
Methods

The model network consisted of 90 PNs and 30
LNs, in accordance with the experimentally ob-
served ratio of approximately three PNs to one LN
in the locust AL (Leitch and Laurent, 1996). The
membrane potential of each PN and LN was gov-
erned by a single-compartment equation obeying
Hodgkin-Huxley type kinetics. The PN and LN
currents were taken from those used by Bazhenov
et al. (2001) in their locust AL model.

Intrinsic Currents

Each PN was equipped with Hodgkin-Huxley
sodium and potassium spiking currents as well as a
transient potassium current. LNs in the locust AL,
however, do not generate traditional action poten-
tials; rather, LNs exhibit slow 20-30 ms calcium
spikes that decrease in frequency after 100-200 ms
of steady stimulation (Laurent et al., 1993). Thus,
LNs in our model network were equipped with a cal-
cium current, a calcium-dependent potassium cur-
rent, and a traditional potassium current. Details
are given in the appendix.

Synaptic Currents

PN cholinergic synapses and LN GABAergic
synapses were modeled by fast-activating synap-
tic currents. While cholinergic transmission was
modeled via stereotyped neurotransmitter release
in response to a presynaptic PN action potential,
a continuous coupling model was used to simulate
GABAergic transmission - neurotransmitter release
was dependent upon the level of presynaptic LN
depolarization (Laurent et al., 1993). Addition-
ally, a slow inhibitory synaptic current from LNs to
PNs was introduced in order to reproduce the slow
temporal patterns observed experimentally in PN
odor responses (Laurent et al., 1996). The current
was modeled as acting through slowly-activating
inhibitory receptors and required a series of ap-
proximately three LN calcium spikes to become ac-
tive. A slow synaptic inhibitory current is consis-
tent with the experimental results of Barbara et
al. (2005) in the honeybee AL (see Discussion for
further justification). Details are given in the ap-
pendix.

Network Properties

The network consisted of randomly interconnected
PNs and LNs with cell-type specific connection
probabilities. The PN-PN and PN-LN connection
probability was 0.1, while the LN-LN connection
probability was 0.25 and the LN-PN connection
probability was 0.15. The lack of anatomical or
functional glomerular units containing more than
one PN within the locust AL suggests that spa-
tially uniform connectivity statistics are a reason-
able assumption (Leitch and Laurent, 1996; Lau-
rent, 1996; Wilson and Mainen, 2006). We exper-
imented with a wide range of connection probabil-
ities and determined that sparse network connec-
tivity (specifically sparse PN-PN connectivity) was
required in order to reproduce the known features
of locust AL physiology. Each PN received back-
ground current input in the form of a Poisson spike
train with a mean rate of 3500 spikes/second and
a spike strength of 0.0654 µA. In agreement with
experiment, this resulted in a background PN fir-
ing rate of approximately 2-4 spikes/second (Perez-
Orive et al., 2002). All simulations were performed
using the explicit Euler method with a time step of
0.01 ms.

Odor Simulation

An odor was simulated by stimulating a set of
36 PNs and 12 LNs. Each stimulated cell re-
ceived stimulus current in the form of 200 inde-
pendent Poisson spike trains, each with a mean
rate of 35 spikes/second and a spike strength of
0.01743 µA (PNs) or 0.01667 µA (LNs). Due to the
large convergence ratio of ORN inputs onto PNs
in the locust (Hildebrand et al., 1997; Homberg
et al., 1989; Mazor and Laurent, 2005) and their
mean-driven log-linear response properties (Rubin
and Katz, 1999; Duchamp-Viret et al., 2000; Wa-
chowiak and Cohen, 2001; Meister and Bonhoeffer,
2001; Reisenman et al., 2004; Hallem and Carlson,
2006), we modeled ORN input to each AL neu-
ron as a stochastic process (with Poisson statis-
tics) rather than simulating individual ORNs ex-
plicitly. Consistent with experiment, PNs which
were active during stimulus presentation exhibited
firing rates of 10-40 spikes/second (Perez-Orive et
al., 2002). Twenty trials were performed for each
stimulus with a 10 second total duration for each



trial. Stimulus onset occurred at to = 1 second
and stimulus offset occurred at td = 3.5 seconds.
In order to capture the experimentally observed
time course of ORN input to the locust antennal
lobe (Wehr and Laurent, 1999), we modeled stim-
ulus rise as exponential with a rise time of 400 ms,
while stimulus decay was modeled as root expo-
nential with a decay time of approximately 1000
ms. The odor-evoked input rate of ORN spikes
to a stimulated cell in the network was given by
R(t) = rmexp(−(t − (to + s))2/c1) for t = to to
t = to + s, by R(t) = rm for t = to + s to t = td,
and R(t) = rmexp(−sqrt(t − td)/c2) for t > td,
where s = 400 ms was the rise time, c1 = 100, 000,
c2 = sqrt(1000) were the scaling constants, and rm

was the maximal stimulus-evoked ORN input rate
(described above).

It is generally thought that the olfactory system
initially encodes odors in a combinatorial manner -
different odors are represented by differing (but po-
tentially overlapping) subsets of active ORNs (Jo-
erges et al., 1997; Vickers and Christensen, 1998;
Vickers et al., 1998; Malnic et al., 1999; Ache and
Young, 2005; Wang et al., 2003; Ng et al., 2002).
We therefore explored one paradigm of odor simula-
tion, referred to as the combinatorial paradigm, in
which different odors were simulated by stimulat-
ing varying subsets of 36 PNs and 12 LNs, with the
statistics of current input (described above) uni-
form across stimulated cells. In addition to cod-
ing stimuli in the combinatorial paradigm, we also
examined network behavior when differing stimuli
were represented via an intensity paradigm. In this
case, odors were represented as intensity distribu-
tions, and the set of 36 PNs and 12 LNs receiv-
ing stimulus current was fixed across stimuli. This
fixed subset of cells was divided into six groups of 6
PNs and 2 LNs, and each group was assigned a fac-
tor of 1.0, 0.9, 0.8, 0.7, 0.6, or 0.5 (with each group
being assigned a distinct factor). The mean stimu-
lus input rate to each group was multiplied by its
assigned factor (with otherwise unaltered current
input statistics), and different odors were simulated
by rearranging the group-factor assignments. The
intensity paradigm of odor encoding was motivated
by the observation that varying the concentration
of a given odor tends to modulate the firing rates of
responding ORNs in vivo (de Bruyne et al., 2001;
Wang et al., 2003; Friedrich and Korsching, 1997;
Meister and Bonhoeffer, 2001), and hence stimuli

coded in the intensity paradigm can be thought of
as representing differing concentrations of the same
odor.

Local Field Potential

In the locust, the local field potential (LFP) is mea-
sured from the mushroom body, and oscillations
in the LFP are taken as an indicator of PN syn-
chrony (Laurent et al., 1996). In order to assess
PN synchrony in our model, we computed the LFP
of the network as the average membrane potential
of all 90 PNs. The power spectrum of the LFP
of the PN odor response was computed during the
period of stimulus presentation (1-3.5 sec) using a
single trial. Additionally, we computed the total in-
tegrated power of the LFP in the 15-25 Hz range as
a function of time; the integrated power was com-
puted in 200 ms sliding windows with a 50 ms step
size and was averaged over the 20 trials performed
for a given stimulus.

Principal Component Analysis

Principal component analysis (PCA) was per-
formed on the stimulus-response data of the net-
work. For a given stimulus, we computed the
90×2000 matrix of PN firing rates in 50 ms time
bins over the entire 10 second trial duration; the
matrix entries were then averaged over the 20 tri-
als performed for the given stimulus. We performed
PCA on the matrix of trial-averaged PN firing
rates, projected the data onto the first three prin-
cipal components, and plotted the resulting three
dimensional stimulus-response trajectories. By di-
viding the sum of the magnitudes of the eigenval-
ues of the first three principal components by the
sum of the magnitudes of all eigenvalues, we com-
puted the fraction of the data variance captured by
the first three principal components. In all cases,
the first three principal components captured more
than 90% of the total data variance. Stimulus-
response trajectories resulting from single trial data
matrices were similar to trial-averaged trajectories;
however, trial-averaged trajectories were more well-
defined and thus these are shown in plots. Quali-
tatively, the general features exhibited by the dy-
namics of the response trajectory were independent
of the stimulus used.



Odor Discrimination

We used a simple algorithm based on distances of
individual trial firing rate vectors to template firing
rate vectors for each odor to assess stimulus classi-
fication by the model network. To test the ability
of the network to discriminate among N simulated
odors in a given 50 ms time bin, we computed the
90 dimensional vector of trial-averaged PN firing
rates for each of the N odors in the 50 ms bin;
these vectors were used as the templates for each
of the N odors. For each of the 20N trials, we com-
puted the Euclidean distance between the vector of
PN firing rates for the trial and each of the odor
templates. If the Euclidean distance from the trial
to each of the odor templates was minimized for
odor j, we designated that the network classified
the trial as a presentation of odor j. If the trial
was indeed a presentation of odor j, then the trial
was deemed correctly classified by the network, and
the discriminability of the network in the given 50
ms time bin was determined as the fraction of the
20N trials correctly classified by the network. The
overall ability of the network to discriminate among
the N simulated odors was determined as the time-
averaged discriminability of the network during the
period of stimulus presentation (1-3.5 seconds).

We chose this particular linear discriminator to
match that utilized by Mazor and Laurent (2005) in
their analysis of odor discrimination using stimulus-
evoked recordings from locust PNs. The choice of
50 ms time bins was motivated by the physiology of
Kenyon cells (KCs), the neurons of the mushroom
body that read PN activity (Kenyon, 1896; Laurent
and Naraghi, 1994). PNs send barrages of spikes
to both KCs and LHIs, which are GABAergic in-
terneurons located in a structure called the lateral
horn (Hansson and Anton, 2000). Additionally, 20
Hz oscillations seen in the LFP of the mushroom
body indicate that PN input to KCs and LHIs is
globally synchronized on a 50 ms time scale (Lau-
rent and Davidowitz, 1994; Laurent et al., 1996).
Since KC dendrites are known to receive GABAer-
gic input (Leitch and Laurent, 1996) and LHI axon
collaterals have been shown to diffusely overlap KC
dendrites, LHIs are the likely source of the strong,
periodic, phase-delayed inhibition seen in record-
ings from KCs (Perez-Orive et al., 2002). Thus,
KCs receive globally synchronized PN input in 50
ms epochs, and towards the end of each epoch the

membrane potential of every KC is effectively reset
by inhibition arriving from the lateral horn. This
suggests that KCs integrate PN activity over a time
scale no greater than 50 ms, and hence it is prob-
able that odor discrimination in the locust brain
occurs over similar temporal windows.

Appendix

The membrane potential of each PN and each LN was
governed by equations of the following form:

Cm
dVPN

dt
= −gL(VPN − EL) − INa − IK − IA

−IGABA − Islow − InACH − Istim

Cm
dVLN

dt
= −gL(VLN − EL) − ICa − ICaK − IK

−IGABA − InACH − Istim.

The parameters for the passive leak current were Cm =
1.0 µF , gL = 0.3 µS, EL = −64 mV for PNs and
Cm = 1.0 µF , gL = 0.3 µS, EL = −50 mV for LNs.

Intrinsic Currents

The intrinsic currents consisted of fast sodium and
potassium currents INa and IK , a transient calcium
current ICa, a calcium-dependent potassium current
ICaK , and a transient potassium current IA. All such
currents obeyed equations of the following form:

Ij = gjm
MhN (V − Ej).

The maximal conductances were gNa = 120 µS, gK =
3.6 µS, gA = 1.43 µS for PNs and gCa = 5.0 µS,
gCaK = 0.045 µS, gK = 36 µS for LNs. The rever-
sal potentials were ENa = 40 mV , EK = −87 mV for
PNs and ECa = 140 mV , EK = −95 mV for LNs.

The gating variables m(t) and h(t) take values be-
tween 0 and 1 and obey the following equations:

dm

dt
=

m∞(V ) − m

τm(V )

dh

dt
=

h∞(V ) − h

τh(V )
.

INa and IK are described in Hodgkin and Huxley
(1952).

The ICa current has M = 2, N = 1, m∞ = 1/(1 +
exp(−(V + 20)/6.5)), τm = 1 + (V + 30)0.014, h∞ =
1/(1 + exp((V + 25)/12)), τh = 0.3exp((V − 40)/13) +
0.002exp(−(V − 60)/29) (Laurent et al., 1993).

The ICaK current has M = 1, N = 0, m∞ =
[Ca]/([Ca] + 2), τm = 100/([Ca] + 2) (Sloper and Pow-
ell, 1978).



The IA current has M = 4, N = 1, m∞ =
1/(1 + exp(−(V + 60)/8.5)), τm = (0.27/(exp((V +
35.8)/19.7) + exp(−(V + 79.7)/12.7)) + 0.1), h∞ =
1/(1+ exp((V +78)/6)), τh = 0.27/(exp((V +46)/5)+
exp(−(V + 238)/37.5)) for V < −63 mV and τh = 5.1
for V > −63 mV (Huguenard et al., 1991).

The dynamics of intracellular calcium concentration
[Ca] were governed by the following equation:

d[Ca]

dt
= −AIT − [Ca] − [Ca]∞

τ
,

where [Ca]∞ = 0.00024 mM , A = 0.0002 mM ·
cm2/(ms · µA), and τ = 150 ms.

Synaptic Currents

The GABA and nicotinic acetylcholine currents were
governed by equations of the following form:

Ij = gj [O](V − Ej).

The reversal potentials were EnACH = 0 mV and
EGABA = −70 mV . The fraction of open channels
[O] obeyed the equation

d[O]

dt
= α(1 − [O])[T ] − β[O].

For nicotinic acetylcholine synapses [T] was governed
by the equation

[T ] = Aθ(t0 + tmax − t)θ(t − t0).

For GABAergic synapses [T] was governed by the equa-
tion

[T ] =
1

1 + exp(−(V (t) − V0)/σ)
.

θ(x) is the Heaviside step function, t0 is the time of
receptor activation, A = 0.5, tmax = 0.3 ms, V0 =
−20 mV , and σ = 1.5. For GABAergic synapses the
rate constants were α = 10 ms−1 and β = 0.16 ms−1,
while for nicotinic acetylcholine synapses the rate con-
stants were α = 10 ms−1 and β = 0.2 ms−1 (Bazhenov
et al., 2001).

The slow inhibitory current from LNs to PNs was
governed by the following scheme:

Islow = gslow
[G]4

[G]4 + K
(V − EK)

d[R]

dt
= r1(1 − [R])[T ] − r2[R]

d[G]

dt
= r3[R] − r4[G],

where the reversal potential was EK = −95 mV and
the rate constants were r1 = 0.5 mM−1ms−1, r2 =

0.0013 ms−1, r3 = 0.1 ms−1, r4 = 0.033 ms−1, and
K = 100 µM4 (Destexhe et al., 1996; Bazhenov et al.,
1998).

Maximal synaptic conductances were gGABA =
0.3 µS from LNs to LNs, gGABA = 0.36 µS and
gslow = 0.36 µS from LNs to PNs, gnACH = 0.045 µS
from PNs to LNs, and gnACH = 0.009 µS from PNs to
PNs.


