⁰
50 51	129	
52 53	130	We summarise what can be understood from recently emerging evidence in a format that is
54 55 56	131	relevant for clinical decision making. We carried out a decision analysis to compare a
57 58		7
59		

an

BMJ Open

132	simplified version of the current standard diagnostic approach (TRUS-guided biopsy) with
133	approach where mpMRI is used to select men for biopsy and to guide the biopsy needle
134	towards the area of suspected cancer. We estimate the number of biopsies that could be
135	avoided with pre-biopsy mpMRI and the number of correctly identified patients with and
136	without clinically significant prostate cancer.
137	

 BMJ Open

2		
3	138	METHODS
4		
5	139	
6		
/	140	Decision analysis
8	140	Decision unulysis
9		
10	141	We used a decision free to compare the standard diagnostic pathway (TRUS-guided biopsy
12		
12	142	for all) with a new pathway (mpMRI for all, then MRI-targeted biopsy if positive). The tree,
14		
15	143	presented in Figure 1, was evaluated to reveal the expected outcomes associated with each
16		
17	111	option, for a hypothetical cohort of 1000 men by multiplying the prevalence estimates of
18	144	option, for a hypothetical conort of 1000 men by maniplying the prevalence estimates of
19		a second a second state of the second second first second second first second second second second second second
20	145	our target condition by sensitivity and specificity estimates of the diagnostic tests. The test
21		
22	146	accuracy estimates used to populate the decision tree were derived from recent studies
23		
24	147	which reported data that reflected the conditional nature of the parameters and used an
25		
20	148	appropriate reference test. ^{11 12} All of these data are limited in some way, but assumptions
21		
20	140	were made so that any biases would favour the current diagnostic approach
30	149	were made so that any blases would lavour the current diagnostic approach.
31		
32	150	
33		
34	151	Target population
35		
36	152	The target population for the decision analysis was men with increased serum PSA levels or
37		
38	153	abnormal findings on digital rectal examination who had never had a prostate biopsy.
39		
40	15/	
41 12	134	
42	455	Clinically significant disease
44	155	Clinically significant disease
45		
46	156	For our base-case analysis we defined clinically significant disease according to widely used,
47		
48	157	and arguably somewhat conservative, criteria: a minimum volume of 0.2cc or cell
49		
50	158	differentiation corresponding to a Gleason score of 3+4 or higher. ¹³ The prevalence of
51		
52	159	clinically significant disease in our target nonulation is uncertain, but we estimated it to be
53	100	chineary significant discuse in our target population is uncertain, but we estimated it to be
54 55	100	EQM of all man with suspected prostate cancer, based on a prospective analysis of man
56	100	50% of an men with suspected prostate cancer, based off a prospective analysis of men
57		
58		Ą

161	undergoing a first prostate biopsy. ¹⁴ The remaining 50% are assumed to have clinically
.62	insignificant disease or no cancer. We varied the prevalence of clinically significant disease
53	in a sensitivity analysis.
54	
65	TRUS-guided biopsy
56	The gold standard used to establish the presence or absence of clinically significant disease
7	whole-mount pathological data - is usually only available for men who test positive and ther
8	go on to have radical surgery. ^{7 11 15} Therefore we used data from a study which carried out
59	computer simulations to estimate the performance characteristics of TRUS-guided biopsy by
0	comparing them to reconstructed whole-mount pathology obtained from patients
'1	undergoing surgery for bladder cancer, which revealed they also had prostate cancer. ¹⁶ The
2	spectrum of disease in this sample population is likely to include more early-stage disease
3	than would be expected in an unscreened UK population, and thus this bias will favour the
4	current diagnostic approach.
75	
6	The sensitivity of TRUS-guided biopsy, when criteria proposed by Epstein were used to
7	interpret the diagnostic result, was approximately 50%. ¹⁶ According to Epstein, a biopsy
8	result is positive for significant cancer if the maximum cancer core length from biopsy is at
79	least 3mm or if the Gleason score is 3+4 or higher. ¹³ The corresponding specificity of TRUS-
30	guided biopsy was estimated to be approximately 90%, which represents the proportion of
31	men correctly identified with insignificant disease (men with no prostate cancer were not
32	included in the Lecornet et al. study population). ¹⁶
83	

BMJ Open

184	
185	mpMRI and MRI-targeted biopsy
186	We estimated the diagnostic accuracy of the MRI-based strategy by combining the test
187	accuracy estimates for mpMRI and MRI-targeted biopsy. A recent systematic review of the
188	literature revealed two studies on mpMRI in biopsy-naïve men with suspected prostate
189	cancer. ^{11 17 18} Only one of these studies reported data at the level of detail required to
190	estimate sensitivity and specificity of mpMRI: a large study involving 555 men which
191	compared pre-biopsy mpMRI results with TRUS-guided biopsy and/or MRI-targeted biopsy
192	as a proxy for true disease status. ¹⁷ We used these data to estimate the sensitivity of
193	mpMRI at 80% and the specificity, 60%. A more recent study shows these values may in
194	fact underestimate the performance of mpMRI. ¹⁴
195	
196	The accuracy of MRI-targeted biopsy was taken from a study that compared MRI-targeted
197	biopsy with cognitive registration to 20-sector template-prostate mapping. ¹⁹ This study was
198	used since all men in the study population had a lesion on mpMRI and therefore allowed us
199	to capture the sequential nature of the diagnostic approach. The study showed that when
200	the biopsies were classified according to the Epstein criteria, the sensitivity was
201	approximately 80% and the specificity 80%. ¹⁹ The specificity that this study reported for the
202	MRI-targeted biopsy is lower than our estimate of the specificity of TRUS-guided biopsy
203	(90%). ¹⁹ However, the use of MRI-targeting instead of TRUS-guided biopsy should have no
204	impact on men without clinically significant disease, and therefore we assumed that MRI-
205	targeted biopsy should be as good as – but not better than – TRUS-guided biopsy at
206	correctly identifying men without clinically significant prostate cancer. We therefore <mark>used</mark>

Page 42 of 64

Δ	
-	
5	
6	
7	
8	
q	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
0.0	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
15	
46	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	
60	

207 90% as the specificity estimate for MRI-targeted biopsy in the decision analysis, the same as
 208 that of TRUS-guided biopsy. We assessed the impact this had on the overall diagnostic

- 209 results in a sensitivity analysis.
- 210

1 2 3

211 Sensitivity Analysis

- 212 We carried out a one-way sensitivity analysis by varying the prevalence of clinically
- significant disease from 0 to 1, keeping all other variables constant. This sensitivity analysis
- 214 was intended to demonstrate the extent to which the optimal diagnostic strategy depends
- 215 on the prevalence of clinically significant disease. We also carried out two sensitivity
- 216 analyses to assess the impact of specific test performance estimates of the mpMRI-based
- 217 strategy on overall diagnostic outcomes. In the first scenario (scenario i) we used a pooled
- 218 estimate of mpMRI test performance from a recent meta-analysis (mpMRI sensitivity 74%,
- 219 mpMRI specificity 88%).²⁰ In the second scenario (scenario ii) we investigated the impact of
- 220 our assumption that MRI-targeting has no impact on men without clinically significant
- 221 disease (by using a specificity of 80% for MRI-targeted biopsy as reported by
- 222 Kasivisvanathan and colleagues rather than our base case estimate of 90%).¹⁹
- 223
 - 224 Although these sensitivity analyses provide some insight into the specific impact of
 - 225 individual parameters, the estimates used to describe the performance of all the diagnostic
 - tests are associated with significant uncertainties. Therefore, to assess the robustness of our
 - 227 results, we performed a probabilistic sensitivity analysis using Monte Carlo simulation
 - varying the sensitivities and specificities of the three tests (TRUS-guided biopsy, mpMRI, and
 - 229 MRI-targeted biopsy) simultaneously over 2000 iterations, sampling from beta distributions

BMJ Open

2	
Ζ	
3	
Λ	
-	
5	
6	
7	
1	
8	
Ō	
9	
10	
11	
11	
12	
13	
4.4	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
<u>~</u> 1	
22	
23	
21	
∠4	
25	
26	
20	
27	
28	
20	
29	
30	
24	
31	
32	
33	
55	
34	
35	
20	
36	
37	
20	
30	
39	
40	
41	
42	
12	
40	
44	
45	
40	
46	
47	
40	
48	
49	
50	
50	
51	
52	
50	
53	
54	
55	
55	
56	
57	
57	
58	
59	
60	
60	

230	to characterise the uncertainty in the test accuracy data <mark>(see table 1).</mark> We determined the
231	beta distributions by assuming that the sensitivities and specificities were observed in
232	populations consisting of 50 men with and 50 men without clinically significant disease. We
233	substantially widened the distributions (by assuming a small population of men) in order to
234	increase the uncertainty associated with the test performance parameters. We ignored the
235	correlation between sensitivity and specificity and kept the disease prevalence constant at
236	50%.
237	
238	
239	

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
38
30
39
40
41
42
40
43
44
45
46
10
40
48
49
50
51
51
ວ∠
53
54
55
56
30
57
58
59
60
00

240	RESULTS
241	
242	The decision tree <mark>estimated</mark> that the use of TRUS-guided biopsy in a hypothetical cohort of
243	1000 men with suspected prostate cancer <mark>– and an estimated 50% prevalence of clinically</mark>
244	significant disease – would result in 300 positive and 700 negative biopsy results, which
245	would correctly identify 250 men with clinically significant prostate cancer and 450 men
246	without the disease (Table 2). It follows that 250 men with significant prostate cancer would
247	be missed by TRUS-guided biopsy and 50 men who do not have significant prostate cancer
248	would wrongly receive a diagnosis.
249	
250	The use of mpMRI and MRI-targeted biopsy in the same cohort would result in 600 men
251	undergoing a prostate biopsy with 340 positive and 260 negative biopsy results (Table 2).
252	This strategy would correctly identify 320 men as having significant prostate cancer and 480
253	without the disease. In other words, the use of the mpMRI-based strategy would fail to
254	diagnose significant cancer in 180 men (= 500 - 320), which is the result of significant
255	prostate cancer that were missed by mpMRI in addition to significant cancers that were
256	identified on the mpMRI but were missed by MRI-targeted biopsy. 20 men (= 500 - 480) who
257	do not have clinically significant prostate cancer would wrongly receive a diagnosis.
258	
259	Multi-parametric MRI followed by MRI-targeted biopsy can be said to "clinically dominate"
260	TRUS-guided biopsy as it results in fewer expected biopsies (600 versus 1000), more men
261	being correctly identified as having clinically significant disease (320 versus 250), and fewer
262	men being falsely identified with the disease (20 versus 50).

BMJ Open

263	
264	Figure 2 provides a visual representation of the one-way sensitivity analysis showing the
265	total number of people receiving the wrong diagnosis (the sum of the number of patients
266	with a false-positive or a false-negative result) as a function of the prevalence of clinically
267	significant disease. The mpMRI-based approach resulted in a lower number of patients
268	wrongly diagnosed than with TRUS-guided biopsy for all men, at all prevalence rates. Below
269	a prevalence of 5%, doing nothing is the "optimal" strategy as it leads to the lowest number
270	of men with the wrong diagnosis. Above a prevalence of 70%, treating all men is optimal.
271	
272	Table 3 demonstrates that assuming a sensitivity of 74% and a specificity of 88% as
273	estimates of the test performance of mpMRI (instead of a sensitivity of 80% and a specificity
274	of 60% used in the base case analysis) found that the mpMRI-based strategy resulted in far
275	fewer biopsies than our base case estimation (430 instead of 600), but slightly worse
276	diagnostic outcomes for men with significant disease (296 correctly identified instead of
277	320), which was still better than the current standard of care (250 correctly identified).
278	Table 3 also shows that using a lower specificity for MRI-targeted biopsy (80% instead of
279	90%) resulted in 40 men (instead of 20) without clinically significant disease wrongly
280	identified as having significant cancer, but this is still less than the 50 men that would be
281	wrongly identified using the standard diagnostic approach using TRUS-guided biopsy alone.
282	
283	When the sensitivities and specificities of the three tests were varied simultaneously in 2000
284	simulations for the probabilistic sensitivity analysis, the diagnostic approach using mpMRI
285	and MRI-targeted biopsy clinically dominated in 86% of the simulations, whereas TRUS-
	15
3 ⊿	
----------	--
4	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 22	
∠3 24	
24	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40 47	
47 78	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
60 09	
00	

> 286 guided biopsy dominated in 0.8% of the simulations. Within the remaining 13.2% of

- simulations, the choice between the mpMRI-based strategy and TRUS-guided biopsy is not 287
- 288 clear as there was a 'trade-off' between outcomes. That is, either the mpMRI-based strategy
- correctly identified more men with clinically significant cancer but fewer men without 289
- esth Constant of the second seco clinically significant disease than TRUS-guided biopsy, or vice-versa. 290
- 291

293

DISCUSSION

1

BMJ Open

2	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
10	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
77 10	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	
60	
~~	

294	Our decision analysis <mark>suggests</mark> that mpMRI of the prostate followed by MRI-targeted biopsy
295	if positive <mark>could</mark> result in fewer and better biopsies than a strategy using only TRUS-guided
296	biopsy. <mark>The</mark> results <mark>suggest</mark> that the mpMRI-based strategy <mark>could</mark> reduce the number of
297	biopsies by about one third (600 compared to 1000 biopsies), increase the number of men
298	identified with clinically significant cancer by about 30% (320 compared to 250 patients),
299	and reduce the number of men falsely identified with the disease by 60% (20 compared to
300	50). These results are in line with those of recent clinical studies comparing similar
301	strategies, albeit not against a gold standard of pathology or template biopsy. ²¹²²
302	
303	When we accounted for uncertainty in the sensitivity and specificity estimates of the three
304	diagnostic tests, we found that the dominance of the mpMRI-based strategy was robust.
305	However, the probabilistic sensitivity analysis did not assess the impact of inherent
306	"structural" uncertainties <mark>, such as</mark> the ongoing debate about the definition of clinically
307	significant cancer, various diagnostic thresholds used to decide whether mpMRI or biopsy
308	results are positive or negative, and the use of imperfect gold-standard tests.
309	
310	The National Institute for Health and Care Excellence (NICE), has recently updated its
311	guidance on the <mark>diagnosis and management of men with prostate cancer.⁷ Our estimate of</mark>
312	the sensitivity of 50% for TRUS-guided biopsy is close to the estimate of 45% used in its
313	analysis. ⁷ However, we estimated the specificity of the TRUS-guided biopsy to be 90%,
314	whilst NICE assumed it to be 100%. While both of these specificity estimates are somewhat

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
১∠ ৫৫	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
52	
54	
55	
56	
57	
58	
59	
60	

1

315	speculative, we <mark>believed</mark> that the specificity estimate needed to reflect that patients who
316	have clinically insignificant prostate cancer may have biopsy results that are interpreted as
317	suggestive of clinically significant cancer. We also assumed that this "error" is as likely with
318	TRUS-guided as with MRI-targeted biopsies and therefore we used the same false-positive
319	rate for TRUS-guided and for MRI-targeted biopsies. These choices were made deliberately
320	in order to underestimate the comparative effectiveness of the proposed diagnostic
321	strategy using mpMRI. In addition we used data on the test accuracy of MRI-targeted biopsy
322	from a study which used visual registration techniques. It has been suggested that
323	computer-aided registration techniques may be more accurate, ⁷ although recent RCT data
324	showed no statistically significant difference in detection rates. ²³
325	
326	The results of our analysis are based on a simplification of the choices facing urologists in
327	the diagnosis of prostate cancer. In their evaluation, NICE considered a strategy of mpMRI
328	and biopsy for all men, including targeted biopsies for all men with a lesion on mpMRI. This
329	perhaps highlights the reticence of health care professionals to do 'less' rather than 'more',
330	which may be influenced by concern over medical liability. A major challenge therefore will
331	be the implementation of a strategy that requires a negative diagnostic test result to be
332	established and then followed by no immediate further investigation. New guidelines based
333	on the results of forthcoming randomised controlled trials (such as PROMIS) and expert
334	consensus may be required to avoid a "creep" in the numbers of unnecessary biopsies. ²⁴
335	
336	In this analysis we focussed purely on short term clinical outcomes following different
337	testing options. Ultimately however the optimal diagnostic strategy for men with suspected

BMJ Open

3 4	338	prostate cancer will depend on the impact on both costs and quality-adjusted life
5 6	339	expectancy. The cost of the diagnostic procedures may in fact be about the same for the
7 8	340	two diagnostic strategies. If all men receive an mpMRI (£200 in 2011-12 UK NHS prices) and
9 10 11	341	60% of these men also receive a biopsy (£540 in 2011-12 UK NHS prices) the mpMRI-based
12 13	342	strategy will result in an average cost of £524 per man, assuming TRUS-guided biopsy and
14 15	343	MRI-targeted biopsy are equivalent in cost. ²⁵ This compares to £540 per man with TRUS-
16 17 18	344	guided biopsy. Of course the true costs of the two strategies include the long term costs and
19 20	345	consequences of further investigations and treatments which need to be taken into account
21 22	346	in future economic modelling. Initial estimates from a published economic evaluation
23 24 25	347	suggest a mpMRI-based strategy is likely to be highly cost-effective in the Netherlands ²⁶
26	348	although uncertainties, particularly around long term health outcomes, remain ²⁷
27 28	510	
29 30	349	
31 32	350	Despite the complexity of the downstream pathways, estimates of diagnostic performance
33 34 25	351	and disease prevalence will be key drivers of the clinical and cost effectiveness of the whole
35 36 37	352	of prostate cancer care. Systematic reviews of the prostate biopsy and imaging literature
38 39	353	have revealed a large number of small studies characterised by poor reporting and
40 41	354	important biases. ^{7 11 12 15} In our analysis we only used very recently published studies that
42 43 44	355	capture the emerging evidence on how well TRUS-guided biopsy, mpMRI and MRI-targeted
45 46	356	biopsy perform and estimate disease prevalence. Future research efforts in prostate cancer
47 48	357	need to focus on providing accurate and precise estimates of these parameters. Studies
49 50 51	358	need to consistently distinguish between significant and insignificant cancer, represent the
52 53	359	sequential nature of diagnostic tests and should adhere to high standards of reporting such
54 55 56 57	360	as the START guidelines for MRI. ^{28 29} Without these studies, it will be hard to accurately

BMJ Open

2 3 4	361	evaluate the role of targeted biopsy or any new strategy for diagnosing prostate cancer in	1
5	362	<mark>future.</mark>	
7 8	363		
8 9 10 11 23 45 67 89 01 12 23 22 24 25 26 27 89 03 22 23 24 25 26 27 89 03 23 34 35 67 89 041 23 445 67 89 01 22 23 24 25 26 27 89 03 23 34 35 67 89 041 22 34 55 67 89 01 22 23 45 56 78 90 12 23 45 56 78 90 41 22 34 55 67 89 01 22 23 45 56 78 90 12 23 45 56 75 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 56 57 55 57 55 57 55 55 57 55 56 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 55			20

BMJ Open

364 365	CONCLUSIONS
366	Our analysis <mark>suggests</mark> that mpMRI followed by MRI-targeted biopsy <mark>may</mark> result in fewer and
367	better biopsies than TRUS-guided biopsy. We found that the mpMRI-based strategy
368	correctly identified more men with significant prostate cancer and correctly identified more
369	men without the disease in <mark>86%</mark> of the simulations in our probabilistic sensitivity analysis.
370	Estimates of disease prevalence and diagnostic performance will be key drivers of a full
371	economic analysis, so research efforts should focus on providing precise estimates of these
372	crucial parameters.

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
20
20 24
21
22
23
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
39
40
41
10 10
+∠ 10
43
44
45
46
47
48
49
50
51
52
52
55
94 55
55
56
57
58
59
60

373 AUTHOR CONTRIBUTIONS

374	JvdM, SW, AM, HA, ME made substantial contributions to the conception and design of the
375	work; SW, HA, CM and ID acquired the data; SW, JvdM, HA, CM and ID analysed and
376	interpreted the data; SW and JvdM drafted the work and HA, CM, ID, ME, AM provided
377	critical revision of the manuscript; ME, HA, CM, JvdM, SW and AM obtained funding and
378	JvdM and AM provided supervision. All authors have read and approved the final
379	manuscript and agree to be accountable for all aspects of the work.
380	
381	ACKNOWLEDGEMENTS
382	The authors would like to thank Yipeng Hu and Veeru Kasivisvanathan for their assistance in
383	providing additional data for the analysis. We also acknowledge the research support Mark
384	Emberton receives from the United Kingdom's National Institute of Health Research
385	UCL/UCLH Biomedical Research Centre, London.
386	
387	This publication presents independent research commissioned by the Health Innovation
388	Challenge Fund (HICF-T4-310), a parallel funding partnership between the Wellcome Trust
389	and the Department of Health. The views expressed in this publication are those of the
390	authors and not necessarily those of the Wellcome Trust or the Department of Health.
391	
392	

1		
2 3 4	393	DATA SHARING STATEMENT
5 6	394	The data inputs, the decision tree structure and the calculations are given in full so no
7 8	395	additional data are available.
9 10 11	396	
12 13	397	FIGURE LEGENDS
14 15	398	Figure 1: Structure of the decision tree
17 18	399	Figure 2: One-way sensitivity analysis showing the expected number of patients with wrong
19 20	400	diagnoses according to the prevalence of clinically significant disease in a cohort of 1000
21 22 22	401	men. See text for further explanation.
23 24 25	402	Table 1: Diagnostic accuracy estimates of TRUS-guided biopsy, mpMRI and MRI-targeted
26 27	403	biopsy used in the base case analysis. TRUS – transrectal ultrasound, TPM- template
28 29 20	404	mapping biopsy, mpMRI – multi-parametric magnetic resonance imaging, MRI-TB – MRI-
30 31 32	405	targeted biopsy. Data inputs were rounded to the nearest 5%. <mark>Beta distributions were</mark>
33 34	406	estimated using the integer form in Excel according to the parameters α and 6.
35 36 27	407	Table 2: Details of calculations and results of the decision analysis for a cohort of 1000 men
38 39	408	comparing TRUS-guided biopsy with mpMRI and MRI-targeted biopsy. 'prev' – prevalence;
40 41	409	'no_in_cohort' – number of men in cohort; 'sensTRUS' – sensitivity of TRUS-guided biopsy; 'specTRUS' –
42 43	410	specificity of TRUS-guided biopsy; 'sensMRI' – sensitivity of mpMRI; 'specMRI' – specificity of mpMRI;
44 45 46	411	'sensMRITB' – sensitivity of MRI-targeted biopsy; 'specMRITB' – specificity of MRI-targeted biopsy.
47 48	412	Table 3: Results of sensitivity analyses in a cohort of 1000 men
49 50	413	
51 52	414	
53 54		
55		
56 57		
51		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
28	
20	
20	
30	
32	
32	
34	
35	
36	
27	
20	
30 20	
39	
40	
41	
42	
43	
44	
40	
40	
47	
4ŏ ∡∩	
49 50	
00 ⊑1	
51	
52 50	
ວວ ເ	
54	
55	
56	
57	
58	
59	
60	

415 416	REFERENCES
417	 Wolf AM, Wender RC, Etzioni RB, et al. American Cancer Society guideline for the early
418	detection of prostate cancer: update 2010. CA Cancer J Clin 2010;60(2):70-98.
419	 Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostate
420	cancer. JAMA 2009;302(15):1685-92.
421	 Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using
422	template prostate mapping biopsy. J Urol 2011;186(2):458-64.
423	 Stamey TA, Freiha FS, McNeal JE, et al. Localized prostate cancer. Relationship of tumor
424	volume to clinical significance for treatment of prostate cancer. Cancer 1993;71(3
425	Suppl):933-8.
426	 Goto Y, Ohori M, Arakawa A, et al. Distinguishing clinically important from unimportant
427	prostate cancers before treatment: value of systematic biopsies. J Urol
428	1996;156(3):1059-63.
429	 Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. part 1:
430	screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol
431	2014;65(1):124-37.
432 433	7. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and treatment (CG 175). London, 2014.
434	 Prostate Cancer Risk Management Programme. Undertaking a transrectal ultrasound
435	guided biopsy of the prostate. 2006.
436	<u>www.cancerscreening.nhs.uk/prostate/pcrmp01.pdf</u> .
437 438 439	9. Lee DJ, Ahmed HU, Moore CM, et al. Multiparametric magnetic resonance imaging in the management and diagnosis of prostate cancer: current applications and strategies. Curr Urol Rep 2014; 15 (3):390.
440 441	10. Emberton M. Has magnetic resonance-guided biopsy of the prostate become the standard of care? Eur Urol 2013; 64 (5):720-1.
442	 Moore CM, Robertson NL, Arsanious N, et al. Image-guided prostate biopsy using
443	magnetic resonance imaging-derived targets: a systematic review. Eur Urol
444	2013;63(1):125-40.
445	12. Mowatt G, Scotland G, Boachie C, et al. The diagnostic accuracy and cost-effectiveness
446	of magnetic resonance spectroscopy and enhanced magnetic resonance imaging
447	techniques in aiding the localisation of prostate abnormalities for biopsy: a
448	systematic review and economic evaluation. Health Technol Assess 2013; 17 (20):1-
449	281.

BMJ Open

2		
3	450	13. Epstein JI, Walsh PC, Carmichael M, et al. Pathologic and clinical findings to predict
4 5	451	tumor extent of nonpalpable (stage t1c) prostate cancer. JAMA 1994; 271 (5):368-74.
6	452	14. Kuru TH. Roethke MC. Seidenader J. et al. Critical Evaluation of Magnetic Resonance
7	453	Imaging Targeted, Transrectal Ultrasound Guided Transperineal Fusion Biopsy for
8	454	Detection of Prostate Cancer, LUrol 2013: 190 (4):1380-6
9	434	
10	455	15. Fichler K. Hempel S. Wilby J. et al. Diagnostic value of systematic biopsy methods in the
12	456	investigation of prostate cancer: a systematic review [Urol 2006: 175 (5):1605-12
13	450	
14	457	16. Lecornet F. Ahmed HU. Hu Y. et al. The accuracy of different biopsy strategies for the
15	458	detection of clinically important prostate cancer: a computer simulation [] [Irol
16	450 159	2012. 188 (3).97/1-80
17	433	2012,100(3).374 00.
18	460	17. Haffner I. Lemaitre I. Puech P. et al. Role of magnetic resonance imaging before initial
19	461	hionsy: comparison of magnetic resonance imaging-targeted and systematic hionsy
20	401	for significant prostate cancer detection BILL Int 2011: 108 /8 Dt 2):E171-8
22	402	
23	463	18 Park BK Park IW Park SY et al Prospective evaluation of 3-T MRI performed before
24	405	initial transrectal ultrasound-guided prostate bionsy in patients with high prostate-
25	404	specific antigen and no previous bionsy. AIR American journal of roentgenology
26	405	2011: 107 (E):W076 01
27	400	2011,197(5).00870-81.
28 20	467	19 Kasivisyanathan V. Dufour R. Moore CM, et al. Transperineal Magnetic Resonance Image
29	407	13. Kasivisvanathan V, Daroan K, Moore Civi, et al. Transperinteal Magnetic Resonance image
31	408	Detection of Clinically Significant Prostate Cancer, LUrol 2012 190 (2):960.6
32	409	Detection of chilically significant Prostate Cancer. J 0101 2015 169(5).800-0.
33	470	20 de Rooii M. Hamoen EH. Eutterer II. et al. Accuracy of multiparametric MRI for prostate
34	470	cancer detection: a meta-analysis. AIR American journal of roentgenology
35	471	
36	472	2014, 202 (2).343-31.
२४ २४	173	21 Pokorny MR de Rooii M. Duncan F. et al. Prospective Study of Diagnostic Accuracy
39	475	Comparing Prostate Cancer Detection by Transrectal Ultrasound-Guided Biopsy
40	474	Versus Magnetic Posonance (MP) Imaging with Subsequent MP guided Biopsy
41	475	Man Without Dravious Drastate Diancies, Fur Ural 2014
42	476	Men without Previous Prostate Biopsies. Eur Orol 2014.
43	177	22 Siddiqui MM Rais-Rabrami S Truong H et al Magnetic resonance imaging/ultrasound-
44	477	fusion bionsy significantly ungrades prostate cancer versus systematic 12 core
45	470	transportal ultracound bionay. Fur Ural 2012; 64(E):712.0
40 47	479	transfectal ultrasound biopsy. Eur 0101 2013; 64 (5).713-9.
48	190	23 Wysock IS Resentrantz AR Huang WC et al. A Prospective Blinded Comparison of
49	400	23. Wysock 35, Rosenkranz AB, Huang WC, et al. A Prospective, Binded Comparison of Magnetic Personance (MP) Imaging Illtrasound Eusion and Visual Estimation in the
50	401	Derformance of MD targeted Prestate Diangy The DDOELS Trial Fur Ural 2012
51	482	Performance of MR-largeled Prostate Biopsy. The PROFOS That. Eur Oroi 2013.
52	100	24 PROstate MPL Imaging Study (PROMIS) Current Controlled Trials Web site
53	403	24. I NOSIALE WINI IIIAging Sludy (FNOWIS). Current Controlled Hilds Web Sile.
54 55	404	ISICE HATOOOSSSOL TOOOSSSOL HILLP.// WWW.COHILLOHEd-LIIGIS.COHI/
00 56	485	
57	.00	
58		25
59		
60		

3 ∕1	
5	
6	
7	
8	
9 10	
11	
12	
13	
14 15	
16	
17	
18	
19 20	
20	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33 34	
35	
36	
37	
38	
40	
41	
42	
43 44	
45	
46	
47 49	
40	
50	
51	
52 53	
54	
55	
56	
57 58	
59	
60	

- 486 25. Department of Health. National Schedules of Reference Costs: financial year 2011 to 487 2012. London, 2013.
- 488 26. de Rooij M, Crienen S, Witjes JA, et al. Cost-effectiveness of Magnetic Resonance (MR) 489 Imaging and MR-guided Targeted Biopsy Versus Systematic Transrectal Ultrasound-Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care 490 Perspective. Eur Urol 2013. 491
 - 492 27. Willis S, Miners A, van der Meulen J. Re: de Rooij M, et al. Cost-effectiveness of Magnetic 493 Resonance (MR) Imaging and MR-guided Targeted Biopsy Versus Systematic 494 Transrectal Ultrasound–Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care Perspective. [eLetter]. European Urology, April 22 2014. 495
 - 496 28. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of 497 diagnostic accuracy: explanation and elaboration. Ann Intern Med 2003;138(1):W1-498 12.
 - 499 29. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of Reporting for MRI-targeted 500 Biopsy Studies (START) of the Prostate: Recommendations from an International 501 Working Group. European Urology 2013;64(4):544-52. 15.
- 502
- 503

512 Figure 4

- 513 One-way sensitivity analysis showing the expected number of patients with wrong
- 514 diagnoses according to the prevalence of clinically significant disease in a cohort of 1000
- 515 men. See text for further explanation.

519 Table 3

520 Diagnostic accuracy estimates of TRUS-guided biopsy, mpMRI and MRI-targeted biopsy used

521 in the base case analysis

Index Test	Sensitivity	Specificity	Reference test	Source and patient	
				population	
TRUS-	50%	90%	Whole-mount	Lecornet 2012 ¹⁶ :	
guided	(16/34	(57/62	pathology	Simulated biopsy results	
biopsy	patients,	patients,		on digitally reconstructed	
	95% Cls:	95% Cls:		prostates of 96 men who	
	27-73)	78-97)		had undergone surgery for	
	<mark>α =25, β=25</mark>	<mark>α =45, β=5</mark>		bladder cancer which	
				revealed prostate cancer.	
mpMRI	80%	60%	TRUS-guided	Haffner 2011 ¹⁷ : 555 men	
	(252/302,	(154/253	extended	with suspected localised	
	95% Cls:	patients, 95%	systematic	prostate defined as <mark>raised</mark>	
	66-90)	Cls:	biopsies (10-12	PSA of >3-4ng/ml and/or	
	<mark>α =40, β=5</mark>	45-76)	core) plus two	<mark>abnormal DRE with no</mark>	
		<mark>α =30, β=20</mark>	targeted biopsies	clinical or biological	
			for those with any	suspicion of stage T>3 or	
			area suspicious on	mets and had no prior	
			mpMRI <mark>(score ≥3)</mark>	<mark>biopsy.</mark>	
MRI-	80%	90%	20 sector-TPM	Kasivisvanathan 2013 ¹⁹ :	
targeted	(94/121	Assumed to be		182 men who had a	
biopsy	patients,	equivalent to		suspicious lesion on	
	95% Cls:	the specificity		mpMRI; 78 of whom were	
	66-90)	of TRUS-		biopsy naive, 32 had a	
	<mark>α =40, β=10</mark>	guided biopsy,		prior negative biopsy and	
		(57/62		72 had a prior positive	
		patients, 95%		biopsy.	
		Cls:			
		78-97) <mark>α =45,</mark> <mark>β=5</mark>			

523 TRUS – transrectal ultrasound, TPM- template mapping biopsy, mpMRI – multi-parametric

524 magnetic resonance imaging, MRI-TB – MRI-targeted biopsy. Data inputs were rounded to

2		
3	525	the nearest 5%. Beta distributions were estimated using the integer form in Excel according
5	526	to the parameters a and R
6	526	to the parameters a and b.
7	527	
8	527	
9 10		
11		
12		
13		
14		
15		
10		
18		
19		
20		
21		
22		
23 24		
25		
26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36		
37 38		
39		
40		
41		
42		
43 44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55 50		
50 57		
58		c
59		5
60		

1
2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
22
~~ ??
23
24
25
26
27
20
20
29
30
31
32
33
33
34
35
36
37
38
20
39
40
41
42
43
11
44
45
46
47
48
<u>10</u>
49 50
50
51
52
53
54
54
55
56
57
58

59 60

528 Table 4

529 **Details of calculations and** results of the decision analysis for a cohort of 1000 men

530 comparing TRUS-guided biopsy with mpMRI and MRI-targeted biopsy.

	TRUS-guided biopsy	mpMRI then MRI-targeted biopsy
No of biopsies	1000 (all men)	600 = P(MRI+ D+) + P(MRI+ D-) = (sensMRI *prev*no_in_cohort)+ ((1-specMRI)*(1-prev)*no_in_cohort)) = (0.8*0_5*1000)+((1-0.6)*(1-0.5)*1000)
Patients with clinically significant cancer & correctly identified (True Positive)	250 =P(TRUS+ D+) =sensTRUS*prev*no_in_cohort =0.5*0.5*1000	320 =P(MRI+ D+).P(MRITB+ D+) =sensMRI *sensMRITB*prev*no_in_cohort =0.8*0.8*0.5*1000
Patients with clinically significant cancer & wrongly identified (False Negative)	250 =p(TRUS+ D-) =(1-sensTRUS)*prev*no_in_cohort =(1-0.5)*0.5*1000	180 =P(MRI- D+) + P(MRI+ D+).P(MRITB- D+) =((1-sensMRI)*prev*no_in_cohort) + (sensMRI*(1-sensMRITB)*prev*no_in_cohort) =((1-0.8)*0.5*1000) + (0.8*(1-0.8)*0.5*1000)
Patients with insignificant prostate cancer or no prostate cancer & correctly identified (True Negative)	450 =P(TRUS- D-) =specTRUS *(1-prev)*no_in_cohort =0.9*(1-0.5)*1000	480 =P(MRI- D-)+P(MRI+ D-).P(MRITB- D-) =(specMRI *(1-prev)*no_in_cohort) + ((1-specMRI)*specMRITB*(1-prev)*no_in_cohort) =(0.6*(1-0.5)*1000) + ((1-0.6)*0.9*(1-0.5)*1000)
Patients with <mark>insignificant</mark> prostate cancer or no prostate cancer & wrongly identified (False Positive)	50 =P(TRUS+ D-) =(1-specTRUS)*(1-prev)* no_in_cohort =(1-0.9)*0.5*1000	20 =P(MRI+ D-).P(MRITB+ D-) =(1-specMRI)*(1-specMRITB)*(1-prev)*no_in_cohort =(1-0.6)*(1-0.9)*(1-0.5)*1000

531

532 'prev' – prevalence; 'no_in_cohort' – number of men in cohort; 'sensTRUS' – sensitivity of TRUS-guided biopsy;

533 'specTRUS' – specificity of TRUS-guided biopsy; 'sensMRI' – sensitivity of mpMRI; 'specMRI' – specificity of

534 mpMRI; 'sensMRITB' – sensitivity of MRI-targeted biopsy; 'specMRITB' – specificity of MRI-targeted biopsy.

Table 3

Results of sensitivity analyses in a cohort of 1000 men

	Scenario	Base ca	se analysis	Scenario i: (mpMRI sensitivity 74%, specificity 88%)		Scenario ii: (MRI-targeted biopsy sensitivity 80%, specificity 80%)	
	Strategy	guided	then MRI-	guided	then MRI-	guided	then
		<mark>biopsy</mark>	targeted	<mark>biopsy</mark>	targeted	<mark>biopsy</mark>	<mark>MRI-</mark>
	C		<mark>biopsy</mark>		<mark>biopsy</mark>		targeted biopsy
	No of biopsies	<mark>1000</mark>	<mark>600</mark>	<mark>1000</mark>	<mark>430</mark>	<mark>1000</mark>	<mark>600</mark>
	Patients with	<mark>250</mark>	<mark>320</mark>	<mark>250</mark>	<mark>296</mark>	<mark>250</mark>	<mark>320</mark>
	<mark>clinically significant</mark>						
	cancer & correctly						
	Identified (True						
	Positive)	250	190	250	204	250	100
	clinically significant	250	100	250	204	250	190
	cancer & wrongly						
	identified (False						
	Negative)						
	Patients with	<mark>450</mark>	<mark>480</mark>	<mark>450</mark>	<mark>494</mark>	<mark>450</mark>	<mark>460</mark>
	insignificant						
	<mark>prostate cancer or</mark>						
	no prostate cancer						
	<mark>& correctly</mark>						
	<mark>identified (True</mark>						
	Negative)						
	Patients with	<mark>50</mark>	<mark>20</mark>	<mark>50</mark>	6	<mark>50</mark>	<mark>40</mark>
	insignificant						
	prostate cancer or						
	Re wrongh						
	identified (Falco						
537							

BMJ Open

One-way sensitivity analysis showing the expected number of patients with wrong diagnoses according to the prevalence of clinically significant disease in a cohort of 1000 men. See text for further explanation. 90x55mm (300 x 300 DPI)