Parameter	Value	Units	Description	Source
μ	0.029	h ⁻¹	Effective growth rate of bacilli inside mice	Bru&Cardona (2010)
				Experimental data (see text)
a _{IR}	500	bacilli per unit of IR	Bacilli that enter non replicative state because of the action of a lymphocyte	Fitted to experimental data
BL _{max}	2×10 ⁹	bacilli/mL	Maximum bacterial load per unit of volume	Estimated from experimental data
VI	0.50	mL	Effective volume of lungs	Estimated from Treuting et al 2012
Vs	0.75	mL	Effective volume of spleen	Estimated from Treuting et al 2012
V _{In}	0.10	mL	Effective volume of lymph nodes	Estimated from Treuting et al 2012
$\zeta_{s ightarrow I}$	I _{0.4} ·N _(0,10) (5,2.5) ^{a,b}	bacilli	Bacilli that flow from spleen to lungs	Random distributed (normal distribution)
$\zeta_{s \rightarrow \text{ln}}$	0.1· I _{0.4} ·N _(0,10) (5,2.5) ^{a,b}	bacilli	Bacilli that flow from spleen to lymph node	Random distributed (normal distribution)
ζ _{l→In}	N _(5,15) (10,2.5) ^b	bacilli	Bacilli that flow from lungs to lymph node	Random distributed (normal distribution)
ζ _{In→s}	N _(5,15) (10,2.5) ^b	bacilli	Bacilli that flow from lymph node to spleen	Random distributed (normal distribution)
Τ _{lyses}	Random between 3 and 5	days	Time interval between the infection of a macrophage and its lyses	Lee <i>et al</i> 2006
T _{delay}	2.6	days	Time between activation of specific immune response in lymphatic organs and its	Deduced from experimental data (see text)
γ _s	100	IR units per hour	Production of specific lymphocytes in spleen during an hour	Fitted to experimental data
Yın	1000	IR units per hour	Production of specific lymphocytes in lymph node during an hour	Fitted to experimental data
ω	0.23	h^{-1}	Extinction rate of specific lymphocytes.	Bru and Cardona [2010]
BL _{thres}	3500	Bacilli	Minimum threshold of bacilli to trigger the specific immune	Deduced from experimental data (see text)

Parameters of the *in silico* model described in Equations (1), (2) and (3) and in Table 3 as well as their description and values.

response in lymphatic organs

F _{blood}	17	mL/min	Volume of blood that comes out from the left ventricle of mice heart in a minute	Estimated from Treuting et al 2012
Q	1.0	-	Fraction of blood that comes out from mice heart and enters lungs	Estimated (see text)
Qs	0.30	-	Fraction of blood that comes out from mice heart and enters spleen	Estimated (see text)
Q _{In}	0.01	-	Fraction of blood that comes out from mice heart and enters lymph node	Estimated (see text)

 $^{\mathsf{a}}$ I_q is a Bernoulli with parameter q.

^b N_(m,n)(μ,σ) is a Normal around the mean μ and with deviation σ, truncated between m and n.