
Supplementary Figures

Supplementary Figure 1. Transmembrane helix prediction for selected SLC members. Transmembrane helices were predicted using (a) TMHMM (v. 2.0)¹³, (b) MEMSAT-SVM¹⁴, and (c) TOPCONS¹⁵ for the (i) organic solute transporter subunit β (SLC51B), (ii) low affinity Na⁺-glucose co-transporter SLC5A4, (iii) riboflavin transporter 2 (SLC52A3), and (iv) equilibrative nucleoside transporter 2 (SLC29A2). The predicted transmembrane helices are indicated by red bars (TMHMM), white/gray rectangles (MEMSAT-SVM), and yellow bars (TOPCONS). SLC51B, SLC5A4, SLC52A3, and SLC29A2 are predicted to have 1, 14, 11, and 11 transmembrane helices, respectively, by the three predictors.

Supplementary Tables

Family ^a	Function ^b	Template Structure ^c	Percent Sequence Identity ^d	Representative Ligands ^e
SLC1 (7)	High-affinity glutamate and neutral amino acid transporter family	Glt(Ph) ¹⁶	34 (3.6 × 10 ⁻⁹⁰)	Glutamate ³ , glutamine ³
SLC2 (14)	Facilitative glucose transporters	XyIE ^{*17}	31 (2.8 × 10 ⁻⁵⁴)	Glucose ³ , uric acid ³
SLC5 (12)	Na⁺- glucose co- transporters	vSGLT ^{#18}	32 (1.1 × 10 ⁻⁶⁹)	Dapagliflozin ² , canagliflozin ² , ipragliflozin ²
SLC6 (21)	Na ⁺ - and Cl ⁻ - dependent neurotransmitter transporters	LeuT ^{#19}	26 (6 × 10 ⁻¹⁰⁹)	Fluoxetine ¹ , fluvoxamine ¹ , citalopram ¹ , venlafaxine ¹ , paroxetine ¹ , radioiodinated metaiodobenzylguanidine ² (¹³¹ I-MIBG), serotonin ³ , norepinephrine ³ , dopamine ³ , GABA ³ , amino acids ³
SLC13 (5)	Na⁺- sulfate/carboxylate co-transporters	VcINDY ²⁰	32 (1.7 × 10 ⁻⁴⁷)	Succinate ³ , citrate ³ , alpha-ketoglutarate ³
SLC25 (46)	Mitochondrial carriers	UCP2 ²¹	96 (1.4 × 10 ⁻⁶²)	Citrate ³ , ornithine ³ , adenosine triphosphate ³ , aspartate ³ , thiamine pyrophosphate ³

Supplementary Table 1: Selected SLC families (which contain drug targets) that can be modeled based on a template structures.

- Family marks the human SLC family, as annotated by the Bioparadigms database²³. The а number of human protein sequences in the family is provided in parenthesis.
- b *Function* gives the function of the human family, as described in the Bioparadigms database
- Template Structure describes the most related atomic structure to the family. Structures with С the MFS and NSS folds are marked with '*' and '#', respectively.
- d Percent Sequence Identity provides the percent sequence identity of the best scoring hit from each family; E-value is given in parenthesis.
- Representative Ligands gives examples of small molecules that interacts with the е transporter. A small molecule ligand can be one of the following:

¹Clinical drug that is an inhibitor of the transporter.

²Clinical drug that is a substrate of the transporter.

³Endogenous compound that is substrate of the transporter.