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EXTENDED EXPERIMENTAL PROCEDURES 
 
Hematopoietic Stem Cell Purification and Flow Cytometry 
HSCs throughout this study were purified as SP-KSL-CD150+ (see methods) as HSCs defined 
in this manner are found in both young and aged mice, have high phenotypic homogeneity, 
largely overlap with HSCs purified via alternative strategies, and exhibit high functional activity 
when tested by single-cell, or low cell number, transplantation (Camargo et al., 2006; Challen et 
al., 2010; Chambers et al., 2007b; Ergen et al., 2012; Mayle et al., 2012).  Whole bone marrow 
cells were isolated from femurs, tibias, pelvis and humerus. SP staining was performed with 
Hoechst 33342 (Sigma) as previously described (Goodell et al., 1996). Briefly, whole bone 
marrow cells were resuspended in staining media at 106 cells/mL and incubated with 5 mg/ml 
Hoechst 33342 for 90 minutes at 37oC.  For antibody staining, cells were suspended at a 
concentration of 108 cells/ml and incubated in 4°C for 15 minutes with the desired antibodies. 
Magnetic enrichment was performed with c-Kit-biotin antibody (eBioscience, San Diego, CA) 
and anti-biotin microbeads (Miltenyi Biotec, Auburn, CA) or anti-mouse CD117 microbeads 
(Miltenyi Biotec, Germany) on an AutoMACS (Miltenyi Biotec, Germany). Post-enrichment, the 
positive cell fraction was labeled with antibodies to identify HSCs (SP+ Lineage (CD3, CD4, CD8, 
B220, Gr1, Mac1 and T119)- Sca-1+ c-Kit+ CD150+), B cells (B220+) and Gr cells (Gr1+). All 
antibodies were obtained from BD Biosciences (San Jose, CA) or eBioscience (San Diego, CA) 
and used at 1:100 dilutions. Cell sorting was performed on a MoFlo cell sorter (Dako North 
America, Carpinteria, CA) or Aria II ( BD Biosciences, San Jose, CA) and analysis performed on 
a  LSRII ( BD Biosciences, San Jose, CA). 

RNA-sequencing  
Batches of approximately 70,000 HSCs, 1 million B cell and Gr cells were FACS sorted. RNA 
was isolated with the RNeasy Micro kit (Qiagen, Valencia, CA), including the DNase I (Qiagen) 
on-column digestion. Paired end libraries were generated by using Illumina TruSeq RNA sample 
preparation kit. Illumina HiSeq was used for sequencing with a paired-end sequencing length of 
100bp. 

ChIP-sequencing (ChIP-seq) 
Chromatin Immunoprecipitation (ChIP) was performed with 50,000 to 100,000 HSCs, B-cells, 
and Granulocytes according to standard protocols adapted for small cell numbers; see 
Extended methods_ENREF_4. ChIPed DNA was successfully made into sequencing libraries 
using the ThruPLEX-FD preparation kit without extra amplification (Rubicon, Ann Arbor, MI). 
Sequencing was performed according to the manufacturer’s protocol on a HiSeq 2000 (Illumina). 
Sequenced reads were mapped to the mm9 mouse genome and peaks were identified by 
model-based analysis of ChIP-seq data (MACS). 

Whole-genome bisulfite sequencing (WGBS) 
For WGBS library construction, 300ng genomic DNA was isolated from HSCs and fragmented 
using a Covaris sonication system (Covaris S2). Following fragmentation, libraries were 
constructed using the Illumina TruSeq DNA sample preparation kit. After ligation, libraries were 
bisulfite-treated using the EpiTect Bisulfite Kit (Qiagen, Valencia, CA). Ligation efficiency tested 
by PCR using TrueSeq primers and Pfu TurboCx hotstart DNA polymerase (Stratagene). After 
determining the optimized PCR cycle number for each samples, a large scale PCR reaction 
(100 µl) was performed as described previously (Gu et al., 2011).  PCR products were 
sequenced with Illumina HiSeq sequencing systems. 

Quantitative Real-Time PCR 
RNA was isolated using the RNeasy Micro kit (Qiagen).  First-strand cDNA was synthesized by 
SuperScript II reverse transcriptase (Invitrogen). cDNA input was standardized and RT-PCRs 



were performed with Taqman master Mix (Applied Biosystems, Carlsbad, CA), 18s-rRNA probe 
(VIC-MGB; Applied Biosystems), and a gene-specific probe (FAM-MGB; Applied Biosystems) 
for 40 cycles with an AbiPrism 7900HT (Applied Biosystems). Samples were normalized to 18S 
and fold-change determined by the delta Ct method. 

 

Chromatin Immunoprecipitation (ChIP) 
HSCs (50,000~100,000), B-cells, and Granulocytes were sorted and crosslinked with 1% 
formaldehyde at room temperature (RT) for 10 min, and the reaction was stopped by adding 
Glycine to a final concentration 0.125M and incubated at room temperature for 5 min. Then the 
cells were washed once with ice cold PBS containing protease inhibitor cocktail (PIC; Roche) 
and the pellet was stored at −80°C. The pellet was thawed on ice and lysed in 50 µl lysis buffer 
(10 mM Tris pH 7.5, 1mM EDTA, 1% SDS), then diluted with 150 µl of PBS/PIC, and sonicated 
to 200-500 bp fragments (Bioruptor, Diagenode). The sonicated material was centrifuged at 4°C 
for 5 min at 13,000 g to remove precipitated SDS. An aliquot of the supernatant (typically 180 µl) 
was then transferred to a new 0.5 ml collection tube, and 180 µl of 2X RIPA buffer (20 mM Tris 
pH 7.5, 2 mM EDTA, 2%Triton X-100, 0.2% SDS, 0.2% sodium deoxycholate, 200 mM 
NaCl/PIC) was added. A 1 /10 volume (36 µl) was removed for input control. ChIP-qualified 
antibodies (0.1 µg H3K4me3 Millipore 07-473, 0.3 µg H3K27me3 Millipore 07-449) were added 
and the mixture was incubated at 4°C overnight. Following this, 10 µl of protein A magnetic 
beads (Dynal, Invitrogen) previously washed in RIPA buffer were added and the mixture was 
incubated for an additional 2 hours at 4°C. The bead:protein complexes were washed three 
times with RIPA buffer and twice with TE (10 mM Tris pH 8.0/1 mM EDTA) buffer using  
centrifugation to precipitate the complexes. Following transfer into new 1.5 ml collection tube, 
genomic DNA was released during 2 hours at 68 °C in 100 µl Complete Elution Buffer (20 mM 
Tris pH 7.5, 5 mM EDTA, 50 mM NaCl, 1% SDS, 50 µg/ml proteinase K), and combined with a 
second treatment of 100 µl Elution Buffer (20 mM Tris pH 7.5, 5 mM EDTA, 50 mM NaCl) for 10 
min at 68 °C. ChIPed DNA was purified by MinElute Purification Kit (Qiagen) and eluted in 12 µl 
elution buffer. 
 
High-Performance Liquid Chromatography – Mass Spectrometry 
Two µg of genomic DNA was digested with a cocktail of nuclease enzymes using a commercial 
kit following the manufacturers’ protocol (DNA Degradase Plus, Zymo Research; 2.5 µl 10X 
DNA Degradase Reaction buffer, 1 µl DNA Degradase Plus and water to make a total reaction 
volume of 25 µl). After incubation (37 ºC, >1 hr) aqueous formic acid was added (25 µl, 0.1% v/v) 
to yield a final concentration of 40 ng of digested DNA/µl. 
 
Three 897bp DNA standards, each homogenous for either unmodified 2’-deoxycytidine (dC), 5-
methyl-2’deoxycytidine (5mdC), or 5-hydroxymethyl-2’-deoxycytidine (5hmdC), were purchased 
(Zymo, Irvine, CA), and used to generate a calibration curve. The standards had been prepared 
by PCR using the appropriate nucleotides and were spin-column purified by the manufacturer to 
obtain 50 ng/uL aqueous Tris buffered solutions. By MRM criteria these standards were all more 
than 99.6% pure. With each batch of experimental samples a series of standard samples was 
simultaneously prepared using the DNA standards. The standard samples contained increasing 
amounts of 5mdC and 5hmdC in the presence of the same amount of dC (0, 0.1, 1, 5 and 10% 
for 5mdC and 0, 0.1, 0.5, 1, and 2% for 5hmdC). 
 
The MRM quantitation method was slightly modified from that described previously (Le et al., 
2011). DNA hydrolysis samples were injected onto a reverse phase UPLC column (Eclipse C18 
2.1 x 50 mm, 1.8 µm particle size, Agilent) equilibrated with buffer A (0.1% aqueous formic acid) 



and eluted (200 µL/min) with an increasing concentration of buffer B (methanol: min/%B; 0/0, 
2/0, 4/5, 6/5, 8/0, 10/0). The injection volume for each sample is adjusted such that the dC peak 
area was at least 1 million area counts (Agilent MassHunter Quantitative Analysis, version 
B.04.00), which is equivalent to 100 ng of digested DNA. The effluent from the column was 
directed to an electrospray ion source (Agilent Jet Stream) connected to a triple quadrupole 
mass spectrometer (Agilent 6460 QQQ) operating in the positive ion multiple reaction 
monitoring mode using previously optimized conditions, and the intensity of specific 
MH+→fragment ion transitions were recorded (5mdC m/z 242.1→126.1, 5hmdC 258.1→142.1 
and dC m/z 228.1→112.1).  
 
Calibration curves were constructed for 5mdC and 5hmdC from the data obtained from the 
standard samples (measured 5mdC or 5hmdC peak area/total cytosine pool plotted against 
actual percentage of either 5mdC or 5hmdC in the samples). The measured percentage of 
5mdC and 5hmdC in each experimental sample was then converted to actual percentage 5mdC 
and 5hmdC by interpolation from the calibration curves. This provided a correction for any 
differences that might exist in the molar MRM responses of the various nucleosides.  
 
miRNA cloning and retrovirus transduction  

We used software Block-iT RNAi Designer (Invitrogen) to design miRNAs targeting Slc22a3. 
The stem-loop hairpin produces a miRNA that 100% matches to the gene of interest and 
cleaves the target mRNA. Oligos targeting each novel transcript were successfully cloned by 
BLOCK-iT PolII miR RNAi Expression Vector Kit (Invitrogen). Oligos targeting lacz were 
provided by the kit and used as control in all experiments. Briefly, the synthetic double-stranded 
oligos were cloned into the vector, pcDNA 6.2-GW/EmGFP-miR. The stem-loop hairpin with 
GFP tag was then incorporated into the pDonor vector using BP clonase enzyme mixture 
(Invitrogen). The oligos were further recombined into the retroviral MSCV-RFB vector 
(containing attR recombination sites) using LR clonase enzyme mixture (Invitrogen). Viruses 
were packaged by cotransfection with pCL-Eco into 293T cells. Viral supernatants were 
collected 48-hours post-transfection and viral titers determined using 3T3 cells.  

For retroviral transduction of hematopoietic progenitors, donor mice were treated with 5-
fluorouracil (150mg/kg; American Pharmaceutical Partners, Schaumburg, IL) six days prior to 
bone marrow harvest. Whole bone marrow was enriched for Sca-1+ cells using magnetic 
enrichment (AutoMACS; Miltenyi Biotec) and adjusted to a concentration of 5 x 105 cells/ml in 
transduction medium, containing Stempro 34 (Gibco, Carlsbad, CA), nutrient supplement, 
penicillin/streptomycin, L-glutamine (2mM), mSCF (10ng/ml; R&D Systems Minneapolis, MN), 
mTPO (100ng/ml; R&D Systems). The suspension was spin-infected at 250 x g at room 
temperature for 2 hours in the presence of polybrene (4 µg/ml). For in vivo transplantation, cells 
were incubated for a further 1 hour at 37oC. For in vitro assays, transduced cells were cultured 
in fresh transduction medium for a further two days.   

miRNA Oligos: (target sequence underlined):  
 
Lacz-F: 
TGCTGAAATCGCTGATTTGTGTAGTCGTTTTGGCCACTGACTGACGACTACACATCAGCGA
TTTCAGGACACAAGGCC 

 
Lacz-R: 



5'- 
CCTGAAATCGCTGATGTGTAGTCAGTCAGTCAGTGGCCAAAACGACTACACAAATCAGCGA
TTTC-3' 
 
 
Slc22a3-F 
5'-
TGCTGAAATCTTTACGGTTCCTTGGAGTTTTGGCCACTGACTGACTCCAAGGACGTAAAGA
TTT -3' 
 
Slc22a3-R 
5'- 
CCTGAAATCTTTACGTCCTTGGAGTCAGTCAGTGGCCAAAACTCCAAGGAACCGTAAAGAT
TTC -3' 
 
RT-PCR primers: 
 
Slc22a3-RT-F: AATATCCTGTTTCGGCGTTG 
Slc22a3-RT-R: TCACGAAGCAAGTCATCCAG 
 
 
In vivo Transplantation 

All mice were C57Bl/6 background distinguished by CD45.1 or CD45.2 alleles. For bone marrow 
transplantation, recipient C57Bl/6 CD45.1 mice were transplanted by retro-orbital injection 
following a split dose of 10.5 Gy of lethal irradiation. 50,000 Sca-1+ (CD45.2) donor cells were 
injected to the recipient mice.  

Peripheral Blood Analysis 

For peripheral blood analysis by flow cytometry, mice were bled retro-orbitally, the red blood 
cells were lysed, and each sample was incubated with the following antibodies on ice for 20 min: 
CD45.1-FITC, CD45.2-APC, CD4-Pacific Blue, CD8-Pacific Blue, B220-Pacific Blue, B220-
PeCy7, Mac1-PeCy7, and Gr-1-PeCy7 as previously described (Mayle et al., 2013). Cells were 
then spun down and re-suspended in a propidium iodide solution, and analysis was 
accomplished on live cells with an LSRII (Becton Dickinson).  

 
Gene expression analysis of RNA-Seq data 
The reads are all 100bp long and paired-ended. The last 20 bases are trimmed due to average 
low quality. The alignment was performed by RUM (Grant et al., 2011), which first tries to map 
reads to genome and transcriptome by Bowtie, and then the reads unmapped to genome are 
handed to Blat for additional mapping. The information from the three mappings is merged into 
one mapping. The multiply mapped reads are then discarded. The gene annotations used for 
transcriptome alignment include refSeq gene model, UCSC knownGene model and ensemble 
gene model. The gene expression, FPKM value, is calculated by counting the fragments 
matching the exon information for each gene. Differential expression was performed using 
DESeq (Anders and Huber, 2010). By using p-value cutoffs of 0.05, 1337 up-regulated and 
1297 down-regulated genes are discovered. We used DAVID to examine these differentially 
expressed genes for functional enrichment in GO terms, KEGG Pathways, and 
SP_PIR_KEYWORDS. The unbiased Gene Set Enrichment Analysis was performed using 
GSAA-Seq (http://gsaa.unc.edu), which ranks all genes by DESeq differential test p-values and 



examines enrichment of all gene sets in the Molecular Signatures Database (MSigDB) 
(Subramanian et al., 2005), and several manually created hematopoiesis fingerprint gene sets 
(Chambers et al., 2007a). 
 
IPA analysis of differentially expressed genes 
The TGF-β signaling reduction was identified by IPA (Ingenuity Systems, www.ingenuity.com). 
Of 1238 genes meeting a threshold of fold-change > ±1.5 and multiple testing corrected p-value 
of < 0.001, 1121 were characterized in the Ingenuity database and thus were included in the 
analysis. The upstream regulator analysis and mechanistic network discovery algorithms are 
based on prior knowledge of expected causal effects between transcriptional regulators and 
their target genes documented from the literature compiled in the Ingenuity database. The 
database contains a causal network with ~ 39,000 nodes (genes, miRNA, chemicals) and ~ 
116,000 edges. In IPA, edges represent experimentally observed cause-effect relationships 
(direct or indirect) and binding events. Typically edges are associated with a direction of 
regulation, either "activating" or "inhibiting". An upstream regulator (broadly defined as any 
molecule which can influence gene expression) is connected to a gene dataset through 
expression edges (Kramer et al., 2012). 

For each potential regulator, two statistical measures, an overlap p-value and an 
activation z-score are calculated. The overlap p-value measures the significance of overlap 
between the known targets of each regulator and a dataset (Fisher's Exact Test, right-tailed). 
The activation z-score is an independent metric to call upstream regulators by inferring their 
activation state. The basis for inference is expression edges in Ingenuity's causal network. 
Given the observed differential expression direction of a gene in the dataset, the activation state 
of an upstream regulator is determined by the regulation direction associated with the 
relationship from the regulator to the gene compared to a model that assigns random regulation 
directions. 

We next constructed a mechanistic network of regulators cooperating with TGFB1. We 
identified all regulators (overlap p-value < 1.0E-8, z-score > 1.5) that are connected downstream 
of TGFB1 through one edge (edge p-value < 5.0E-8) where the edge p-value is based on the 
overlap between the corresponding regulated genes in the dataset (Fisher's Exact Test, right-
tailed). The network represents the union of all paths connecting regulators to the dataset. 
 
Repeat analysis of RNA-Seq data 
Repeat elements annotation was downloaded from UCSC RepeatMasker Table (Dec 2011). 
When reads were aligned to those repeat regions, many were mapped to multiple locations. A 
statistical framework RSEM (RNA-Seq by Expectation Maximization) (Li et al., 2010) was used 
to assign the reads probabilistically to address this mapping uncertainty.  RSEM was originally 
developed to handle the multiple mapped reads in gene/isoform estimation, which was similar to 
our repeat elements expression quantification. During calculation, RSEM would maintain a list of 
counts of number of reads assigned to each repeat element. On each iteration of the algorithm, 
the probability of a read assigned to each of its possible positions was calculated based on the 
counts from the previous iteration. After getting the number of reads in each repeat, we 
employed edgeR to call differentially expressed repeat elements with false discovery rate 0.05.  
 
Alternative splicing of RNA-Seq data 
PSI (percentage spliced in) was used to denote the fraction of mRNAs that retained the 
alternatively spliced cassette exon (Katz et al., 2010). Here, SpliceTrap (Wu et al., 2011) was 
employed to estimate PSI  from paired-end RNA-Seq data. If the difference of PSIs of two 
conditions was no less than 0.1, this event was reported as differential alternative splicing. 
 
Alternative pre-mRNA of RNA-Seq data 



A number of paired-end fragments (X) can be identified confidently from pre-mRNA if the 
fragment does not splice and spans exon intron junction. Similarly a number of fragments (Y) 
can be identified confidently from mRNA if the fragment splices across the exon/intron junction. 
The pre-mRNA abundance is X/(X+Y). We have ignored the fragments that cannot be 
confidently classified, such as the fragment contained in intron. The abundance difference in 
young and old are reported if the difference is larger than 0.2 and the p-value from Fisher’s 
Exact Test is significant. 
 
Peak calling of histone modification data 
The young and old samples were sequenced multiple times. The reads are mapped to mouse 
genome mm9 using SOAP2 (Li et al., 2009) by allowing at most 2 mismatches for 50bp long 
short reads and at most 4 mismatches for 100bp long short reads. Only uniquely mapped reads 
were retained. To remove duplicate reads resulting from the PCR amplification, at most 2 
duplicate reads were allowed for each biological replicate. The number 2 is based on Poisson 
P-value cutoff of 1x10-5 determined by the total number of reads with respect to the theoretical 
mean coverage across the genome. The uniquely mapped and duplicate removed reads from 
each biological replicate are fed as a treatment file into the MACS program (Zhang et al., 2008), 
to find the enriched regions, or “peaks”. Peaks are regions with enrichment of treatment reads 
compared to control reads, which are just sonicated wild-type or knock-out sample DNA 
fragments without ChIP pull down. The p-value cutoff for MACS is E-8. Peaks from all biological 
replicates of a specific sample are merged to form the final set of peaks for this specific sample. 
 
K-means clustering of histone modification data 
We then use seqMiner (Ye et al., 2011) to do clustering by pooling all uniquely mapped and 
duplicate-removed reads. We used the R package ‘fpc’ (http://cran.r-
project.org/web/packages/fpc/index.html) to estimate the optimal number of clusters for the k-
means clustering. This estimation gives either 3 or 4 depending on what the histone 
modification is. The genomic regions of interest are from -5kb of TSS to +5kb of TSS or from 
TSS to TTS of Refseq genes. 
 
Quantitative analysis of differential histone methylation regions 
The quantitative comparison analysis was done by comparing the peak signals between the two 
ChIP samples (young and old). To do so, we merged the young and old peaks, counted the 
reads on each of the merged regions, and performed the Poisson test as in the MACS software. 
For each test, the two numbers under test are the numbers of reads per million total reads for 
young and old samples for each specified region. Suppose the number for young sample is the 
mean value of the Poisson distribution, the p-value is calculated for the number of the old 
sample. We then perform the test again by swapping the two numbers in the test formula, i.e., 
regarding the numbers for the old sample as mean value while the number for the young 
sample as the test number. A region with p-value of less than E-8 in one of the two tests was 
considered as a region with a significant difference between young and old. In addition to the 
quantitative analysis on peaks, the comparison on promoters of Refseq genes was also 
performed in order to detect the significantly changed promoters. The procedure on the 
promoters is same for that on merged peaks.	  

Analysis of Whole Genome Bisulfite Data 
The WGBS data analyses were based on a newly developed program MOABS: MOdel based 
Analysis of Bisulfite Sequencing (Sun et al. http://code.google.com/p/moabs/, manuscript in 
preparation). We have used four modules of MOABS, mMap, mCall, mOne and mComp from 
this software. MOABS seamlessly integrates alignment, methylation ratio, and identification of 



hypomethylation for one sample and differential methylation for multiple samples, and other 
downstream analysis.  
 
Reads Mapping 
mMap module used the default mapping program BSMAP(Xi and Li, 2009) to align the paired-
end sequences onto mouse genome mm9. The adaptor and low quality end of read is 
automatically trimmed by BSMAP. For each read, the mapping location was determined to be 
the location with the fewest mismatches. If a read can be mapped to multiple locations with 
same fewest mismatches, this read is determined as a multiply mapped read and its mapping 
location is randomly selected from all the locations with fewest mismatches.  
 
Quality control and methylation ratio calling  
 
For reads from each library, we allow at most 2 reads mapped to exactly same location and 
remove any extra reads which are regarded as PCR amplification products from same DNA 
fragment. During the preparation of the bisulfite treated library, unmethylated cytosines residues 
were added to do the end repair. This end repair procedure may introduce artifact if the repaired 
bases contain methylated cytosine. We modeled the length of overhang sizes of read fragments 
and determined that trimming 3 bases from the repaired end would eliminate nearly all of 
potential artifact events.  We also enabled the process PEOverlap option of mcall module so 
that the overlapping segment of two read mates is only processed once to prevent over-
counting the same information. Methylation ratio for each individual CpG is measured as total 
number of unconverted CpGs divided by the total number unconverted CpGs and TpGs at this 
specific location, counting both strands.  Bisulfite conversion rate is measured as the total 
number of CpH to TpH bisulfite transitions, divided by the total number of CpHs in the mapped 
reads. 
 
Differentially methylated regions (DMRs) 
Here, mSuite used a first order Hidden Markov Model to find differentially methylated regions. 

The state of  cytosine in the genome is denoted as  where can take 3 hidden states for a 
two-sample comparison: 

: hypo-methylation state if ; 

: no difference state if ; 

: hyper-methylation state if ; 

where is a preset parameter and marks the characteristic threshold of difference for 
underlying dataset. 

We model the neighbor correlation by first order Markov chain 
    Pr 𝑆! = Pr 𝑆! 𝑆!!! ,  

which means that the state of site i is directly influenced by previous site.   

Each observation for each site is a combination of 4 numbers from 2 samples: . 
In this problem, we are given the observation sequence from all sites, we want to find the HMM 
model that maximizes the probability of observation sequence. The HMM is characterized by 

initial state , transition probability matrix  and emission probability matrix 

. 

The initial state  can just takes value , though its value does not matter since there are 
millions of CpGs in the genome.  

ith Si Si

S0 p2 − p1 < −v0
S1 p2 − p1 < v0
S2 p2 − p1 > v0
v0

x = (n1,k1,n2,k2 )

π 0 A = Pr Si | Si−1( )
B = Pr xi | Si( )

π 0 S1



By assuming a site is in one of the three states, the emission probability for the site to 

observe  when the state of the site is , can be derived as 

 
Since there are millions of sites and there is a high chance of repeated observations, mSuite 
uses a lookup table to avoid repeated computation of numerical integrations. 

 
The state transition probability matrix can be trained using the forward-backward algorithm. In 
the training process, the initial state, and the emission probability matrix are fixed while the state 
transition probability is the only model variable. Since the training is computationally intensive, 
mSuite may choose only a subset of all cytosine sites in the genome, like 1st one million sites or 
all sites in chromosome 19 or locus provided by users. After the change of likelihood of the 
model is smaller than a given threshold or max number of iterations is reached, the optimal 

hidden state for each site is obtained. Consecutive sites with  ( or ) states are merged as 
hypo-DMR ( or hyper-DMR). 
 
DMRs functional enrichment and overlap with TF binding sites 
A DMR is assigned to a gene if the DMR is located within 3kb of the gene body. Then we use 
DAVID to perform the functional enrichment analysis for the hypo-DMR or hyper-DMR marked 
genes respectively. We also obtained hundreds of bed files with each representing binding sites 
of transcription factor in a blood cell (Hannah et al., 2011). The overlap between each 
transcription factor binding sites (TFBS) and DMRs are calculated. Dividing the genome into 
TFBS and non-TFBS, and assuming the NULL distribution of DMRs is uniform across the 
genome, we calculated the p-value from the hyper-geometric distribution function. 
 
  

ith

x = (n1,k1,n2,k2 ) Si

Pr(n1,k1,n2,k2 | si ) =
dp2 dp1 f (k1;n1, p1) f (k2;n2, p2 )si∫∫
f (k1;n1, p1)dp10

1

∫ f (k2;n2, p2 )dp20

1

∫

S0 S1
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