1	Supplementary Information
2	Real-time imaging of oxidative and nitrosative stress in the
3	liver of live animals for drug-toxicity testing
4	
5	Adam J. Shuhendler ^{1*} , Kanyi Pu ^{1*} , Lina Cui ¹ , Jack P. Uetrecht ² & Jianghong Rao ¹
6 7 8 9 10 11	¹ Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305-5484, USA; ² Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada *Both authors contributed equally to this work.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

2 **Supplementary Figure S1.** Signal stability and imaging depth penetration for CF-SPN *in* 3 *vitro*. (a) The lifetime of chemiluminescent signal production from CF-SPN ($5 \mu g/mL$) in 4 1x PBS incubated with H₂O₂ (50 mM). (b) Stability of the baseline fluorescence ratio

5 (red) and baseline chemiluminescence emission (dashed blue) upon incubation of CF-

6 SPN (5 μ g/mL) in undiluted mouse serum at 37 °C. To demonstrate the prolonged

7 capacity for ROS detection, H_2O_2 (6 μ M) as added to CF-SPN incubations at indicated

8 times (solid blue). (c) Chemiluminescence imaging depth of penetration of CF-SPN (5

9 μ g/mL) through a gelatin-hemoglobin-intralipid imaging phantom. (d) The total

10 chemiluminescence, as measured by area under the luminescence curve (AUC), from CF-

11 SPN after incubation with different concentrations of ONOO⁻.

12

- 14
- 15

2 **Supplementary Figure S2.** Effective liver targeting through the conjugation of galactose

- 3 to the SPN surface. Nanoparticles composed of PFODBT and PS-g-PEG-Galactose (Gal-
- 4 SPN) or PS-g-PEG (PEG-SPN) were administered i.v. (0.8 mg each). Tissues were
- 5 excised and imaged 45 min after nanoparticle administration. (a) Representative image of
- 6 the biodistribution of Gal-SPN (top) and PEG-SPN (bottom). (b) Organ fluorescence
- 7 (ex/em=580/680 nm) was quantified and represented as the mean \pm s.d. (n=3). * p<0.05
- 8 (Mann-Whitney U-test). (c) Uptake of untargeted SPN (top) and asialoglycoprotein

- 1 receptor-targeted Gal-SPN (bottom) 30 min following intravenous administration. Images
- 2 are Z-projections averaged over 20 slices and a total z-depth of 7.7 μm. Nanoprobe
- 3 uptake was marked by fluorescence from the conjugated polymer core composed of
- 4 PFODBT (red), and cellular boundaries were marked by staining of F-actin (blue).
- 5 Fluorescence images were overlaid with DIC of the liver sections. Scale bars = $15 \mu m$.
- 6
- 7
- 8

10 Supplementary Figure S3. (a) The uptake and retention of CF-SPN in the liver as 11 measured by tracking total fluorescence intensity over time. Total fluorescence intensity 12 is the sum of emission at 680 nm and at 820 nm ($I_{680}+I_{820}$), which was measured for mice 13 treated with saline (black curve) or with 300 mg/kg APAP (red curve). Data points 14 represent the mean±s.d. of 3 mice. (b & c) In vivo assessment of hepatotoxic potential of 15 administered nanoparticles. The galactose-targeted nanoparticles (Gal-SPN, red circles) or saline (black squares) were administered i.v. 15 min prior to CF-SPN, and the 16 17 chemiluminescence (b) and fluorescence index (c) was recorded. Data represents the 18 mean \pm s.d. of n=3 mice.

3 **Supplementary Figure S4.** Extension of the time course of H_2O_2 detection after drug

- challenge by re-administration of CF-SPN. Mice were administered 300 mg/kg APAP
 (top row, 1-4) or saline (bottom row, 5-8) i.p., followed by the administration of 0.8 mg
- 6 CF-SPN i.v. After 25 min, CF-NP was re-administered i.v. (a) Luminescence images and
- 7 (b) quantitation of liver luminescence are shown. Black arrow in (b) indicates re-
- 8 administration of CF-SPN. Numbers on images correspond to time points indicated on
- 9 plot (n=1 mouse per group).

Supplementary Figure S5. Histological analysis of liver tissues. Mice were treated,

4 from left to right, with 300, 150, 75 mg/kg APAP, or saline, and euthanized 45 min (top

5 row) or 180 min (bottom row) after drug administration. Sections were stained with

- 6 hematoxylin and eosin. Scale bar represents $10 \ \mu m$.

Supplementary Figure S6. Comparison between luminol and CF-SPN for their ability to
detect drug-induced liver production of H₂O₂. Mice were administered 300 mg/kg APAP
i.p., followed either by i.v. injection of 0.8 mg CF-SPN (containing 0.2 mg CPPO), or 0.2
mg luminol. (a) Chemiluminescent signals from CF-SPN (red) or luminol with (dashed

7 blue) or without (dashed black) APAP treatment are shown. (b) Rescaled y-axis of (a)

showing the lack of any signal generation from luminol. Each group, n=1 mouse.

...

S7