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SUPPORTING RESULTS

Validation of the linear noise approximation

To validate our analytical analysis, we performed Monte Carlo simulation of Ca2+ and bu↵er
dynamics in a microdomain using Gillespie’s stochastic simulation algorithm, an exact sim-
ulation algorithm that accounts for the small system size (1). We found close agreement
between the coe�cient of variation of the domain [Ca2+] fluctuations calculated from the
linear noise approximation and the Monte Carlo simulations (Figure S1), in particular re-
producing the bell-shaped dependence on total bu↵er concentration b1

T

.
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Figure S1: Comparison of the relative magnitude of domain [Ca2+] fluctuations, the co-
e�cient of variation c

v

, calculated using the linear noise approximation (solid gray lines),
computed numerically using Eq. 32, and the exact value, determined from the ensemble av-
erage of 1000 Gillespie-type stochastic simulations (black circles). Parameters as in Figure 2.

[Ca2+] fluctuations in the presence of multiple bu↵ers

The fluctuating RBA (Eq. 37) is readily generalizable to multiple bu↵ers. For N rapid
bu↵ers with parameters bn

T

, 
n

, and kn

b

for n 2 {1, . . . , N}, the variance of the domain
[Ca2+] fluctuations is given by
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Figure S2: Combined influence of two rapid bu↵ers on the coe�cient of variation of domain
[Ca2+] fluctuations (c

v

) as the total concentration of bu↵er 1 (b1
T

) and bu↵er 2 (b2
T

) are varied
with constant total amount of bu↵er (b1

T

+ b2
T

= 100 µM). The fluctuating RBA (solid black
line, Eq. S1) agrees with numerical solution of the full model (Eq. 30, open circles). The
c
v

in the presence of either bu↵er 1 or 2 in isolation (dashed lines) and a weighted average
based on total bu↵er concentration (solid gray line) are also shown. Parameters: c

ss

= 1
µM, c1 = 0.1 µM, k

c

= 0.2 ms�1, ⌦ = 10�17. Bu↵er 1: k+ = 102 µM�1 ms�1,  = 0.1 µM,
k

b

= 10�1 ms�1. Bu↵er 2: k+ = 102 µM�1 ms�1,  = 1 µM, k
b

= 10�3 ms�1.

where �
ss

and wn

ss

are

�
ss

=

 
1 +
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and wn
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=
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(c
ss

+ 
n

)2
, (S2)

and for readability we have dropped the superscripted 1 in the notation for total bu↵er
concentration (bn

T

⌘ b1
T

,n).
Figure S2 shows the c

v

for domain [Ca2+] fluctuations in the presence of two rapid bu↵ers
with di↵erent dissociation constants (2 > 1) and exchange rates (k2

b

> k1
b

). Moving left
to right, the total concentration of bu↵er 1 (b1

T

) increases and the total concentration of
bu↵er 2 (b2

T

) decreases, while the sum is held constant (b1
T

+ b2
T

= 100 µM). The fluctuating
RBA (Eq. S1, solid line) is in agreement with full calculations based on the appropriate
generalization (Eq. 30, open circles), that is, the numerical solution of a Lyapunov equation
composed of 5 ⇥ 5 known matrices H

ss

and �
ss

, and the symmetric 5 ⇥ 5 matrix ⌃
ss

, the
steady-state covariance matrix for the fluctuating concentrations in the presence of two
bu↵ers, representing 10 unknown covariances. For comparison, Figure S2 shows the c

v

obtained when bu↵er 1 or, alternatively, bu↵er 2 is included (dashed lines), as well as a
weighted average of these values utilizing the total bu↵er concentrations (bi

T

/(b1
T

+ b2
T

)).
As expected, this naive weighted average does not agree with the full calculation (circles),
because the correct weighting is as implied by the fluctuating RBA (solid line, Eq. S1).
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Figure S3: Dependence of [Ca2+] fluctuations on dissociation constant . (A, top) The total
bu↵er concentration that maximizes [Ca2+] fluctuations (b1

T ⇤) for a fixed steady-state [Ca2+],
c
ss

(Eq. 42). (A, bottom) The enhancement of [Ca2+] fluctuations, c0⇤
v

/c0
v

, that occurs with
optimal total bu↵er concentration (b1

T ⇤) as a function of the bu↵er dissociation constant 
(Eq. 43). (B) The enhancement of [Ca2+] fluctuations, c0

v

/c0
v

, for di↵erent values of c
ss

and
b1
T

(Eq. 40) plotted as functions of . Parameters: c1 = 0.1 µM, k
c

= k
b

= 0.2 ms�1.

Influence of the bu↵er dissociation constant  on [Ca2+] fluctuations

The bu↵er dissociation constant  influences bu↵er-mediated increase in [Ca2+] fluctuations
in a complex manner. For example, the variance of free [Ca2+] fluctuations (�0

c

, Eqs. 37
and 38) depends on the relative (as opposed to absolute) concentrations of domain (c

ss

/)
and bulk (c1/) Ca2+ and total bu↵er (b1

T

/) via the dimensionless quantities �
ss

and w
ss

,
because the later can expressed as w

ss

= (b1
T

/)/(1+c
ss

/)2 and, similarly, the second factor
of � can be written as (c

ss

/ � c1/)/(1 + c1/). However, an increase or decrease in 
does not simply shift the bell-shaped curves describing c

v

vs. b1
T

(as in Figure 2) to the left
or right.

For a given steady-state [Ca2+], c
ss

, the total bu↵er concentration with maximal e↵ect
(b1

T ⇤, Eq. 42) is a u-shaped function of the bu↵er dissociation constant  (Figure S3A, top).
The value of  that minimizes this optimal total bu↵er concentration is found as the  that
zeros @b1

T ⇤/@ and is given by  = c
ss

. This suggests that as c
ss

increases, weaker a�nity (i.e.,
larger ) bu↵ers are more e↵ective at enhancing domain [Ca2+] fluctuations. However, for a
given value of c

ss

, a bu↵er with dissociation constant  = c
ss

does not necessarily enhance
domain [Ca2+] fluctuations to the greatest extent possible, as the fluctuation enhancement
is a decreasing function of  (given by c0⇤

v

/c0
v

, Eq. 43, Figure S3A, bottom).
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In order to determine an optimal dissociation constant ⇤ that maximizes domain [Ca2+]
fluctuations, it is instructive to plot the fluctuation enhancement, c0

v

/c0
v

(Eq. 40) for a given
fixed c

ss

and total bu↵er concentration b1
T

(Figure S3B). These curves are bell-shaped func-
tions of : for both small  (high a�nity bu↵er) and large  (low a�nity bu↵er), steady-state
bu↵ering capacity w

ss

! 0 (Eq. 38) and, consequently, c0
v

/c0
v

⇡ 1. For a given c
ss

and b1
T

,
the optimal dissociation constant ⇤ (corresponding to the peak of the bell-shaped curve) is
found as the  that zeros @�/@. This optimal dissociation constant is the positive solution
of the quartic equation,

4
⇤ + a3

⇤ + b2
⇤ + c⇤ + d = 0, (S3)

where

a = 1
2 (c1 + 4c

ss

)

b = 1
2 [c

ss

(b1
T

+ 2c
ss

+ c1) + b1
T

(c
ss

� c1)]

c = 1
2css

c1(b1
T

� c
ss

)

d = �1
2c1c3

ss

.

Figure S3 shows that for fixed b1
T

, ⇤ is an increasing function of c
ss

, that is, when c
ss

is
large, fluctuations are enhanced to the largest extent by low a�nity bu↵ers. For a given
c
ss

, ⇤ is a decreasing function of b1
T

. Figure S3 shows that domain [Ca2+] fluctuations may
be enhanced several-fold for physiological values of b1

T

and , especially for larger values of
c
ss

= 10 and 100 µM.

Time scale of domain [Ca2+] fluctuations

Figure S4 characterizes the time scale of [Ca2+] fluctuations by plotting the domain [Ca2+]
auto-correlation function, denoted by �

c,c

(⌧) in Eq. 45, for a range of model parameters. In
brief, our calculations suggest that in the presence of rapid, high concentration bu↵er, the
time scale of domain [Ca2+] fluctuations may range over several orders of magnitude (0.1 µs
to 10 ms), depending on the steady-state domain [Ca2+].

For low domain [Ca2+] (c
ss

= 0.1 µM) and total bu↵er (b1
T

) concentrations (top row),
a semi-logarithmic plot of the autocorrelation function �

c,c

is a decreasing sigmoid with
50% decay ⇠1 ms, as in the absence of bu↵er (dashed black lines). As b1

T

increases, the
characteristic time scale of [Ca2+] fluctuations decreases (�

c,c

shifts to the left). For example,
for a slow bu↵er at total concentration of b1

T

= 104 µM (blue), the time scale is ⇠0.1 ms
(Figure S4A, top panel). For a fast bu↵er, the influence of b1

T

is more pronounced, for
example, when b1

T

= 104 µM (blue), the time scale is ⇠10�4 ms (Figure S4B, top panel).
For large steady-state domain [Ca2+], the autocorrelation function �

c,c

is a decreasing
(double) sigmoid with two “knees,” indicating that [Ca2+] fluctuations are characterized by
two distinct time scales. For example, for a fast bu↵er, c

ss

= 10 µM, and b1
T

= 104 µM (blue),
the two time scales are ⇠10�3 and 10 ms (Figure S4B, third panel) that may correspond to
the bu↵er kinetics and exchange rates, respectively (see Figure S5).

As c
ss

increases further, the fast time scale (small ⌧) becomes less prominent and the
slow time scale (large ⌧) dominates. These e↵ects are more pronounced when bu↵ers are
rapid (right column). Increasing the bu↵er exchange rate k

b

has minimal influence on the
shape of �

c,c

, but does increase the values of b1
T

that lead to dominance of the show time
scale (not shown).
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Figure S4: Dependence of the auto-correlation function �
c,c

(⌧) on steady-state domain [Ca2+]
(c

ss

) and total bu↵er concentration (b1
T

) (Eq. 45). Parameters: c1 = 0.1 µM,  = 0.2 µM, ⌦
= 10�17 L, k

c

= 0.2 ms�1, k
b

= 10�2 ms�1, b1
T

= 0 (no bu↵er, dashed black), 10�2 (magenta),
1 (green), 102 (red) and 104 (blue) µM.

The physical processes that correspond with the observed knees in the autocorrelation
functions plotted in Figure S4 can be identified to some extent but not isolated. The relax-
ation time of fluctuations is governed by the eigenvalues of the steady-state Jacobian matrix
H

ss

. In fact, the relevant rates are (up to a sign change) given by the six pairwise sums of
the eigenvalues of the Jacobian matrix H

ss

(three eigenvalues with negative real parts). To
see this, note that that Eq. 27,

.
⌃ = H

ss

⌃ + ⌃HT

ss

+ �
ss

,

can be written as
d

dt
vec(⌃) = (H

ss

�H
ss

)vec(⌃) + vec(�
ss

), (S4)

where � is a Kronecker sum and the vec operation creates a column vector from a matrix
by stacking its column vectors. It is well-known (2) that if A 2 Rn⇥n has eigenvalues �

i

for
i = 1, . . . , n and B 2 Rm⇥m has eigenvalues µ

j

= 1, . . . ,m, then A�B has mn eigenvalues,

�1 + µ1, . . . ,�1 + µ
m

, �2 + µ1, . . . ,�2 + µ
m

, . . . ,�
n

+ µ
m

.

Denoting the three eigenvalues of H
ss

as �1, �2 and �3, it follows that H
ss

�H
ss

has eigenvalues

2�1, �1 + �2, �1 + �3, 2�2, �2 + �3, 2�3. (S5)
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Figure S5: [Ca2+] fluctuation relaxation rates (|�
i

|, i 2 {1, 2, 3}) plotted as a function of
bu↵er parameters (cf. Eq. S5 and nearby text). Horizontal dotted black line indicates rate
in the absence of bu↵er (2k

c

, Eq. 15). Parameters: c
ss

= 1 (A), 10 (B), and 100 (C) µM, c1
= 0.1 µM,  = 0.2 µM, ⌦ = 10�17 L, k

c

= 0.2 ms�1, k+ = 10�3 (solid blue) and 1 (dashed
red) µM�1 ms�1.

Figure S5 shows a numerical calculation of the relaxation rates derived from the eigenvalues
of H

ss

(|�
i

|, i 2 {1, 2, 3}) and the dependence of these rates on Ca2+ bu↵er parameters.
The rates range over several orders of magnitude (10�3 to 104 ms�1). As total bu↵er con-
centration b1

T

increases, the fastest rate increases, the slowest rate remains constant, and
the intermediate rate decreases (asymptotically approaching the slow rate). Increasing the
rate of exchange of bu↵er between domain and bulk (k

b

) increases the slow and intermediate
rates, but does not change the fast rate (compare left and right panels). Increasing the bu↵er
kinetics (k+, k�) increases the fast rate, but does not influence the slow and intermediate
rate (compare solid blue and dashed red lines). The fastest rate is an increasing function of
the steady-state domain [Ca2+] (c

ss

) (cf. A, B and C).

[Ca2+] fluctuations during a time-varying Ca2+ influx

In the main text, we demonstrate that in the presence of a constant Ca2+ influx rate, bu↵ers
enhance the size of domain [Ca2+] fluctuations around the non-equilibrium steady-state.
Figure S6 illustrates an example of a time-varying Ca2+ influx rate, during which bu↵ers do
not suppress and may enhance domain [Ca2+] fluctuations. In Figure S6A, Ca2+ influx rate is
characteristic of triggered SR Ca2+ release, i.e., a Ca2+ spark (top panel, inset). Numerical
simulations demonstrate that bu↵ers increase intrinsic domain [Ca2+] fluctuations during
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Figure S6: [Ca2+] fluctuations during a time-varying Ca2+ influx. (A, top) Monte Carlo
simulations of domain [Ca2+], c(t), in the presence of bu↵er and a time-varying Ca2+ influx,
j
in

(t), generated by numerical integration of Eq. 21 using the Euler-Maruyama method. The
time-varying j

in

(t) is characteristic of triggered SR Ca2+ release and given by an ↵-function,
j
in

(t) / (exp(�t/⌧2) � exp(�t/⌧1)) (see inset). (A, bottom) The ensemble domain [Ca2+]
coe�cient of variation, c

v

, calculated from 1000 Monte Carlo simulations, in the presence
(solid red) and absence (solid green) of bu↵er, is plotted throughout the time-varying Ca2+

influx. Theoretical calculation of c
v

for non-stationary domain concentrations, determined
from integration of Eq. 27 in the presence (dashed black) and absence (dashed blue) agree
closely with the numerical simulations. (B) Theoretical calculation of c

v

, for non-stationary
(solid) and quasistatic (dashed) domain concentrations in the presence (top) and absence
(bottom) of bu↵er. See text for details of the calculations. Note that the dashed black and
dashed blue traces in (A) and (B) are the same. Parameters: b1

T

= 50 µM, c1 = 0.1 µM,
 = 0.2 µM, k

c

= 0.2 ms�1, k
b

= 0.1 ms�1, k+ = 1 µM�1 ms�1, ⌦ = 10�17 L, ⌧1 = 10 ms,
⌧2 = 40 ms.

systole, and bu↵ers do not suppress [Ca2+] fluctuations during diastole (A, bottom, solid red
and green).

A calculation of the domain [Ca2+] fluctuations during a time-varying Ca2+ influx rate
j
in

(t) can be obtained by numerical integration of Eq. 27 (3),

.
⌃ = H⌃ + ⌃HT + �,

where the Jacobian matrix H and two-time covariance matrix � are evaluated at the time-
varying expected value of the domain Ca2+ and bu↵er concentrations, i.e., c(t), b(t), and
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Figure S7: [Ca2+] fluctuations during a stochastically-gated Ca2+ influx. (top) Monte Carlo
simulations of domain [Ca2+], c(t), in the presence of bu↵er and a time-varying Ca2+ influx,
j
in

(t), generated by numerical integration of Eq. 21 using the Euler-Maruyama method. The
time-varying j

in

(t) is stochastically gated with a mean open time of 1 ms and mean closed
time of 9 ms (see inset). (bottom) The ensemble domain [Ca2+] coe�cient of variation, c

v

,
calculated from 1000 Monte Carlo simulations, in the presence (red) and absence (black)
of bu↵er, is plotted throughout the time-varying Ca2+ influx. Parameters: b1

T

= 50 µM,
c1 = 0.1 µM,  = 0.2 µM, k

c

= 0.2 ms�1, k
b

= 0.1 ms�1, k+ = 1 µM�1 ms�1, ⌦ = 10�17 L.

cb(t), found by numerical integration of Eq. 19. Non-stationary calculations agree closely
with numerical simulations in the presence (Figure S6A, bottom, dashed black) and absence
(dashed blue) of bu↵er. Alternatively, we may assume that the domain concentrations
are in quasistatic equilibrium with the time-varying influx rate, i.e., c

ss

(t) = c
ss

(j
in

(t))
and similarly for b

ss

(t) and cb
ss

(t) as determined by Eq. 20, and estimate ⌃(t) using the
the fluctuation-dissipation theorem (Eq. 30, the steady-state of Eq. 27) and the quasistatic
values of �

ss

(t) and H
ss

(t). Figure S6B shows that this approximation deviates only slightly
from the aforementioned non-stationary calculation, and thus both theoretical methods yield
results in close agreement with stochastic simulation.

We also show Monte Carlo simulations of [Ca2+] during a stochastically gated influx
(Figure S7). The stochastically gated influx has mean open time of 1 ms and mean closed
time of 9 ms. Throughout the time course, [Ca2+] fluctuations in the presence of bu↵er (red)
are larger compared with in the absence of bu↵er (black).
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SUPPORTING APPENDICES

Appendix A: The chemical Langevin equation and linear noise ap-
proximation

Consider a well-stirred compartment with I chemical species undergoing elementary reac-
tions indexed by q. The q-th elementary reaction can be characterized by (a) the forward and
backward reaction rates per unit volume, ⌫+

q

(⇢) and ⌫�
q

(⇢), that may depend on species con-
centrations ⇢(t) = (⇢1, ⇢2, · · · , ⇢I)T , and (b) the change in the number of molecules when the
q-th reaction occurs, denoted by the column vector !

q

= (!
q 1, !q 2, · · · , !

q I)T , a di↵erence
of stoichiometric coe�cients (products minus reactants).

If N (t) = (N1, N2, · · · , NI)T (a random vector) is the copy number of each species at
time t, the probability distribution W (n, t) = Pr{N (t) = n} solves the chemical master
equation:

d

dt
W (n, t) =

X

q

V +
q

(n� !
q

)W (n� !
q

, t) + V �
q

(n + !
q

)W (n + !
q

, t)

�
X

q

[V +
q

(n) + V �
q

(n)]W (n, t), (S6)

where V ±
q

(n) = ⌦ ⌫±
q

(n/⌦) are the forward and backward reaction rates for the q-th ele-
mentary reaction. The chemical master equation is a system of ODEs, one for each possible
state. Often the high dimensionality of the chemical master equation makes its use pro-
hibitive. Several approaches have been utilized to show that for su�ciently large system
size and reaction rates, the stochastic dynamics of the species concentrations ⇢

i

are well-
approximated by solutions of the chemical Langevin equation (4-6),

.
⇢

i

=
X

q

!
q i

(⌫+
q

� ⌫�
q

) + ⇠
i

(t) (S7)

where the column vector of fluctuating forces, ⇠⇠⇠ = (⇠1, ⇠2, . . . , ⇠I)T , has mean zero

h⇠
i

(t)i = 0, i = 1, 2, . . . , I (S8)

and two-time covariance
h⇠⇠⇠(t)⇠⇠⇠T (t0)i = �(⇢)�(t� t0). (S9)

where the general form of the two-time covariance matrix, � = (�
ij

), is given by (3)

�
ij

= ⌦�1
X

q

!
q i

(⌫+
q

+ ⌫�
q

) !
q j

, (S10)

that is, the covariance �
ij

is the sum of forward and backward reaction rates, multiplied by
the change in copy number of species i and j, summed over each reaction q and scaled by
the inverse of domain volume ⌦.

Assuming a stable steady state ⇢ss = nss/⌦, the linear noise approximation to Eq. S7 is

.

�⇢ = Hss�⇢ + ⇠ss

i

(t) (S11)
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where the fluctuation �⇢ = ⇢(t) � ⇢ss, the matrix Hss = (hss

ij

) is the Jacobian of reaction
terms in the chemical Langevin equation (Eq. S7) evaluated at steady state, that is,

hss

ij

=
@
P

q

!
q i

⇥
⌫+

q

(⇢)� ⌫�
q

(⇢)
⇤

@⇢
j

�����
⇢=⇢ss

(S12)

and ⇠ss

i

(t) has the same form as ⇠
i

(t) in Eq. S7 with � evaluated at ⇢ss. The approxima-
tions relating the chemical master equation, chemical Langevin equation, and linear noise
approximation are subtle (3-7). The validity of these approximations depends on multiple
factors, including reaction rates (propensities) and the number of molecules n = ⌦c, where
c is a characteristic concentration for the species being simulated. Our use of the linear
noise approximation was validated through comparison of the analytical and symbolic re-
sults (Eq. S11) to Gillespie-type stochastic simulation (Figure S1) that is an exact sampling
of the steady-state probability distribution solving the chemical master equation (Eq. S6).

For the analysis of the fluctuations produced by Eq. S11, we consider an ensemble of
identically prepared systems with ⇢(0) = ⇢ss or, equivalently, �⇢(0) = 0, and numerically or
analytically calculate the I ⇥ I symmetric covariance matrix

⌃(t) = h�⇢(t) �⇢T (t)i

that solves Eq. 27,
.
⌃ = H

ss

⌃ + ⌃HT

ss

+ �
ss

,

which follows from Eq. S11 and the definition of ⌃(t). We are primarily interested in the
steady-state covariance matrix ⌃

ss

that solves the following Lyapunov equation, which relates
�

ss

and ⌃
ss

and is called the fluctuation-dissipation theorem,

H
ss

⌃
ss

+ ⌃
ss

HT

ss

= ��
ss

.

Appendix B: Derivation of the rapid bu↵er approximation

In this Appendix we derive a general analytical expression for the variance of the free [Ca2+]
fluctuations in the presence of rapid Ca2+ bu↵er (Eq. 37) using Eqs. 34 and 36 as our starting
point,

.

�c = � [k+(c
ss

+ b
ss

) + k� + k
c

] �c + (k+c
ss

+ k�) �c
T

� k+c
ss

�b
T

+ ⇠ss

c

(t) (S13a)
.
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k
b

) �c
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+ �
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(k
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� k
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) ⌫
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�b
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cT
(S13b)

.

�b
T

= �k
b

�b
T

+ ⇠ss

bT
, (S13c)

where �c is the fast variable, �c
T

and �b
T

are slow variables, and we have written ⇠
cT (t) =

⇠
c

(t)+⇠
cb

(t) and ⇠
bT (t) = ⇠

b

(t)+⇠
cb

(t). Eq. S13b is derived using a quasistatic approximation
for the average value of the [Ca2+] fluctuation (Eq. 35),

h�ci⇤ ⇡ �
ss

[�c
T

� ⌫
ss

�b
T

] , (S14)

where ⌫
ss

= c
ss

/(c
ss

+ ) and h·i⇤ indicates a time average (as opposed to an ensemble
average). As a consequence, the reaction terms of Eq. S13b that involved the fast fluctuation
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�c have been replaced by a time average that is a function of the slow fluctuations �c
T

and
�b

T

, that is, the slow SDEs (Eqs. S13b and S13c) are now expressed in terms of the slow
fluctuations.

The quasistatic approximation for �c (Eq. S14) is obtained from Eq. S13a by dividing
both sides by k+⇣

ss

to yield

1

k+⇣
ss

.

�c = ��c + �
ss

(�c
T

� ⌫
ss

�b
T

) +
⇠ss

c

(t)

k+⇣
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,

where ⇣
ss

= c
ss

+ b
ss

+  + k
c

/k+,  = k�/k+, and we have used (c
ss

+ )/⇣
ss

= �
ss

. In the
rapid bu↵er limit (k+, k� !1 with  fixed) this expression becomes

0 = ��c + �
ss

�c
T

� �
ss

⌫
ss

�b
T

,

where ⇣
ss

! c
ss

+ b
ss

+  and b
ss

! b
T

/(c
ss

+ ) (Eq. 20). Because this is an outer solution
for a fluctuating quantity, for this zeroth order approximation we write

h�ci⇤ ⇡ �
ss

(�c
T

� ⌫
ss

�b
T

) ,

where h�ci⇤ is a time average, that is, an average of �c over an intermediate time scale, long
compared to the fluctuations in ⇠

c

(t), but short compared to the relaxation time for the slow
variables �c

T

and �b
T

.
The steady-state covariances of the slow subsystem (Eqs. S13b and S13c) are found by

solving the 2⇥ 2 Lyapunov equation (Eq. 30),

Hslow

ss
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+ ⌃slow

ss
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)T = ��slow

ss

, (S15)

where the unknown symmetric matrix is

⌃slow
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i

◆

and the ? indicates that h�b
T

�c
T

i = h�c
T

�b
T

i. Eq. S15 is expanded to yield three equations
for three unknowns,
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where the elements of the relaxation matrix Hslow

ss

are (cf. Eq. 36),
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hslow

bT cT
= 0 and hslow

bT bT
= �k

b

.
The 2 ⇥ 2 covariance matrix �slow

ss

for ⇠ss

cT
and ⇠ss

bT
is calculated using Eq. 23 and the

relationships
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where we have dropped the superscripted ss for clarity. In this way we identify �ss

cT cT
=

�ss

c

+ �ss

cb
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. Importantly, these expressions are independent
of the rate constants k+ and k� that appear in �ss
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. Solving Eq. S16 simultaneously we find
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where ↵
ss

= ��
ss

(k
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w
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).
Finally, we note that in the (�c, �c

T

, �b
T

) system, �c is the fast variable and the 3 ⇥ 3
covariance matrix ⌃fast
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for the fast subsystem,
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where h�c2
T

i, h�c
T

�b
T

i and h�b2
T

i are known. In the rapid bu↵er limit (k+, k� ! 1 with
 = k�/k+ fixed) this matrix equation simplifies considerably, because elements and terms
of Hfast
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and �fast
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that do not involve k+ and k� can be dropped, namely,
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Expanding Eq. S20 we write the following three equations for the unknown h�c2i, h�c �c
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i
and h�c �b
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where h�c2i, h�c �c
T

i, and h�c �b
T

i are the unknowns. Combining these three equations, we
express h�c2i as a function of the slow covariances,
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Using Eq. S22, algebraic manipulations allow us to express �0
c

= h�c2i in terms of model
parameters (Eq. 37). The remaining covariances of the original system with three fast
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variables (�c, �b, �cb) can be found through the relationships �c
T

= �c + �cb, �b
T

= �b + �cb,
and
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From the perspective of analytical work, the two-step process of the fluctuating rapid
bu↵er approximation is far easier than solving the Lyapunov equation for the covariance
matrix ⌃

ss

for �c, �b and �cb, because the fast and slow versions of the �
ss

and H
ss

matrices
of the RBA are simpler than those of the full calculation.

Appendix C: Analysis of the fluctuating RBA and intrinsic fluctu-
ations

We analyze the Langevin domain model when the exchange rates for Ca2+ and bu↵er are
identical (k

c

= k
b

= k). In this case the fluctuating RBA simplifies to
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Under this restriction, the relative increase in the coe�cient of variation due to bu↵er
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)
that is a biphasic function of b1

T

. This result is more easily interpreted when k
c

= k
b

= k
because the equations for the slow variables (Eqs. 34b and 34c) simplify,
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where the c
ss

+ cb
ss

in the numerator of h�c2
T

i is the steady state total calcium concentration
in the domain, and the dependence of this result on k is hidden in c

ss

through the steady-state
flux balance j

in

= k(c
ss

� c1) + k(cb
ss

� cb1).
The final step in the fluctuating RBA is to calculate the covariances that involve the fast

variable �c. These covariances satisfy (see Appendix B),
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where �ss
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where we have used hfast
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The right hand of Eq. S26 that originates from the covariance of ⇠ss
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Thus, the variance of the fast variable h�c2i can be written in terms of the covariances of the
slow variables,
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and it can be shown that h�c �b
T

i is negative while h�c �c
T

i and h�c2i are positive. Upon
substitution of Eq. S25, we have
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This analysis of the fluctuating RBA under the restriction k
c

= k
b

shows that an increase
in total bu↵er b1

T

increases the absolute value of the slow covariances (Eq. S25). These
covariances (the terms within square brackets in Eq. S28) combine to create a net positive
impact on h�c2i that is attenuated to some extent by a decrease in the �

ss

that scales these
terms. The �

ss

/⌦ outside the curly brackets in Eq. S28a might be interpreted as an e↵ective
volume that attenuates all of these contributions to h�c2i, but this is misleading because
�

ss

w
ss

c
ss

= (1� �
ss

)c
ss

is an increasing function of b1
T

(cf. Eq. S28b). Furthermore, Eq. S24
shows that the variance of the free [Ca2+] fluctuations in the presence of bu↵er b1

T

> 0 is
never less than what would occur in the absence of bu↵er (b1

T

= 0).
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