Supporting Information

Illumina sequencing and mapping

The genomic DNA (gDNAs) used for the library preparations were extracted with the Gentra Puregene Cell Kit including the RNase A Solution (Qiagen) or the reagents from the Puregene Accessories (Qiagen, as indicated below). The extraction and purification procedures were modified from the protocol for *D. melanogaster*(Qiagen Supplementary Protocol) and combined with column purification (Zymo) as described below, to give better and more constant yields with higher throughput.

About 15 frozen (-80°C) female flies of each fly line were homogenized into small pieces in cold 300 μ L Cell Lysis Solution (158906, Qiagen), and then incubated for 15min at room temperature. The RNAs were digested by 4.5ul RNase A Solution (158922, Qiagen) and incubated for 15min at 37°C. The contaminated proteins were precipitated by mixing with 100 μ L Protein Precipitation Solution (158910, Qiagen) and centrifuged 4min at 16,000g. The extracted gDNAs in the supernatant were column purified with the DNA Clean and Concentrator 25 Kit (D4013, Zymo) followed its protocol, using 5 volumes of Binding Buffer. The quality of these purified gDNAs were checked with 1% agarose gel, showed intact size of about 10 kb without degraded lower bands.

About 3μ g purified gDNAs in 100μ L EB (Elution Buffer, 10mM Tris, pH8.5, Invitrogen) were sheared with Covaris at 300 bp setting and purified with Purelink PCR Purification (HC) Kit (K3100-01, Invitrogen), followed their protocols respectively. The distributions of these fragments of about 300-1000 bp were confirmed with 2% agarose gel. The purified fragments were end-repaired for 30min at 25°C with Quick Blunting Kit (E0542L, NEB), A-tailed for 30min at 37°C with Klenow Fragments (M02112L, NEB) and dATP (R0141, Fermentas), ligated to adaptors (see below) for 10min at 25°C with Quick Ligation Kit (E0542L, NEB), size selected between 350 bp to 450 bp on 2% agarose gel Seakem LE (5000, Lonza) and extracted with ZymoClean Gel DNA Recover Kit (D4001, Zymo), and PCR amplified 15 cycles by Phusion High-Fidelity DNA Polymerase (M0530S, NEB) with dNTP (N0447L, NEB) and Primers (see below), followed these reagents protocols respectively. The DNA Clean and Concentrator-5 Kits (D4013, Zymo) were used to purify the product after each reaction.

The libraries showed a band between 400 bp to 500 bp on 2% agarose gel. All concentrations through the preparation were measured with Qubit Fluorometer (Invitrogen). Final libraries were diluted to 10nM before sequencing, based on the reads from Qubit and the sizes from agarose gel.

Adapters and PCR Primers for Paired-End Library: All adapters and primers were HPLC purified and ordered from Integrated DNA Technologies (IDT):

PE-Ad1, 5'-/5Phos/GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

PE-Ad2, 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATC*T

PE-PCR, (1) 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T PE-PCR, (2) 5'-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T

HMM Parameters

Emission probabilities were defined using the probability density function of each respective normal distribution as below:

$$E_{deletion} = p(SampleCoverage - ReferenceCoverage) \sim N(-\mu_{Ref}, 2\sigma_{Ref}^2)$$

$$E_{singleton} = p(SampleCoverage - ReferenceCoverage) \sim N(0, 2\sigma_{Ref}^2)$$

$$E_{duplicate} = p(SampleCoverage - ReferenceCoverage) \sim N(\mu_{Ref}, 2\sigma_{Ref}^2)$$

$$E_{triplicate} = p(SampleCoverage - ReferenceCoverage) \sim N(2\mu_{Ref}, 2\sigma_{Ref}^2)$$

Where μ_{Ref} and σ_{Ref} are the mean and standard deviation, respectively, for quantile normalized coverage in the reference strain for the window being evaluated. In each iteration, the most likely path was predicted using the Viterbi algorithm (Viterbi 1967), which identifies the most probable path for an HMM.

Initial state probabilities were set according to π_0 and initial transition probabilities were set according to T_0 , where row and column indices ranging from 0 to 3 are indicative of copy number. Initial probabilities are set such that the singleton state is initially most likely and states are initially most likely to remain constant during transitions.

$$\pi_0 = \begin{bmatrix} 0.07 & 0.79 & 0.07 & 0.07 \end{bmatrix}$$

$$T_0 = \begin{bmatrix} 0.79 & 0.07 & 0.07 & 0.07 \\ 0.07 & 0.79 & 0.07 & 0.07 \\ 0.07 & 0.07 & 0.79 & 0.07 \\ 0.07 & 0.07 & 0.79 & 0.79 \end{bmatrix}$$

HMM parameters of transition probabilities (T) and state likelhoods (π) were optimized using Expectation Maximization based on the Viterbi predictions for each individual window until a steady state was reached. Emission probability distributions were not updated as data in a given window will often be insufficient for one or more underlying states. Coverage can change substantially from one region of the genome to another, and so state calls were estimated for 4 kb windows. For larger windows, the variance in reference coverage across the window can render the emission probabilities less sensitive, and smaller windows can result in insufficient data to obtain adequate likelihoods.

Transition probabilities serve to ground HMM output such that low transition probabilities lower the likelihood of state changes, resulting in smoother calls. However in extreme cases low estimated transition probabilities can have an extreme chilling effect such that they will overwhelm the emission probabilities. The minimum transition probability for any given state change was therefore set at p = 0.07. Minimum transition probabilities below a threshold of 0.05 can have a massive effect on the number of duplicated sites, but varying minimum transition probabilities between 0.05 and 0.15 have only a minor effect. Similarly the minimum state probability was set to 0.00025 for all states and minimum emission probability was set to 10^{-10} to avoid zero probabilities. Coverage can be highly stochastic and will depend on the amount of divergence between sample and reference, GC content, sequence complexity, and uniformity of error rates across sites. Requiring a more stringent mapping quality results in substantial coverage changes for many sites (Table S4). For even moderately divergent paralogs, higher mapping quality thresholds can greatly diminish our ability to observe two-fold increases in coverage.

In some cases, highly divergent paralogs may not display increases in coverage at all, and in other cases high variance in reference strain coverage may make automated detection of elevated coverage in samples extremely difficult. Many duplicated variants also show clear elevated coverage for a large portion of the region spanned by divergently-oriented reads, with drops in other regions. Whether these represent cases where reads fail to map due to divergence or whether they are subsequent deletion at duplicated sites through replication slippage or through the large-loop mismatch repair system remains ambiguous. Examples of these problematic regions are included in Figure S4. Additionally, duplicated regions that are substantially smaller than the 325 bp Illumina library insert size may not be identified easily using divergent read calls, but should be readily apparent in coverage changes. Hence, there may be some disparity between the HMM output and divergent read calls, especially for very small or highly divergent duplications.

Some previous CNV calling schemes have not taken advantage of HMM models, but rather have simply relied on regions of high coverage relative to the genome average (Alkan et al. 2009). These schemes cannot correct for local variation in coverage due to base composition or potential for mismapping, nor do they correct for natural variation in coverage across genomic regions. Moreover, such models risk a high false positive rate among genomes with low levels of genomic duplication and high false negative rates for genomes that display rampant duplication. We observe substantial variation in coverage across sites within the reference, which is naturally accounted for in the HMM emission probabilities without the need for additional models or coverage corrections.

Previous work, especially analysis of microarrays, has clustered probes with two-fold coverage increases as indicative of a single duplication provided that they fell within a specific threshold distance (Emerson et al. 2008, Dopman and Hartl 2007, Conrad et al. 2010). Given the sparseness of microarray probes, such methods are prone to misidentify multiple duplications in a larger window as single duplications that span large sections of the genome. However, given the precision provided by Illumina resequencing, we are able to identify increased coverage at individual sites, which in combination with divergently-oriented reads should allow us to identify duplications with greater precision and increased ability to identify multiple small duplications that lie adjacent to one another.

Sample coverage

Illumina reads from the *D. simulans* reference stock consist of a single lane of paired-end data with a 104 bp read length, resulting in a median coverage of 55X (considering only the major chromosome arms X, 2L, 2R, 3L, 3R, and 4) when aligned to the assembly described in (Hu et al. 2012). The remaining 41 samples were sequenced with two to three lanes of paired-end sequencing, with read lengths being a mix of primarily 54 bp and 76 bp (Tables

S2 and S1). Illumina reads cover 116 Mbp of the *D. simulans* reference and 99 Mbp of the *D. yakuba* reference (Table S3) The total sequencing thus consists of 123 lanes of Illumina data. Table S4 shows summary statistics of the sequencing at various mapping quality (Li and Durbin 2009) cutoffs. With no quality filters, median coverage of the major arms ranges from 55x to 151x, covering > 98% of the genome with 95% of sites with non-zero coverage having a coverage \geq 7 (Table S4). The variation in coverage from sample to sample, and the overall higher coverage in *D. simulans* compared to *D. yakuba* reflects the order in which the samples were sequenced. As the sequencing effort progressed, the throughput for Illumina runs increased, while the number of lanes and read length per lane were held constant, resulting in higher coverage.

Median raw coverage for the D. yakuba reference genome was 115X with a standard deviation of 404.25 and a range from 0 to 281347, whereas median raw coverage in the D. simulans reference was 55x with a standard deviation of 109.44 and a range from 0 to 8073 (Figure S6). While some regions have abnormally high coverage that inflates the standard deviation, the majority of the genome is sequenced to between 0 and 400X in both species (Figure S6). Excluding sites with raw coverage greater than 400X yields a median of 114X and a standard deviation of 54.99 in the D. yakuba references and a median of 55 and a standard deviation of 28.80 in the D. simulans reference. Distributions of raw coverage were highly similar for all strains (Figure S2, S3).

Increasing quality filters results in modest changes in median coverage, but has a noticeable effect on the number of sites with a coverage of zero $(f_{0,X})$ and on the first

quantile of coverage for sites with coverage greater than zero ($Q_{1,X}$, Table S4). These data would suggest that a large number of sites with single digit raw coverage in the reference may be the product of sequencing errors and mismapping. The affect of imposing additional map quality filters is stronger in sample strains than in the reference (Table S4) and can impede mappings in the face of even a small number of mismatches. Hence, for all analyses of coverage changes in sample strains relative to reference, we used coverage with no additional quality filters, a factor that is essential in detecting increased coverage for even modestly diverged regions. Targeted insert size for Illumina libraries was 325 bp, median fragment size by line ranges from 270 bp-532 bp (Table S5).

In silico confirmation of rearrangements

De novo assembly of breakpoints

A putative tandem duplication results in the formation of a single novel sequence junction (Cridland and Thornton 2010; Figure S7). Reads mapping to this novel junction will fail to map to an existing reference genome Mackay et al. (2012). We mined the both the divergently-oriented reads and mapped/unmapped read pairs from the putative breakpoint region (Figure S8A) using samtools version 0.1.18 Li et al. (2009) and fed them into phrap version 1.090518 (http://www.phrap.org) for assembly. We used the following parameters for phrap: -vector_bound 0 -forcelevel 10 -minscore 10 -minmatch 10 -new_ace -bypasslevel 1 -maxgap 45 -revise_greedy -force_high.

Homology searches using lastz

The contigs obtained from phrap were then subjected to a homology search against the reference genome using lastz version 1.02.00 (http://www.bx.psu.edu/~rsharris/ lastz/) Harris (2007), and the resulting alignments chained together using axtChain and parsed with chainNet Kent et al. (2003). These latter two tools combine the alignments from lastz to find the highest-scoring colinear alignment of a query to a target, and then separate alignments into separate files by target, respectively. A single contig chaining within Xbp of the regions identified by divergently-oriented reads as flanking the breakpoints was considered to have confirmed the existence of the event. In practice, we let X equal 0, 50, or 100 base pairs.

CNV calling

We identify 38 divergent read calls consistent with tandem duplications in the D. yakuba reference strain, 20 of which are specific to the reference strain. Meanwhile the D. simulans reference strain has 92 divergent calls in the reference strain, 29 of which are specific to the reference. These unannotated duplicates in the reference sequence were excluded from downstream analyses on the grounds that they are likely to be biased with respect to gene content, genomic location, base composition, and population frequency. Excluding unannotated duplicates in the reference and putative ancestral duplications, D. yakuba has an average of 148.6 duplications per strain with a standard deviation of 41.7, while in D. simulans we find 113 duplications per strain with a standard deviation of only 15.6 (Table S6) and a weak correlation between coverage and number of variants per strain (Figure 4). Hence the variance in number of duplications per strain is 7.5x greater in D. yakuba, in addition to strains harboring on average greater numbers of tandem duplications. Corresponding numbers with reference duplicates and ancestral duplications included are found in Table S7. The distribution of read pair depth indicating events for a representative sample strain, CY20A, is in Figure S1.

We used a Hidden Markov Model that compares coverage in genomic resequencing of the reference to observed coverage in reference strains to identify regions with elevated coverage consistent with duplication of sequences spanned by divergently-oriented reads. Coverage was quantile normalized prior to analysis so that each strain displays equal mean and variance, rendering tests of differential coverage robust in the face of differing sequence depth across samples or across sites (Bolstad et al. 2003).

In some cases, a duplication may in fact exist, but due to lower sequencing coverage in one strain, or due to stochastic effects of sampling, a duplication may not be identified via paired-end reads. Such false negatives may be more common for variants that are significantly smaller than the library insert size where the likelihood of finding divergently-oriented reads is far lower. To correct the frequency distribution for such false negatives, we used increased coverage to identify duplications in additional strains. For duplications defined using 3 or more pairs of divergently-oriented reads that also showed at least one divergently-oriented read pair as well as two-fold or greater coverage increases in additional strains, frequencies were corrected to include a duplication in that strain.

For *D. yakuba*, frequency correction based on increased coverage resulted in additional calls for 10 duplications across a total of 17 calls in individual strains for duplications larger than 325 bp, yielding a final total of 1033 duplications across 2323 calls in individual strains greater than the targeted library insert size. These estimates suggest that among duplications that can be identified using paired-end reads, the false negative rate is 0.732% ($\frac{17}{2323}$) for duplications larger than the library insert size. For duplications smaller than the targeted library insert size. For duplications resulting in a total of 91 duplication calls in additional strains. Compared to the total of 691 calls in individual strains across 382 duplications, the false negative rate for duplications smaller than the targeted library insert size is 13.2% ($\frac{91}{691}$) for an overall false negative rate of 3.6% ($\frac{108}{3014}$). In *D. simulans*, corrections result in 14 additional duplication calls across 11 duplicated sites for

duplicates smaller than 325 bp and 4 additional calls across 2 sites for duplciates larger than 325 bp. The resulting false negative rates are 4.3% ($\frac{14}{329}$) for small duplications and 0.20% ($\frac{4}{1964}$) for duplications larger than the library insert size for an overall false negative rate of $0.78\%(\frac{18}{2293})$. Duplicate size and coverage with divergently-oriented reads are not correlated in individual samples (R = -0.048, P = 0.55) suggesting that methods are unbiased with respect to duplicate size.

We have excluded duplications larger than 25 kb as these are substantially less likely to display increased coverage across the span of divergently-oriented reads. While there may be some duplications larger than 25 kb, such divergently-oriented reads may be caused by within-chromosome translocations or TE movement as well as tandem duplications, and thus the genetic constructs which produce these abnormal mappings are uncertain. We, however, observe no duplications greater than 25 kb which have continuously elevated coverage across the span of divergently-oriented reads, consistent with size limits observed in previous surveys in *D. melanogaster* (Dopman and Hartl 2007).

Confirmation with long sequencing reads

We generated PacBio genomic DNA libraries for four sample strains to roughly 8X coverage. A total of 10ug Qiagen column purified genomic DNA was sheared using a Covaris g-tube according to PacBio. Protocol low-input 10 kb preparation and sequencing (MagBead Station). The Covaris protocol for g-tube was followed (Beckman Allegra 25R centrifuge). AMPure magnetic beads were purchased directly from Beckman and manually washed according to the protocol in Pacific Biosciences Template Preparation and Sequencing Guide. DNA template prep kit 2.0 (3 kb-10 kb) was used for library construction. After construction of the 10 kb SMRTbell template, the concentration was measured by Qubit and the library size analysis performed using an Agilent Bioanalyzer. The Pacific Biosciences calculator (version 1.3.3) determined the amount of sequencing primer to anneal and the amount of polymerase to bind (DNAPolymerase binding kit 2.0). The calculator also recommended sample concentrations for binding the polymerase loaded SMRTbell templates to MagBeads.

The PacBio RS remote version 1.3.3 set up the sequencing reaction by identifying sample wells, sequencing protocol, number of SMRT cells and length of movie. The sequencing protocol was MagBead standard seq v1. Reagents from DNA sequencing kit 2.0 were used for the sequencing protocol. 120 minute movies were taken for each SMRTcell. The SMRT cells were version 3. DNA control complex 2.0 (3 kb-10 kb) was the internal control. Five SMRT cells were analyzed for the 10 kb preparation of D. yakuba reference genome. The movie which records the light pulses during nucleotide incorporation is delivered in real time to the primary analysis pipeline which is housed completely in the Blade Center. Proprietary algorithms translate each pulse into bases with a set of quality metrics. The data is then available for secondary analysis. SMRT Portal version v1.4.0 build 118282 with RS_only filter protocol generated the FASTQ files for the sequences and the circular consensus reads (CCS). The default filters were removal of reads <50 bases and less than 0.75 accuracy.

The single-molecule sequencing resulted in an average genomic coverage of 8X for samples CY17C, CY21B3 and NY66, NY73. The entire genome is spanned by only on the order

of 10⁷ reads (Table S11), offering low clone-coverage and providing sparse opportunities for confirmation. The detailed results from long-read alignments are shown in Tables S8. The single unconfirmed event in line NY66 has nonzero coverage throughout the duplicated region, but coverage drops to zero immediately 3' of the 3' locus containing divergent short reads and there is evidence of large deletions with respect to the reference, but no single read suggesting a tandem duplication. Thus, only three events were not confirmed (one event per sample), suggesting that our protocol for identifying structural variants using short read data has a 96.1% confirmation rate, and a low false positive rate. For two of these unconfirmed rearrangements we do not have sufficient data to confirm or refute the existence of a rearrangement. Thus, the true false positive rate is likely to be less than the 3.9% implied by these numbers. Thus, single-molecule sequencing suggests that our protocol for detecting tandem duplications via short reads is highly accurate.

Short split read mapping

For comparison of performance (see Results), Pindel we ran version 0.2.5a1 (Ye et al. 2009)with command options line --max_range_index 4 --RP --report_inversions --report_duplications --report_long_insertions --report_breakpoints --report_close_mapped_reads --min_inversion_size 500 --min_num_matched_bases 20 --additional_mismatch 1 --min_perfect_match_around_BP 3 --sequencing_error_rate 0.05 --maximum_allowed_mismatch_rate 0.02 --anchor_quality 20

--balance_cutoff 100 --window_size 0.01 --minimum_support_for_event 3 --sensitivity 0.99 to identify duplications on each major chromosome arm independently. We required that duplication breakpoints be spanned by at least one read on each strand with a total coverage depth of at least three reads, keeping only calls which map to regions with coverage across all strains. These requirements are somewhat more lenient than the paired read mapping above in that they do not remove putative PCR duplicates, due to a smaller span in which split reads may reasonably be expected to map. Overlap between Pindel and paired-end reads is low, with 11.7% of duplicates (179 of 1415) in D. yakuba, as defined by paired-end reads matching duplicates whose breakpoints lie within 100 bp of breakpoints defined by split read mapping of Illumina sequence data (Table S29). These 179 variants capture 102 genes or gene fragments, including 21 whole or nearly whole duplicates (< 90% of CDS span). Only 5 out of 179 (2.7%) are flanked by 30 bp or longer direct repeats in the reference, and none are flanked by 100 bp or longer direct repeats. The site frequency spectra for these confirmed duplicates is also significantly different from that of all duplicates defined by paired-end read mapping (W = 136270, P = 0.0369).

Yet, we observe a high confirmation rate for duplicates defined by paired-end read orientation, meaning that the false negative rate for Pindel is extremely high. Thus, it would seem that paired-end reads mapping grossly outperforms Pindel for duplications greater than 50 bp when coverage is high. After clustering across strains, requiring that breakpoints in different strains fall within 100 bp of one another, consistent with criteria used for paired-end read orientation, we find 1620 duplications that are not represented among paired-end reads (Table S29), with an average length of 155 bp, in stark contrast to duplicates defined using paired-end reads, with a maximum span identified solely by Pindel of 5766 bp. Thus, Pindel is likely to outperform paired-end read mapping for extremely small duplications but will perform poorly for duplications larger than the library insert size.

Only 11.7% of duplicates identified with paired end reads are identified through split read mapping (Table S29) (Ye et al. 2009), which is expected with short Illumina reads (Table S1-S2), especially in cases where variants are flanked by repetitive sequence (Text S1). Yet, variants identified through paired end read mapping have a 96.1% confirmation rate with long molecule sequencing. Thus, split read mapping with short sequences has a high false negative rate, and was therefore not used for identification of tandem duplicates or following analyses. In a further attempt to establish precise breakpoints from Illumina sequencing data, we attempted to assemble and confirm *in silico* with short Illumina reads (Text S1, Figure S7-S8). We have reconstructed 49.9% of breakpoints in D. yakuba and 58.1% of breakpoints in *D. simulans* that are larger than the 325 bp targeted insert size. Assembly rates increase for larger duplications (Table S30) with 60.3% of breakpoints in D. yakuba and 71.5% of breakpoints in D. simulans over 1 kb that can be assembled. There are no apparent differences in breakpoint assembly between the X and the autosomes (Table S30) and no significant difference in the frequency spectrum of variants with assembled breakpoints (Figure S9-S10). However, requiring breakpoint reconstruction would eliminate a large amount of the observed variation and likely be biased against repetitive sequences as well as against small variants.

Genome wide surveys

Some regions of the genome cannot be surveyed due to technical limitations. We are unable to identify duplicates flanked by repeats in the reference genome which have zero divergence and are beyond the size limits of our Illumina sequencing library insert size. We identify 121 direct repeats in the *D. yakuba* reference with 99.5% identity to one another which are 300 bp or larger and lie within 25 kb of one another, spanning a total of 678.707 bp (0.57%) of the D. yakuba reference (Table S12). In D. simulans we identify only 5 such direct repeats, covering 84,055 bp of sequence (0.09%) of the reference sequence (Table S12). In principle, such divergence levels amount to one divergent site per 200 bp, and therefore are expected to be captured with paired end read data. However, these criteria are extremely lenient and offer an upper bound of sequence where repeats might confound duplicate identification. Additionally, duplications whose breakpoints lie within the span of repeats could potentially still be identified, and therefore we did not apply any filters to exclude these regions. These estimates therefore represent an upper bound of sequence in the reference that cannot be readily surveyed. Assuming that the D. yakuba reference genome is representative of strains in the population, the number of variants that are unidentified due to repetitive content is likely to be very low.

The methods described here are similarly precluded from surveying sites which have zero coverage across strains and not associated with deletions but are simply a product of stochastic effects of library prep. This filter removes 0.9-1.6% of sequence per strain in *D. simulans* and 1.2-1.8% of sequence in *D. yakuba* and will therefore have limited effect. We therefore suggest that the number of tandem duplicates identified via paired end read mapping in high coverage sequencing are therefore likely to be an accurate representation of genome wide variation in the population.

Species	Sample	Read length	Number of read pairs
Drosophila yakuba	reference	54	27,771,582
		76	29,065,488
		105	68,660,482
	CY20A	76	86,628,715
		76	35,886,204
		76	39,262,696
	CY28	54	31,908,008
		76	40,631,850
	CI ZO1 A	76	33,242,246
	CYUIA	48	25,239,444
		04 76	25,200,710
		76	20,090,290
	CV02B5	10 48	20 266 663
	010200	54	23,669,407
		76	30.960.740
	CY04B	48	20.525.873
		54	19,048,177
		76	29,088,850
		76	81,634,715
	CY08A	48	22,518,030
		76	28,321,290
		54	31,630,793
	CY13A	48	21,632,572
		76	26,933,913
	01170	54	31,252,102
	CYIIC	48	25,560,116
		70 54	20,303,880
		54 76	116 502 064
	CY21B3	48	21.084.747
		76	28,094,292
		54	24,831,622
		76	92,234,832
	CY22B	54	21,924,434
		76	25,916,918
		54	26,611,105
	NY66-2	54	24,894,912
		76	26,776,198
	NXO1	76	88,481,425
	IN 1 61	04 76	20,034,905
		76	85 887 835
	NY48	54	23.129.714
	11110	76	28.500.212
		76	30,114,197
	NY56	54	26,486,845
		76	31,506,258
		76	32,601,617
	NY62	54	29,743,963
		76 70	30,946,111
	NIVCE	76	31,529,718
	IN 1 05	04 76	27,490,645
		76	28 468 446
	NY73	54	27.534.698
		76	31,988,717
		76	29,556,013
	NY42	54	33,715,271
		76	42,770,174
		76	35,701,540
	NY85	54	27,811,873
		76	32,528,787
	NTN74 44	19^{-76}_{-1}	33,047,656
	IN Y 141	±9 54	25,298,106
		76 76	80,761,937
	1	01	00,140,108

Table S1: Sequencing statistics for $Drosophila\ yakuba$ libraries

Species	Sample	Read length	Number of read pairs
Drosophila simulans	reference $(w501)$	104	46,855,159
	MD221	76	41,341,930
		76	43,274,500
		54	42,866,171
	MD06	54	40,300,257
		76	36,879,386
		76	44,594,779
	MD63	54	29,033,259
		76	34,548,640
		76	32,326,841
	MD251	76	42,795,040
		54	42,248,728
		76	43,250,191
	MD105	54	28,957,390
		76	35,059,033
		76	30,862,150
	MD199	54	39,280,145
		76	41,798,120
		76	42,708,601
	MD106	76	45,264,776
		76	45,425,267
	MD73	54	42,630,510
		76	43,929,651
		76	44,473,268
	MD15	76	24,882,026
		76	38,422,860
		76	38,035,776
	MD233	76	44,330,417
		76	38,302,627
		76	38,525,975
	NS40	54	41,655,021
		76	42,810,725
		76	44,451,089
	NS05	54	43,132,030
		76	42,000,020
		76	43,987,326
	NS137	54	31,917,670
		76	39,650,018
		76	34,951,602
	NS39	54	41,063,490
		76	42,341,695
		76	45,140,717
	NS67	76	42,962,176
		76	$36,\!357,\!328$
		76	39,932,110
	NS50	76	40,491,844
		76	32,795,824
		76	37,809,667
	NS113	76	37,031,543
		76	34,325,117
		76	37,031,994
	NS78	76	41,381,084
		76	36,771,570
		76	38,763,692
	NS33	76	37,225,499
		76	34,271,146
		76	$36,\!656,\!786$
	NS79	76	38,326,489
		76	36,965,044
		76	40,146,925

Table S2	Sequencing	statistics	for	D	simulans	libraries
10010 02.	Sequencing	5000150105	101	\mathcal{L} .	50110000105	morarios

MD = Madagascar D. simulans, NS = Nairobi D. simulans.

chrom	D. simulans	D. yakuba
2L	23275275	28575774
2R	21329557	23894902
3L	23878518	21033386
3R	26966593	22193704
4	1007160	1342752
Х	20607623	21512027

Table S3: Bases with coverage in reference

Table S4: Summaries of raw sequence coverage for inbred lines at mapping quality thresholds

Species	Sample	M_0^{a}	$f_{0,0}^{\rm b}$	$Q_{1,0}^{c}$	M_{20}^{a}	$f_{0,20}^{\rm b}$	$Q_{1,20}^{c}$	M_{30}^{a}	$f_{0,30}{}^{\rm b}$	$Q_{1,30}^{c}$
Drosophila simulans	reference	55	0.012	8	55	0.046	15	49	0.047	10
	MD221	118	0.017	19	116	0.051	25	90	0.071	5
	MD06	115	0.017	17	113	0.051	24	85	0.071	4
	MD63	90	0.017	15	89	0.051	22	70	0.071	3
	NS40	121	0.017	22	119	0.051	32	95	0.070	5
	MD251	118	0.017	19	116	0.051	26	90	0.071	5
	MD105	92	0.016	14	90	0.051	22	71	0.070	3
	MD199	114	0.017	19	112	0.051	27	90	0.069	5
	NS05	119	0.017	20	118	0.051	27	92	0.069	5
	NS137	98	0.017	17	96	0.051	26	76	0.071	4
	NS39	121	0.016	20	119	0.051	30	94	0.069	5
	MD73	120	0.016	20	118	0.051	29	93	0.069	5
	MD106	87	0.018	14	86	0.052	18	64	0.078	4
	NS67	124	0.018	21	122	0.051	34	97	0.075	6
	NS50	117	0.017	19	116	0.052	29	91	0.076	6
	NS113	111	0.017	18	109	0.051	27	85	0.074	5
	NS78	122	0.018	19	120	0.051	25	94	0.075	6
	MD15	97	0.018	16	95	0.052	21	71	0.078	4
	NS33	111	0.017	18	109	0.051	26	86	0.074	5
	NS79	120	0.018	21	118	0.051	29	93	0.075	6
	MD233	121	0.017	21	119	0.051	30	90	0.076	5
Drosophila yakuba	reference	124	0.009	36	122	0.015	11	111	0.023	4
- •	CY20A	149	0.013	20	146	0.032	4	121	0.060	3
	CY28	85	0.013	11	83	0.036	3	66	0.067	2
	CY01A	151	0.012	21	148	0.032	4	123	0.056	2
	CY02B5	55	0.013	8	54	0.039	2	44	0.067	2
	CY04B	125	0.013	17	123	0.036	4	102	0.063	2
	CY08A	57	0.013	9	55	0.036	2	45	0.066	1
	CY13A	56	0.014	9	54	0.036	2	45	0.068	1
	CY17C	151	0.012	21	148	0.031	4	118	0.058	2
	CY21B3	139	0.012	21	137	0.029	3	113	0.053	2
	CY22B	56	0.014	8	55	0.038	2	45	0.071	1
	NY66-2	110	0.014	15	107	0.038	4	85	0.070	2
	NY81	107	0.014	14	104	0.038	5	82	0.070	2
	NY48	64	0.015	9	62	0.040	3	49	0.072	2
	NY56	60	0.016	7	58	0.044	4	45	0.081	2
	NY62	70	0.013	10	68	0.036	3	54	0.066	2
	NY65	69	0.014	10	68	0.039	4	54	0.072	2
	NY73	68	0.015	9	66	0.041	4	53	0.073	2
	NY42	93	0.014	12	91	0.037	3	74	0.067	2
	NY85	79	0.013	12	78	0.033	3	64	0.062	2
	NY141	110	0.015	14	108	0.041	6	87	0.073	3

^a M_X refers to median coverage of major chromosome arms at mapping quality $\geq X$. ^b $f_{0,X}$ refers to the fraction of the major arms with coverage of zero at mapping quality $\geq X$. ^c $Q_{1,X}$ refers to the first quantile of sites with coverage i 0 and mapping quality $\geq X$. In other words, 99% of sites with coverage i 0 have coverage $\leq Q_{1,X}$

Species	$Sample^{a}$	Median fragment size	99.9^{th} quantile of fragment sizes
Drosophila simulans	reference $(w501)$	532	593^{b}
	MD221	318	527
	MD06	319	551
	MD63	302	636
	MD251	325	580
	MD105	316	702
	MD199	344	584
	MD73	317	537
	MD106	319	529
	MD233	301	501
	MD15	313	511
	NS40	316	602
	NS05	324	558
	NS137	317	647
	NS39	318	549
	NS67	314	517
	NS50	330	571
	NS113	334	581
	NS78	326	550
	NS33	327	543
	NS79	332	562
Drosophila yakuba	reference	343	565
	CY20A	336	998
	CY28	308	1,018
	CY01A	322	1,124
	CY02B5	313	1,183
	CY04B	327	1,123
	CY08A	322	1,338
	CY13A	316	1,070
	CY17C	338	1,102
	CY21B3	372	1,226
	CY22B	328	1,156
	NY66-2	313	989
	NY81	326	1,063
	NY48	322	1,030
	NY56	332	1,069
	NY62	319	1,037
	NY65	341	1,089
	NY73	325	1,078
	NY42	270	725
	NY85	326	1,036
	NY141	336	1,061

Table S5: Summary statistics of libary insert sizes.

a ${\rm MD}={\rm Madagascar}\ D.$ simulans, ${\rm NS}={\rm Nairobi}\ D.$ simulans, ${\rm CY}={\rm Cameroon}\ D.$ yakuba, and NY = Nairobi D. yakuba.

^b For this sample, the actual value calculated from alignments was $> 10^6$. The value we used, which is shown in the table, is the mean value for the non-reference samples.

Species	Strain	Duplications
	CY20A	145
	CY28	160
	CY01A	207
	CY02B5	179
	CY04B	154
	CY08A	184
	CY13A	159
	CY17C	230
	CY21B3	224
	CY22B	136
	NY66-2	134
	NY81	126
	NY48	106
	NY56	81
	NY62	154
	NY65	107
	NY73	100
	NY42	138
	NY85	169
	NY141	121
	std	40.22
	mean	151.0
	median	154.0
D. simulans	MD221	119
	MD06	117
	MD03 NG40	122
	1N540 MD951	119
	MD201 MD105	110
	MD105	100
	MD199 NS05	160
	NG127	100
	NS137	107
	MD72	129
	MD106	102
	NS67	120
	NS50	100
	NS113	113
	NS78	113
	MD15	93
	NS33	111
	NS79	117
	MD233	102
	std	15 56
	Mean	113.63
	Median	113.0

Table S6: Number of tandem duplications in sample strains.

Species	Strain	Duplications
D. yakuba	reference	38
	CY20A	154
	CY28	170
	CY01A	225
	CY025B	187
	CY04B	172
	CY08A	201
	CY13A	168
	CY17C	248
	CY21B3	247
	CY22B	148
	NY66-2	151
	NY81	135
	NY48	107
	NY56	81
	NY62	166
	NY65	114
	NY73	114
	NY42	152
	NY85	182
	NY141	128
	mean	162.5
	median	160
	stdev	43.53
D. simulans	w^{501}	93
	MD221	171
	MD06	169
	MD63	180
	MD251	174
	MD105	195
	MD199	159
	MD73	165
	MD106	136
	MD15	141
	NS40	174
	NS05	219
	NS137	165
	NS39	187
	NS67	172
	NS50	164
	NS113	161
	NS78	166
	NS33	166
	NS79	170
	MD233	156
	mean	165.86
	median	166
	stdev	23.44

Table S7: Number of tandem duplications in sample and reference strains.

Line	Chromosome	Total	Confirmed
CY17C	2L	41	40
	$2\mathrm{R}$	70	69
	3L	38	36
	3R	30	25
	Х	48	46
	4	3	3
CY21B3	2L	53	43
	2R	57	55
	3L	34	34
	3R	36	36
	Х	43	43
	4	1	1
NY66-2	2L	28	26
	$2\mathrm{R}$	30	29
	3L	17	16
	3R	24	22
	Х	33	33
	4	2	2
NY73	2L	19	16
	2R	24	23
	3L	21	20
	3R	15	14
	Х	21	18
	4	0	0

Table S8: PacBio Confirmation

Table S9: Fraction of genome covered in 3 or more reads in downsampled sequences of line $\rm CY17C$

Median coverage	Fraction Covered
15X	0.866
30X	0.898
45X	0.909
60X	0.914
75X	0.92
90X	0.92
105X	0.923
120X	0.923
135X	0.926
150X	0.928

Table S10: P-value for Fisher's Exact Test of PCR confirmation rates

Study	Confirmed	Total	D. simulans	D. yakuba
Emerson et al. 2008	64	74	0.7855	2.089×10^{-5}
Cridland et al 2010	75	78	0.0319	1.642×10^{-9}
Cardoso et al. 2011	18	24	0.5230	0.0725
Cardoso et al. 2012	32	32	0.0169	3.4194×10^{-7}
Zichner et al. 2013	22	23	0.2422	1.1579×10^{-4}
Schrider et al. 2013	7	19	0.0007	0.4165

Line	Cell	Avg Length	Min Length	Max Length	Total Reads
CY17C	1	2424	50	21696	137839
CY17C	2	2418	50	21680	134568
CY17C	3	2175	50	19084	103354
CY17C	4	2161	50	20519	112597
CY17C	5	2148	50	18949	118144
CY21B3	1	2571	50	24042	123592
CY21B3	2	2549	50	22398	129855
CY21B3	3	2224	50	22206	161532
CY21B3	4	2152	50	20779	15733
CY21B3	5	2060	50	18204	149234
NY66-2	1	2556	50	22178	150291
NY66-2	2	2485	50	21204	112095
NY66-2	3	2648	50	21161	139571
NY66-2	4	2059	50	20709	184485
NY66-2	5	2699	50	22203	149048
NY73	1	2269	50	17924	95028
NY73	2	2200	50	17927	92587
NY73	3	2175	50	17779	97116
NY73	4	2137	50	19110	83372
NY73	5	2175	50	19084	87212

Table S11: PacBio Sequencing Reads

Species	Chrom	Number
D. yakuba	2L	13
	2R	10
	3L	41
	3R	43
	Х	13
D. simulans	2L	2
	2R	0
	3L	3
	3R	0
	Х	0

Table S12: Direct repeats 300bp or larger within 25kb span in reference

Species	Functional Category	Group EASE score
D. yakuba	Alternative splicing	3.54
	Immunoglobulin and Fibronectin	2.70
	Chitins and aminoglycans	2.00
	Signal peptide or glycoprotein	1.54
	Immune response to wound healing	1.44
	Drug and hormone metabolism	1.37
	Extracellular matrix	1.34
	Immune response to pathogens	1.17
	Neurodevelopment and morphogenesis	1.17
	Chemotaxis	1.12
	Chorion Development	1.07
D. simulans	Oxidation-reduction and secondary metabolites	2.63
	Cytochromes, oxidoreductases, and toxin metabolism	2.32
	Lipases	1.61
	Immune response to bacteria	1.59
	phospholipid metabolism	1.45
	Chemosensory processing	1.37
	Gultathion transferase and drug metabolism	1.21
	Carboxylesterases	1.2
	Sarcomeres	1.0
	Cuticle development	0.97
	Endopeptidases	0.87

Table S13: Over represented GO categories among duplicated genes at EASE \geq 1.0

	Multiple Independent Duplications	
D. yakuba	Chorion Development and oogenesis	1.79
	Cell signaling	1.34
	Sensory processing	1.23
	Immune response	1.11
	Development	1.05
D. simulans	Immune Response to Bacteria	3.35
	Chorion Development and oogenesis	1.84
	Organic Cation Membrane Transport	1.48
	Chemosensory Perception	1.41

Table S14: Overrepresented GO categories in independently duplicated genes

Species	Chrom	Start	Stop	Genes	Ontologies
D. yakuba	2L	20867709	20868709	GE19441	cation transport
	2L	4561989	4563943	GE14706	Epidermal growth factor; Follistatin-like; Zona pellucida
	2R	1192252	1198186	GE12923	Adenyl cyclase
	2R	8627195	8631730	GE13451, GE13452	AMP dependent ligases or synthetases
	2R	9718894	9722579	GE12353, GE12354, GE13533	serine-type endopeptidases
	2L	22229672	22240590	-	-
	2R	2456185	2468412	-	-
	2R	550564	555698	-	-
	Х	2263061	2263383	-	-
	Х	6027171	6028326	-	-
	3L	6853202	6857398	-	-
	3L	1631349	1632283	-	-
	3R	28797150	28798631	-	-
D. simulans	2L	15442908	15460870	CG7653	aminopeptidase; male reproduction
	2R	19220441	19221209	CG3510	mitotic spindle movement and cytokinesis
	2R	6705454	6706432	CG18445	cellular calcium homeostasis, adult lifespan
	3L	1138079	1141222	CG1179	antimicrobial response
	3L	1138061	1151515	CG9116, CG1165, CG1180, CG1179	antimicrobial response
	3R	12694264	12697515	CG11600, CG11598, CG11608	lipase; accessory gland
	Х	10711505	10714527	CG1725	development and morphogenesis
	Х	815864	816572	CG11638	EF-hand-like domain
	Х	3859088	3860485	CG12691	no data
	Х	4216151	4218438	CG12179, CG12184	no data
	2L	22881359	22884258	-	-
	2R	1782843	1783435	-	-
	2R	1849682	1858187	-	-
	2R	368797	369174	-	-
	2R	6769473	6770112	-	-
	3L	16974345	16975592	-	-
	3L	23132385	23145527	-	-
	3L	23499705	23500091	-	-
	Х	10810038	10810658	-	-
	Х	14784709	14784963	-	-
	Х	1942550	1943315	-	-
	Х	20173558	20177752	-	-
	Х	3953557	3954555	-	-
	Х	4353206	4354968	-	-
	Х	7149884	7152082	-	-

Table S15: Gene Duplications Identified at a Sample Frequency $\geq \frac{17}{20}$

$\begin{array}{cccc} \text{Recruited Non-Coding} & \text{GE12869} & 2L & 4024479 & 4026346 & + & 1 \\ & \text{GE11906} & 2R & 15447621 & 15450093 & - & 1 \\ & \text{GE120773} & 2L & 11412985 & 11416198 & - & 1 \\ & \text{GE12773} & 2L & 11412985 & 11416198 & - & 1 \\ & \text{GE2065} & 3L & 4498924 & 4499419 & - & 1 \\ & \text{GE20642} & 3L & 4748069 & 4750627 & - & 1 \\ & \text{GE20642} & 3L & 4748069 & 4750627 & - & 1 \\ & \text{GE2085} & 2R & 1220523 & 1223522 & + & 3 \\ & \text{GE25403} & 3R & 456693 & 474667 & + & 3 \\ & \text{GE24887} & 3R & 7559447 & 7567609 & - & 1 \\ & \text{GE14841} & 2L & 5056039 & 5058911 & - & 1 \\ & \text{GE14843} & 2L & 12012286 & 12013371 & + & 1 \\ & \text{GE14103} & 2R & 17064455 & 17068625 & + & 1 \\ & \text{GE1404} & 2R & 18340872 & 18341767 & + & 6 \\ & \text{GE19917} & 3L & 15944998 & 15948170 & - & 2 \\ & \text{GE13885} & 2R & 10199336 & 10208268 & + & 1 \\ & \text{GE17610} & X & 5169824 & 15171000 & + & 1 \\ & \text{GE12921} & 2R & 1296122 & 1299376 & - & 4 \\ & \text{GE22013} & 3L & 16172247 & 16172603 & + & 2 \\ & \text{GE2019} & 3L & 16402982 & 14605035 & - & 1 \\ & \text{GE13348} & 2R & 7486324 & 7489683 & + & 1 \\ & \text{GE23504} & 3R & 26016872 & - & 2 \\ & \text{GE23504} & 3R & 14152097 & 14152483 & + & 1 \\ & \text{GE1296} & 2R & 1569408 & 1572051 & - & 1 \\ & \text{GE23710} & 3R & 23607275 & 23608177 & - & 1 \\ & \text{GE23710} & 3R & 23607275 & 23608177 & - & 1 \\ & \text{GE23444} & 3R & 16015440 & 26618338 & - & 1 \\ & \text{GE24349} & 3R & 14703209 & 14705506 & - & 1 \\ & \text{GE24349} & 3R & 14703209 & 14705506 & - & 1 \\ & \text{GE24349} & 3R & 14703209 & 14705506 & - & 1 \\ & \text{GE24349} & 3R & 14703209 & 14705506 & - & 1 \\ & \text{GE14093} & 2R & 16915401 & 16922730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 16922730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 16922730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 1692730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 1692730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 1692730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 1692730 & + & 1 \\ & \text{GE14093} & 2R & 16915401 & 1692730 & + & 1 \\ & \text{GE14093} & 2R & 10300589 & 3063933 & + & 1 \\ & \text{GE14093} & 2R & 10300589 & 306393 & + & 1 \\ & \text{GE1403}$	Туре	Gene	Chrom	Start	Stop	Strand	Strains
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Recruited Non-Coding	GE18269	2L	4024479	4026346	+	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GE11906	2R	15447621	15450093	-	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GE13954	2R	15422288	15424931	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE10773	2L	11412985	11416198	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE12793	2R	3641829	3654689	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE20665	3L	4498924	4499419	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE20642	3L	4748069	4750627	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE12985	2R	1220523	1223522	+	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE25403	3R	456693	474667	+	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE14641	2L	5056039	5058911	-	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GE24887	3R	7559447	7567609	-	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GE18834	2L	12012286	12013371	+	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GE14103	2R	17064455	17068625	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE14204	2R	18340872	18341767	+	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE19947	3L	15944998	15948170	-	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		GE13585	2R	10199336	10208268	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE17610	Х	15169824	15171000	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE13833	2R	13593056	13597666	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE12921	2R	1296122	1299376	-	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE22103	3L	16172247	16172603	+	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE20019	3L	14602982	14605035	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE13348	2R	7486324	7489683	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE23504	3R	26016459	26016872	_	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE26314	3R	14152097	14152483	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE17862	Х	19312815	19315826	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE12906	2R	1569408	1572051	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE24569	3R	12091442	12096476	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE23710	3R	23607275	23608177	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE19620	3L	20846937	20859977	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE14485	4	1300833	1304379	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE24349	3R	14703209	14705506	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE23444	3R	26616440	26618338	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE12929	2R	921000	926017	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE14093	2R	16915401	16922730	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE18272	2L	4137997	4143127	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE16590	Х	157495	158134	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE18174	2L	2726172	2731718	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE13324	2R	7085103	7088180	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE19465	2L	22202637	22205208	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE23519	2L	16475111	16476986	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE21452	3L	5038513	5043130	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE13128	2R	3600589	3603993	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE19410	2L	20057880	20060145	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE11423	2B	20547562	20548621	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE24770	3R	9392640	9392863	-	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE20162	31	11976337	11979310	_	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GE25302	3R	1445612	1450376	_	1
		GE21054	31	115270	118715	+	1

Table S16: Recruited Non-Coding Sequence in D. yakuba I

Туре	Gene	Chrom	Start	Stop	Strand	Strains
Recruited Non-Coding	GE16460	2L	108667	108970	-	1
	GE13445	2R	8579441	8581528	+	2
	GE13294	2R	6537075	6541877	+	1
	GE18814	2L	11619990	11635209	+	1
	GE18468	2L	6924773	6926435	+	1
	GE18653	2L	9824910	9828235	+	1
	GE12963	2R	363102	367650	+	2
	GE21059	3L	156476	159503	+	1
	GE19269	2L	17827409	17829872	+	1
	GE26141	2L	12979610	12983013	-	1
	GE19225	2L	17288040	17288648	+	1
	GE21286	3L	3185710	3196869	+	2
	GE10233	3R	18382396	18384823	+	6
	GE12947	2R	392470	401311	-	1
	GE19172	2L	16627714	16628834	+	1
	GE13092	2R	2741691	2741955	+	1
	GE24207	3R	16710156	16712312	-	1
	GE14560	4	808540	816641	+	1
	GE18453	21	6552459	6556843	+	1
	GE11989	2L 2L	9417833	9419230	_	1
	GE12986	211 2R	1265746	1283900	+	1
	GE12500 GE14704	210 21	1205740	4603145		1
	CF10115	211 91	19647691	19647846	_	1
	CE21084	21 91	18360608	18270660	-	1
	GE21964 CE12047	2L 9D	205220	401500	-	1
	GE12947 CE12641	210 9D	11060164	401300	-	1
	GE13041 CE92019	2N 2D	20550041	20560656	Ŧ	2
	GE25918	9D	20009041	20000000	-	1
	GE24208	3K 0D	10078984	10080303	-	1
	GE13389	2R V	1860267	1805453	+	1
	GE15418	A V	18564946	18568426	-	1
	GE17176	X or	9412662	9415570	+	1
	GE21334	3L	3723736	3727362	+	1
	GE26071	3R	11008671	11012107	+	2
	GE16233	Х	6345642	6350148	-	1
	GE10260	3R	18673427	18675156	+	1
	GE15086	2L	2556400	2557925	-	1
	GE14314	2R	19547242	19551254	+	1
	GE14531	4	41861	42853	-	1
	GE17162	Х	9152733	9154332	+	1
	GE19996	3L	15023729	15026407	-	5
	GE25401	3R	444738	446198	+	1
	GE10771	3R	25846233	25849137	+	1
	GE18000	3L	18980225	18991194	-	3
	GE12947	2R	385387	401772	-	1
	GE15364	Х	19336095	19338151	-	1
	GE13453	$2\mathrm{R}$	8628288	8637097	+	6

Table S17: Recruited Non-Coding Sequence in D. yakuba II

Туре	Gene	Chrom	Start	Stop	Strand	Strains
Recruited Non-Coding	CG5939	3L	8520531	8500705	-	1
	CG3955	2R	9687651	9686889	-	2
	CG30030	2R	7961858	7960689	+	1
	CG5925	3R	12851812	12842698	-	1
	CG3823	Х	5828413	5826778	+	1
	CG15252	Х	9410423	9407893	-	1
	CG12487	3L	14581107	14579140	-	8
	CG4004	Х	11999000	11996338	+	2
	CG3919	3L	14069074	14065733	+	1
	CG9692	3L	16291819	16289912	+	1
	CG7058	Х	17623953	17619037	+	1
	CG8859	$2\mathrm{R}$	8781970	8776750	· _	2
	CG10251	3R	19075153	19071626	-	1
	CG5685	3B	4469843	4462120	-	1
	CG31536	3R	697054	692538	+	1
	CG12691	x	3860485	3859088	- -	18
	CG5659	X	17126212	17124294	'	10
	CG7678	3R	7067181	7063437	+	1
	CG18063	21.	15538184	15535240		2
	CC0431	2L 9I	10000104 10835101	10000240	I	1
	CC4572	2D 2D	5507262	5504122	-	1
	CC31450	2D	16580187	16588657	+	1
	CC9174	on v	10202107	10204124	+	1
	CG2174	A 9D	10322907	10304124	Ŧ	1
	CG0154	on or	22342992	22541102	-	1
	CG3210	ZL V	2472029	2403030	-	1
	CG0308		14530090	14528791	+	1
	CG1851	2R N	3965243	3961574	-	
	CG3208		5145948	5145204	-	6
	CG13350	2R	10556652	10549764	-	4
	CG3647	2L	14671041	14666003	+	1
	CG7914	Х	17986800	17986419	-	1
	CG6643	3R	19913528	19912399	+	2
	CG6416	3L	8421994	8418765	+	1
	CG17446	Х	8714153	8711653	-	1
	CG3558	2L	2878467	2874676	+	1
	CG5939	3L	8521640	8500872	-	1
	CG10240	2R	11466660	11464170	+	1
	CG17927	2L	16357771	16354240	+	1
	CG13658	3R	20627528	20624799	+	1
	CG14724	3R	13454925	13451797	-	1
	CG42575	3L	10870586	10866452	+	3
	CG9689	Х	9313627	9312603	+	1
	CG12184	Х	4215528	4213588	-	1
	CG1486	Х	19933936	19931912	+	1
	CG17510	2R	2451922	2448224	-	2
	CG12065	Х	8054167	8053646	+	1
	CG1179	3L	1141222	1138079	+	20^{-}
	CG5939	3L	8520189	8500848	-	1
	CC32703	v	8703815	8700230		

Table S18: Recruited Non-Coding Sequence in D. simulans I

Туре	Gene	Chrom	Start	Stop	Strand	Strains
Recruited Non-Coding	CG33223	Х	7929354	7921199	-	6
	CG31705	2L	11219262	11213928	-	2
	CG4335	3R	5071920	5071599	+	1
	CG5939	3L	8522666	8500416	-	1
	CG9914	Х	15320652	15317592	-	1
	CG40486	Х	20790004	20788766	-	1
	CG6667	2L	16997487	16991856	-	1
	CG5772	2L	9867394	9858502	-	1
	CG5939	3L	8526072	8502756	-	1
	CG6680	3L	19904005	19895648	+	2
	CG17921	2R	18143092	18133788	-	1
	CG5939	3L	8521943	8500015	-	1
	CG31118	3R	20168765	20167250	-	15
	CG32452	3L	22218538	22215418	+	3
	CG6203	3R	15121661	15121183	+	1
	CG7398	3L	6104564	6098227	+	1
	CG31164	3R	17481879	17479404	+	1
	CG3726	Х	5475457	5471459	+	4
	CG34454	3L	202674	199394	-	1
	CG9380	2R	21517959	21517361	-	1
	CG13225	2R	7858337	7855361	+	8
	CG6511	3L	8513193	8508493	+	1
	CG1165	3L	1142790	1141414	-	14
	CG5409	2R	13335070	13334296	+	1
	CG1925	2R	4531779	4527304	+	1
	CG11158	Х	12915981	12913430	+	1
	CG1179	3L	1151515	1138061	+	20
	CG9126	Х	14999000	14996974	-	1
	CG11030	2L	5566837	5563794	+	1
	CG13225	2R	7859420	7856642	+	2
	CG8887	3L	19234359	19234240	-	1
	CG11325	2L	6485615	6483354	-	1
	CG2174	Х	10323004	10304482	+	4
	CG4026	2L	9474185	9468950	+	8
	CG4937	Х	15950724	15945545	+	1
	CG5939	3L	8521697	8497398	-	1
	CG14803	Х	1624945	1623645	+	1
	CG6231	3R	5832844	5822195	+	2
	CG33223	Х	7930084	7921981	-	1
	CG2174	Х	10323255	10302508	+	1
	CG10146	2R	11339645	11337864	+	2
	CG9331	2L	20280987	20279429	+	1
	CG5939	3L	8519186	8500624	-	1
	CG9761	3R	493871	486754	-	1
	CG4086	3L	16204452	16202997	-	1
	CG5939	3L	8519120	8497461	-	1
	CG30497	2R	4466546	4459504		1

Table S19: Recruited Non-Coding Sequence in D. simulans II

Type	5' Gene	3' Gene	Chrom	Start	Stop	Strand	Strains
Dual Promoter	GE25749	GE24961	3R	6426573	6429128		1
	GE17248	GE15994	Х	10111434	10113143		1
	GE25858	GE24866	3R	8159079	8162914		1
	GE21080	GE21031	3L	282949	286511		1
	GE10392	GE23928	3R	20485903	20487331		1
	GE19241	GE22696	2L	17479513	17482694		1
	GE10859	GE23415	3R	26875286	26881333		1
	GE26132	GE24588	3R	11912024	11916314		3
	GE17889	GE15249	2L	2014960	2019346		1
	GE14337	GE11513	2R	19768417	19770224		1
	GE16626	GE16372	2L	146434	147628		1
	GE13245	GE12657	2R	5880254	5883193		1
	GE14570	GE14484	4	1314161	1319175		1
	GE16771	GE16447	Х	2623733	2628942		1
	GE14002	GE11855	2R	15989525	15990929		1
	GE13989	GE11866	2R	15777997	15781002		1
	GE25878	GE24850	3R	8267252	8270103		1
	GE10233	GE24091	3R	18383837	18386578		2
	GE18995	GE25461	2L	13658567	13660529		4
	GE13812	GE12098	2R	13042582	13049000		1
	GE13138	GE12791	2R	3686554	3691429		3
	GE21885	GE20148	3L	12173462	12175684		1
	GE17429	GE15699	2L	1162125	1162631		1
	GE19355	GE21644	2L	18836291	18841517		1
	GE14442	GE11414	2R	20628266	20630184		1
	GE13815	GE12096	2R	13052601	13054893		1
	GE17290	GE15947	Х	10693772	10694086		2
	GE18487	GE13339	2L	7166837	7171789		1
	GE19240	GE22696	2L	17477743	17483758		3
	GE26291	GE24418	3R	13841865	13844988		1
	GE21597	GE20441	3L	7731981	7736528		1
	GE13211	GE12702	2R	5347302	5349788		2
	GE26230	GE24475	3R	13110215	13112850		1
	GE13929	GE11929	2R	15128544	15131155		1
	GE21085	GE21022	3L	343902	348093		1
	GE10951	GE23313	3R	28355223	28357215		1
	GE26060	GE24657	3R	10734970	10739334		1
	GE16619	GE16580	Х	349074	349922		1
	GE13338	GE12567	2R	7221214	7224978		1
	GE25687	GE25035	3R	5444807	5445189		1

Table S20: Putative Dual Promoter Genes in D. yakuba

Table S21: Putative Dual Promoter Genes in D. simulans I

Туре	5' Gene	3' Gene	Chrom	Start	Stop	Strand	Strains
Dual Promoter	CG4433	CG4845	3R	5438512	5436655		1
	CG10086	CG18748	3R	3506551	3501272		1
	CG12230	CG3917	Х	18350597	18348732		1
	CG9506	CG9500	2L	6166401	6152814		1
	CG7034	CG5760	3R	4371721	4366499		1
	CG13472	CG5295	3L	14429033	14427393		1
	CG3423	CG9211	2L	6722948	6714828		1
	CG5588	CG5611	3R	22888188	22885586		1

Type	5' Gene	3' Gene	Chrom	Start	Stop	Strand	Strains
Chimeric	GE18811	GE18814	2L	11624699	11635716	+	2
	GE12444	GE12447	2R	8682740	8684098	-	1
	GE12828	GE12831	2R	2621213	2625329	-	5
	GE21209	GE21211	3L	2196531	2199567	+	1
	GE16478	GE16479	Х	2094815	2098815	-	1
	GE12441	GE12442	2R	8693878	8697950	-	16
	GE25203	GE25214	2L	14060529	14065910	-	1
	GE19619	GE19620	3L	20848448	20861465	-	1
	GE10625	GE10626	3R	24047193	24049829	+	1
	GE19343	GE19344	2L	18662414	18663086	+	1
	GE13385	GE13386	2R	7858807	7861090	+	2
	GE17209	GE17211	Х	9829925	9831752	+	1
	GE19944	GE19947	3L	15944832	15946907	-	1
	GE12275	GE12276	2R	10705351	10711729	-	10
	GE16764	GE16765	Х	2538959	2540881	+	3
	GE23781	GE23782	3R	22385664	22386968	-	2
	GE14304	GE14305	2R	19416793	19423595	+	1
	GE26358	GE26359	3R	14778214	14779539	+	1
	GE10773	GE10784	2L	11411312	11413493	-	1
	GE21046	GE21047	3L	153714	155228	-	1
	GE18427	GE18428	2L	6328720	6335333	+	1
	GE15774	GE15775	Х	13146906	13148951	-	1
	GE13156	GE13157	2R	4244726	4248299	+	1
	GE13078	GE13079	2R	2529175	2532039	+	1
	GE18932	GE18933	2L	13058912	13060325	+	1
	GE18810	GE18812	2L	11616544	11627893	+	8
	GE15105	GE15108	2L	2406236	2408538	-	1
	GE23853	GE23854	3R	21163271	21166358	-	1
	GE26117	GE26119	3R	11563789	11567495	+	1
	GE12353	GE12354	2R	9718894	9722579	_	19
	GE19681	GE19682	3L	20114778	20124632	-	1
	GE21817	GE21818	3L	11535053	11537096	+	1
	GE25203	GE25214	2L	14060197	14065508	_	1
	GE21123	GE21125	3L	1172484	1179048	+	1
	GE10460	GE10461	3R	21424020	21428007	+	7
	GE12766	GE12767	2R	4305793	4310361	-	1
	GE10682	GE10684	3R	25036642	25044043	+	4
	GE14192	GE14193	2R	18131313	18134201	+	1
	GE20247	GE20248	3L	11082344	11085513	-	8
	GE14235	GE14236	2R	18687558	18689712	+	4
	GE24523	GE24524	3R	12546325	12548762	_	1
	GE12451	GE12452	$2\mathrm{R}$	8660527	8664855	-	1
	GE14191	GE14192	2R	18127656	18131007	+	1
	GE26194	GE26195	3R	12581548	12584840	+	$\overline{5}$
	GE13732	GE13734	2R	12089189	12095200	+	1
	GE15325	GE15326	X	20043093	20045334	-	1
	GE13428	GE13439	2L	7100699	7103913	-	1

Table S22: Putative Chimeric Genes in D. yakuba I

Type	Gene	Chrom	Start	Stop	Strand	Strains	
Chimeric	GE11692	GE11693	2R	17841057	17843909	-	4
	GE16094	GE16096	Х	8950320	8954906	-	12
	GE10460	GE10461	3R	21423681	21427312	+	2
	GE23849	GE23860	2L	16088829	16091980	-	1
	GE10382	GE10383	3R	20409220	20411134	+	1
	GE21851	GE21854	3L	11841757	11854748	+	13
	GE23589	GE23592	3R	25372683	25379092	-	5
	GE19428	GE19429	2L	20518336	20525187	+	1
	GE12481	GE12482	2R	8432422	8439919	-	4
	GE16583	GE16584	Х	303209	310866	-	1
	GE25989	GE25990	3R	9654460	9658865	+	1
	GE20212	GE20213	3L	11535513	11537526	-	1
	GE18810	GE18811	2L	11616597	11622870	+	1
	GE26258	GE26259	3R	13421611	13426161	+	1
	GE13653	GE13654	2R	11216791	11218480	+	1
	GE18474	GE18475	2L	7043543	7048586	+	5
	GE15105	GE15108	2L	2405167	2407381	-	3
	GE11452	GE11454	2R	20345528	20347724	-	2
	GE13618	GE13619	2R	10699218	10701733	+	8
	GE10109	GE10110	3R	17036248	17039632	+	1
	GE11708	GE11711	2R	17603369	17607091	-	1
	GE11640	GE11641	2R	18527790	18532538	-	1
	GE13733	GE13734	2R	12091221	12095128	+	7
	GE16141	GE16142	Х	7932016	7934615	-	1
	GE22398	GE22399	3L	20111729	20121616	+	1
	GE21366	GE21367	3L	4011112	4013997	+	1
	GE18810	GE18814	2L	11616623	11633710	+	1
	GE18648	GE18649	2L	9807924	9808680	+	1
	GE18812	GE18814	2L	11628837	11634750	+	1
	GE18811	GE18812	2L	11623999	11627896	+	1
	GE25583	GE25584	3R	3641910	3644927	+	1

Table S23: Putative Chimeric Genes in $D.\ yakuba$ II

Type	5' Gene	3' Gene	Chrom	Start	Stop	Strand	Strains
Chimeric	CG11608	CG11598	3R	12697515	12694264	-	20
	CG10243	CG10240	2R	11467239	11463409	+	1
	CG3523	CG3524	2L	2944012	2931797	+	6
	CG33162	CG5939	3L	8516515	8502674	-	2
	CG10958	CG2116	Х	7600264	7599314	+	1
	CG6607	CG13618	3R	19885309	19882164	+	3
	CG17970	CG14032	2L	5075704	5069930	+	1
	CG32261	CG1134	3L	3915856	3910469	+	1
	CG15797	CG17754	Х	8697294	8694573	+	1
	CG18330	CG1049	3L	1464803	1462282	+	2
	CG10246	CG10247	2R	11475068	11469403	-	1
	CG6533	CG6511	3L	8514363	8506572	+	1
	CG2071	CG1304	Х	19554392	19552342	-	1
	CG4231	CG12193	2L	1461505	1459358	+	1
	CG33162	CG5939	3L	8517417	8502361	-	1
	CG33162	CG5939	3L	8519388	8502448	-	1
	CG18779	CG10534	3L	6035588	6032981	-	5
	CG13946	CG12506	2L	739495	736512	+	1
	CG13160	CG33012	2R	8966253	8961795	+	1
	CG4215	CG7480	2L	13945968	13940471	+	1
	CG32257	CG32261	3L	3917056	3916219	+	1
	CG2767	CG11052	3R	3721593	3720813	-	1
	CG33013	CG30043	2R	8957288	8953622	+	1
	CG32383	CG32382	3L	7299216	7297924	-	1
	CG32252	CG15009	3L	4185415	4182425	-	1
	CG17760	CG17759	2R	9222236	9218438	+	1
	CG4200	CG12223	Х	15354878	15351613	+	1
	CG33162	CG5939	3L	8525442	8502118	-	1
	CG5196	CG34402	3R	12884563	12880752	-	1
	CG33115	CG8942	2L	13552279	13546280	-	7
	CG14935	CG14934	2L	11526363	11522417	+	1
	CG14987	CG1134	3L	3920390	3910549	+	3
	CG32751	CG32754	Х	5729860	5725985	-	1
	CG33162	CG5939	3L	8526534	8501627	-	1
	CG32280	CG11495	3L	3024302	3020851	+	1
	CG4231	CG12193	2L	1460323	1458239	+	1
	CG6533	CG6511	3L	8514355	8507883	+	1
	CG4381	CG4181	3R	12913682	12912587	-	1

Table S24: Putative Chimeric Genes in D. simulans

Species	Chrom	Total	100bp Repeat	30bp Repeat	TE within 1kb	TE within 100bp
D. yakuba	2L	334	16	45	50	14
	2R	294	34	52	63	17
	3L	225	22	35	13	3
	3R	256	32	52	21	6
	Х	279	18	50	17	7
	4	27	3	3	15	4
	Total	1415	125	237	179	52
D. simulans	2L	154	9	23	18	8
	2R	200	8	23	41	17
	3L	198	5	19	31	16
	3R	178	8	18	3	1
	Х	231	26	67	25	9
	4	14	0	0	3	1
	Total	975	56	150	121	52

Table S25: Number of duplications and association with repetitive sequence by chromosome

Species	Chrom	Number
D. yakuba	2L	117
	2R	94
	3L	80
	3R	154
	Х	78
D. simulans	2L	62
	2R	48
	3L	25
	3R	46
	Х	24

Table S26: Direct repeats 30bp or larger within 25kb span in reference

Species	Chromosome	vs. Chromosome	Difference	Lower	Upper	Adjusted <i>P</i> -value
D. yakuba	2R	2L	0.399	0.092	0.706	$2.95 \times 10^{-3**}$
	3L	2L	-0.128	-0.459	0.204	0.881
	3L	2R	-0.527	-0.867	-0.187	$1.5 \times 10^{-4^{**}}$
	3R	$2\mathrm{R}$	-0.444	-0.772	-0.115	$1.67 \times 10^{-3^{**}}$
	3R	2L	-0.045	-0.363	0.274	0.999
	3R	3L	0.083	-0.268	0.434	0.985
	X	$2\mathrm{R}$	-1.081	-1.402	-0.760	$< 10^{-16^{**}}$
	X	2L	-0.682	-0.994	-0.371	$8.14 \times 10^{-9^{**}}$
	X	3L	-0.554	-0.898	-0.210	$6.80 \times 10^{-5^{**}}$
	Х	3R	-0.638	-0.970	-0.305	$7.74 \times 10^{-7^{**}}$
	X	4	-0.574	-1.348	0.200	0.279
	4	2L	-0.108	-0.876	0.660	0.999
	4	2R	-0.507	-1.279	0.265	0.419
	4	3R	-0.063	-0.840	0.714	1.000
	4	3L	0.020	-0.762	0.802	1.000
D. simulans	$2\mathrm{R}$	2L	0.064	-0.353	0.480	0.998
	3L	2L	0.444	0.027	0.862	0.029^{*}
	3L	$2\mathrm{R}$	0.380	-0.009	0.770	0.060
	3R	$2\mathrm{R}$	-0.170	-0.570	0.231	0.832
	3R	2L	-0.106	-0.533	0.322	0.981
	Х	2L	-0.080	-0.484	0.324	0.993
	Х	$2\mathrm{R}$	-0.144	-0.519	0.231	0.884
	Х	3L	-0.524	-0.900	-0.148	$1.06 \times 10^{-3^{**}}$
	Х	$3\mathrm{R}$	0.026	-0.362	0.413	1.000
	Х	4	1.023	-0.047	2.092	0.070
	3R	3L	-0.550	-0.951	-0.149	$1.36 \times 10^{-3^{**}}$
	4	2L	-1.102	-2.187	-0.018	0.044^{*}
	4	$2\mathrm{R}$	-1.166	-2.241	-0.092	0.024^{*}
	4	3L	-1.547	-2.621	-0.472	$6.11 \times 10^{-4^{**}}$
	4	3R	-0.997	-2.075	0.082	0.089

Table S27: Tukey's HSD test for log normalized duplication size by chromosome

* P < 0.05, ** P < 0.01

Species	Chromosome	vs. Chromosome	difference	lower	upper	Adjusted <i>P</i> -value
D. yakuba	2R	2L	2.955×10^{-7}	-2.506×10^{-7}	8.415×10^{-7}	0.620
	3L	2L	-2.049×10^{-7}	-7.510×10^{-7}	3.411×10^{-7}	0.885
	3R	2L	-1.104×10^{-7}	-6.565×10^{-7}	4.356×10^{-7}	0.992
	3L	$2\mathrm{R}$	-5.004×10^{-7}	-1.046×10^{-6}	4.566×10^{-8}	0.092
	3R	$2\mathrm{R}$	-4.059×10^{-7}	-9.519×10^{-7}	1.401×10^{-7}	0.267
	3R	3L	9.449×10^{-8}	-4.516×10^{-7}	6.405×10^{-7}	0.996
	X	2L	3.587×10^{-7}	-1.873×10^{-7}	9.047×10^{-7}	0.404
	X	$2\mathrm{R}$	$6.323 imes 10^{-8}$	-4.828×10^{-7}	$6.093 imes 10^{-7}$	0.999
	X	3L	5.636×10^{-7}	1.756×10^{-8}	1.110×10^{-6}	0.039^*
	X	3R	4.691×10^{-7}	-7.692×10^{-8}	1.015×10^{-6}	0.135
	X	4	-6.273×10^{-7}	-1.217×10^{-6}	-3.750×10^{-8}	0.030^{*}
	4	2L	9.860×10^{-7}	3.962×10^{-7}	1.576×10^{-6}	$4.969 \times 10^{-05^{**}}$
	4	$2\mathrm{R}$	6.905×10^{-7}	1.007×10^{-7}	1.280×10^{-6}	0.012^*
	4	3L	1.191×10^{-6}	6.011×10^{-7}	1.781×10^{-6}	$1.766 \times 10^{-6^{**}}$
	4	3R	1.096×10^{-6}	5.066×10^{-7}	1.686×10^{-6}	$7.319 \times 10^{-6^{**}}$
D. simulans	2R	2L	3.962×10^{-7}	-4.214×10^{-8}	8.344×10^{-7}	0.101
	3L	2L	3.565×10^{-7}	-8.180×10^{-8}	7.948×10^{-7}	0.180
	3R	2L	-6.753×10^{-8}	-5.058×10^{-7}	3.708×10^{-7}	0.998
	3L	$2\mathrm{R}$	-3.966×10^{-8}	-4.780×10^{-7}	3.986×10^{-7}	1.000
	3R	2R	-4.637×10^{-7}	-9.020×10^{-7}	-2.538×10^{-8}	0.032^{*}
	3R	3L	-4.240×10^{-7}	-8.623×10^{-7}	1.428×10^{-8}	0.064
	X	2L	1.107×10^{-6}	6.687×10^{-7}	1.545×10^{-6}	$5.742 \times 10^{-10^{**}}$
	X	2R	7.109×10^{-7}	2.726×10^{-7}	1.149×10^{-6}	$1.0537 \times 10^{-4^{**}}$
	X	3L	7.505×10^{-7}	$3.123 imes 10^{-7}$	1.189×10^{-6}	$3.574 \times 10^{-5^{**}}$
	X	3R	1.175×10^{-6}	7.363×10^{-7}	1.613×10^{-6}	$5.891 \times 10^{-11**}$
	X	4	-4.977×10^{-7}	-9.417×10^{-7}	-5.369×10^{-8}	0.019^*
	4	2L	1.605×10^{-6}	1.161×10^{-6}	2.049×10^{-6}	$3.675 \times 10^{-14^{**}}$
	4	$2\mathrm{R}$	1.209×10^{-6}	7.646×10^{-7}	1.653×10^{-6}	$3.144 \times 10^{-11^{**}}$
	4	3L	1.248×10^{-6}	8.042×10^{-7}	1.692×10^{-6}	$8.245 \times 10^{-12^{**}}$
	4	3R	1.672×10^{-6}	1.228×10^{-6}	2.116×10^{-6}	$2.420 \times 10^{-14^{**}}$

Table S28: Tukey's HSD test for number of duplications per mapped bp by chromosome

* P < 0.05, ** P < 0.01

Species	Chromosome	Confirmed	Total	Percent Confirmed
D. yakuba	2L	42	334	12.5%
	$2\mathrm{R}$	26	294	8.8%
	3L	31	225	13.7%
	3R	45	256	17.6%
	Х	32	279	11.5%
	4	3	27	11.1%
D. simulans	2L	30	154	19.5%
	$2\mathrm{R}$	39	200	19.5%
	3L	29	198	14.6%
	3R	29	178	16.3%
	Х	31	231	13.4%
	4	4	14	28.6%

Table S29: Duplications confirmed via split read mapping with Pindel

Species	Min Size (bp)	Chromosome	Reconstructed	Total	Percent Reconstructed
D. yakuba	0	2L	145	338	42.9
		2R	133	296	44.9
		3L	78	237	32.9
		$3\mathrm{R}$	97	260	37.3
		Х	81	284	28.5
		4	8	27	29.6
	325	2L	142	256	55.5
		2R	133	253	52.6
		3L	75	170	44.1
		$3\mathrm{R}$	95	195	48.7
		Х	74	162	45.7
		4	8	21	38.1
	500	2L	138	229	60.3
		$2\mathrm{R}$	131	231	56.7
		3L	72	150	48.0
		3R	93	174	53.4
		Х	66	130	50.8
		4	8	20	40.0
	1000	2L	127	194	65.5
		$2\mathrm{R}$	124	209	59.3
		3L	62	111	55.9
		$3\mathrm{R}$	88	150	58.7
		Х	58	95	61.1
		4	7	14	50.0
D. simulans	0	2L	87	157	55.4
		$2\mathrm{R}$	102	200	51.0
		3L	85	198	42.9
		$3\mathrm{R}$	77	178	43.3
		4	3	14	21.4
		Х	106	231	45.9
	325	2L	85	118	72.0
		$2\mathrm{R}$	100	171	58.5
		3L	85	162	52.5
		3R	76	140	54.3
		4	3	8	37.5
		Х	102	177	57.6
	500	2L	84	109	77.1
		$2\mathrm{R}$	98	146	67.1
		3L	82	147	55.8
		3R	74	115	64.3
		4	3	6	50.0
		Х	98	154	63.6
	1000	2L	71	87	81.6
		$2\mathrm{R}$	85	114	74.6
		3L	76	128	59.4
		3R	67	88	76.1
		4	2	2	100.0
		Х	77	110	70.0

Table S30: Breakpoints Reconstructed

Species	total	>25%	>50%	>75%
D. yakuba	1442	833	646	430
D. simulans	978	641	507	321

Table S31: Duplications with increased coverage compared to reference

Supplementary Figures

Depth of Read Pairs

Figure S1: Histogram of read pair depth indicating a tandem duplication for sample strain CY20A. Number of read pairs is highly skewed and ranges from 3-300 read pairs supporting each event. Mean depth is 22.3, and median of 11 read pairs.

Figure S2: Cumulative distribution plots of the result of quantile-normalization of raw sequence coverage for the *D. simulans* samples. All 21 samples are plotted, each with an arbitrary color. Compared to the variable median raw coverage values shown in Table S4, the quantile normalization procedure results in the same distribution of coverage for all samples.

Figure S3: Cumulative distribution plots of the result of quantile-normalization of raw sequence coverage for the *D. yakuba* samples. All 21 samples are plotted, each with an arbitrary color. Compared to the variable median raw coverage values shown in Table S4, the quantile normalization procedure results in the same distribution of coverage for all samples.

Figure S4: Cases where automated detection of duplicates using coverage becomes problematic. A. A duplication has occurred but coverage does not increase for the full variant length. Possible explanations include subsequent deletion, duplication combined with gene conversion in an adjacent region, or TE movement combined with duplication. B. Coverage increases, but there remains substantial overlap between sample and reference coverage. Modest coverage increases such as these could putatively be hemizygous duplicates, high variance in coverage, or other factors. C. A region is duplicated with subsequent deletion in the interior of one copy. D. Reference and sample variance are typical in one region but variance is magnified in an adjacent region. Automated detection for the typical region may be problematic due to an inability to properly estimate HMM parameters due to the abnormally high variance in the same window.

Figure S5: Confirmation of tandem duplications using single-molecule sequencing. We considered five simple breakpoint structures resulting from simple tandem duplication events. A.] A simple tandem duplication. Short reads (black arrows) from this type of breakpoint map in a divergent orientation, with reads aligning to different strand and pointing (5' to 3') away from each other (Cridland and Thornton 2010) when aligned to the reference. A long read (red arrow) spanning such a breakpoint will align discontinuously to the reference, with the fragment from the 3' section of the breakpoint aligning to the reference upstream of where the fragment from the 5' section of the breakpoint aligns. These fragments are expected to align to the loci where the divergently-oriented reads aligned. B.] When the long read is long relative to the length of the duplication, the entire duplication event may be captured in a single read. In this case, the long read will contain two alignments to the region flanked by divergently-oriented short reads. C.] The case of an incomplete duplication, where markers E and F are deleted from the tandem duplicate. In this case, 5' fragment of a long read will align to the 5' segment of the reference containing divergently-oriented short reads (e.q. short reads aligned to the minus strand), and the 3' fragment will align to the 3' cluster of divergently-oriented reads (which are aligned to the plus strand). The two fragments of the long read will align to the same strand in the same orientation. D.] The case of a tandem duplication involving semi-repetitive sequence. Here, the regions EF and E'F' in the reference are assumed to be similar, but not identical, in sequence, such that short reads may align uniquely to positions differentiating the two loci. A long read spanning the repetitive segment will result in a fragment aligning twice to the reference. This multiply-mapping segment will cover both regions containing divergently-oriented short reads. E.] The case of a tandem duplication separated by spacer sequence. For this case, there are two possible configurations for divergently-oriented short reads, and a long read spanning the novel breakpoint will contain two different regions mapping to the same part of the reference sequence.

Figure S6: Histogram of raw coverage in the *D. yakuba* and *D. simulans* reference genomes. Sites with coverage higher than 400X not shown. Median coverage in the *D. yakuba* reference was 115X whereas the *D. simulans* reference was sequenced to 55X.

Figure S7: Unique Reads at duplication breakpoints. A duplication in the sample strain (below) is used to generate paired-end sequencing libraries. Read pairs interior to duplication boundaries map uniquely to the genome. However read pairs which overlap with duplication boundaries (red) contain unique sequence which is not present in the reference and remain unmapped. Breakpoint sequence can be assembled *de novo* from unmapped partners of mapped reads.

Figure S8: Cartoon of *de novo* assembly procedure. (a) We mined the alignment archives (bam files) for both the divergently-mapping reads (thick black arrows) and the mapped/unmapped pairs whose mapped reads align to the putative breakpoint regions. (b) Once assembled using **phrap**, a single contig with reads spanning the novel junction of the breakpoint confirms the detection of a tandem duplication with a simple breakpoint sequence.

Figure S9: SFS for confirmed breakpoints in D. yakuba

Figure S10: SFS for confirmed breakpoints in D. simulans