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Supplementary Sections

S1. HODGKIN-HUXLEY NEURAL NETWORK WITH STDP

A. STDP-induced multistability

The considered Hodgkin-Huxley (HH) ensemble and phase oscillators equipped with the spike timing-

dependent plasticity (STDP) demonstrate multistability of limiting states which are characterized by

different coupling topologies and collective dynamics. We illustrate such a multistability for the HH

network in Fig. S1. For strong enough initial coupling the ensemble converges to a strongly coupled

regime where the mean coupling saturates at K ≈ 0.25 [Fig. S1(a), magenta crosses and red circles]. The

established strong coupling leads to a strong synchronization which is characterized by large-amplitude

oscillations of the population mean field (local field potential) LFP = N−1
∑N

i=1 si [Fig. S1(e), red

curve]. If the initial coupling is weak, the ensemble converges to a weakly coupled regime [Fig. S1(a),

green triangles and blue diamonds], where the neurons are not synchronized, and the LFP is of low

amplitude [Fig. S1(e), green curve]. The extent of synchronization in the neural ensemble can also be

evaluated by the order parameter 0 ≤ R ≤ 1 [1], where its large values close to 1 are indicative for in-phase

synchronization of the neurons firing nearly simultaneously [Fig. S1(f), red dots], whereas small values of

R suggest its absence. For the above strongly coupled synchronized and weakly coupled desynchronized

regimes the time-averaged order parameters are found 〈R〉 ≈ 0.92 and 〈R〉 ≈ 0.28, respectively.
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Figure S1: Plasticity-induced multistability in the HH neural ensemble without input. (a) Time

courses of the mean synaptic weight K(t) for different initial coupling matrices K(0) = {kij(0)}, where the

coefficients kij(0) are Gaussian distributed around the mean value k0 as indicated in the legend with standard

deviation 0.02. (b), (c) Coupling matrices established in the ensemble due to STDP in the weakly and strongly

coupled regimes for k0 = 0.02 and k0 = 0.3, respectively. The matrix elements are encoded in color ranging from

0.0 (blue) to 0.5 (red). For illustration, the neurons are sorted with respect to the increasing natural spiking

frequencies fi such that fi ≤ fj for i < j. (d) Mean spiking frequencies of the neurons in the strongly coupled

and synchronized regime (◦, corresponding to k0 = 0.3 in (a) and coupling matrix in (c)), weakly coupled and

desynchronized regime (△, corresponding to k0 = 0.02 in (a) and coupling matrix in (b)), and uncoupled regime

for kij ≡ 0 (∗, natural frequencies). (e) DC-balanced LFP for the strongly coupled regime (red curve) and for the

weakly coupled regime (green curve). For comparison, the LFP of the uncoupled ensemble for kij ≡ 0 is depicted

by black curve. (f) Raster plot of the firing times in the strongly coupled regime (red dots) and weakly coupled

regime (green dots).

In the weakly coupled regime [Fig. S1(b)] several frequency clusters can be formed, where the neu-

rons within the same cluster spike at the same frequency [Fig. S1(d), green triangles] being the natural

frequency of the fastest oscillator within the given cluster. Such a clustered dynamics is supported by

the established structure of the coupling matrix, where the neurons within the same cluster get strongly

coupled to each other [Fig. S1(b)]. Interestingly, the coupling among neurons clearly demonstrates a

hierarchical topology, where a fast neuron with larger natural frequency drives slow neurons with smaller

natural frequencies, but the coupling in opposite direction vanishes. This holds for both strongly coupled

and weakly coupled regimes. For sorted indices of the neurons with respect to increasing their natural

spiking frequency, the coupling matrix attains an upper-triangular structure [Fig. S1(b), (c)]. Such a

coupling topology is resulted from the asymmetry of the considered STDP rule and phase locking of the

neurons to each other, see Refs.[2, 3]. Indeed, if two neurons i and j synchronize, the time difference

∆tij = ti − tj between the nearest spike onsets ti and tj of the post- and pre-synaptic neurons i and j,

respectively, gets narrowly distributed or even constant [Fig. S1(f), red dots]. Moreover, in the perfect

phase-locked regime, a faster neuron spikes before a slower one does, and only synaptic weight from faster

neuron to slower one will be potentiated, while the coupling in opposite direction will be depressed.

For illustration, consider a post-synaptic neuron i = 100 and two pre-synaptic neurons j = 50 and

j = 150. Because the natural spiking frequency of neuron i = 100 is smaller than that of neuron j = 150

(the neurons’ indices are sorted), in the phase-locked regime the spikes of the pre-synaptic neuron 150

advance the spikes of the post-synaptic neuron 100. We found that the corresponding time difference

∆t100,150 ≈ 0.5ms [Fig. S2(a), right red vertical line], and the synaptic weight k100,150 is potentiated by

δ ·W (0.5) ≈ 0.76δ at the moment when neuron i = 100 fires. Since the coupling strength kij is updated

when either neuron i or neuron j fires, the synaptic weight k100,150 is depressed by δ ·W (−13.4) ≈ −0.05δ

at the moment when the pre-synaptic neuron j = 150 fires, and ∆t100,150 ≈ −13.4 ms is the corresponding

spike time difference [Fig. S2(a), left red vertical line]. In such a way, synaptic weight k100,150 from the
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faster neuron j = 150 to the slower neuron i = 100 will in average be updated by 0.71δ, i.e., it is

continuously potentiated until it saturates at the maximal admissible value k100,150 = kmax.
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Figure S2: Noise-induced dynamics of synaptic weights in the HH neural network with STDP. (a),

(b) Distribution densities ρij of the spike time differences ∆t100,150 and ∆t100,50, respectively, established for the

input intensities I indicated in the legend. (c) Average update rate ∆k100,j of synaptic weights calculated by

integrating the plasticity function W over the distribution densities ρ100,j according to equation (S1). Vertical

dashed lines of the corresponding colors indicate the index j where ∆k100,j crosses zero. (d) and (e) Coupling

matrices established in the neural ensemble for I = 0.05 and I = 0.1, respectively. (f) Time courses of the mean

synaptic weight K for different input intensities I indicated in the legend. The initial synaptic weights kij(0) are

Gaussian distributed around the mean value k0 = 0.5 with standard deviation 0.02.

The situation is opposite for synaptic weight k100,50 because, in this case, the spikes of the slower

pre-synaptic neuron j = 50 follow those of the faster post-synaptic neuron i = 100. The synaptic

weight k100,50 is in average updated by δW (13.6) + δW (−0.3) ≈ −0.48δ, where ∆t100,50 = 13.6 ms

and ∆t100,50 = −0.3 ms are the corresponding spike time differences calculated at the moments when

neuron i = 100 and neuron j = 50 fires, respectively [Fig. S2(b), red vertical lines]. Then the coupling

from the slower neuron j = 50 to the faster neuron i = 100 is depressed until it saturates at the

minimal admissible value k100,50 = kmin. In such a way the uni-directional hierarchical coupling topology

illustrated in Fig. S1(b) and (c) establishes in the neural network. For the strongly coupled regime,

each neuron drives all slower neurons and receives the driving only from the faster neurons. Then the

population synchronizes at the frequency of the fastest oscillator [Fig. S1(d), red circles]. The same is

true for the weakly coupled regime for each frequency cluster [Fig. S1(d), green triangles].

B. Noise-induced dynamics

An independent random input broadens the distribution of the spike time differences ∆tij

[Fig. S2(a),(b)]. Such a change of the relative firing times influences the update of synaptic weights

which, in turn, have an impact on the distribution of ∆tij . In the course of such a self-organization

process, limiting distribution densities ρij(∆t) of the spike time differences ∆tij set up [Fig. S2(a), (b)].

Then the average update rate of the synaptic weights can be calculated by the formula (equation (1) in

the main text)

∆kij =

ˆ

W (ξ)ρij(ξ)dξ. (S1)

For the input-free and strongly coupled regime the distribution densities ρij(∆t) have a delta-peak

shape [Fig. S2(a), (b), red vertical lines], and equation (S1) gives the same values for the average update
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rates as calculated above for the synaptic weights k100,150 and k100,50. Random input induces changes

of ρij and ∆kij where the latter becomes positive (synaptic weights kij will be potentiated) for a bigger

range of the neurons’ indices. For example, ∆k100,j is positive for j > 100 at I = 0, j > 70 at I = 0.05,

j > 50 at I = 0.1, and j > 44 at I = 0.14 [Fig. S2(c)]. The corresponding synaptic weights k100,j will

thus be potentiated for the given input intensity, and the post-synaptic neuron i = 100 receives coupling

from much more neurons as compared to the noisy-free case. In such a way the coupling matrix will gain

positive coefficients below the main diagonal [Fig. S2(d), (e)], and the mean synaptic weight grows as the

strength of the random input increases [Fig. S2(f)], see also Fig. 1 of the main text.

For large intensity of the random input the synchronized firing of the neurons is significantly perturbed,

in particularly, for fast neurons which get decoupled from the rest of the population. The decoupling then

propagates to the interior of the coupling matrix as time evolves such that, in the limit, all neurons get

fully decoupled and desynchronized [Fig. S2(f), black asterisks], see also Supplementary Video 1 where

the time course of the coupling matrix is animated for the input intensity I = 0.15.

C. Inhibitory random input and Gaussian noise
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Figure S3: Constructive effects of the independent random inhibitory input and white noise on the

dynamics of synaptic weights of the HH ensemble. (a), (b) Mean synaptic weights K (◦−◦, scales on

the left vertical axes), (a) time-averaged order parameter 〈R〉 and (b) standard deviation (std) of LFP for the

ensemble with STDP (△−△) and without STDP (−−) versus (a) intensity I of independent random inhibitory

input and (b) strength µ of the independent Gaussian noise. For 〈R〉 and std LFP the scales are given on the

right vertical axes. For the network without STDP, the coupling matrix is fixed KFix = {kij}, kij = 0.5 for j > i

and kij = 0 otherwise, as in the strongly coupled regime without perturbations [Fig. S1(c)]. (c), (d) Coupling

matrices for the cases of synaptic inhibitory and noise input and for optimal input strength I = Iopt = 0.96 and

µ = µopt ≈ 1.075, respectively, where K is maximal, see plots (a) and (b). (e), (f) Mean frequency f of the HH

ensemble for (e) inhibitory synaptic input and (f) excitatory synaptic input for the ensemble with STDP (△−△)

and without STDP (−−). In plot (e) the mean frequency of the HH ensemble with STDP is also shown for the

noise input (∗−∗). Error bars indicate the standard deviation over the ensemble.

The reported effects induced by the independent random excitatory synaptic input I inputi (t) [Fig. 1

of the main text] are nearly identically preserved if the inter-spike intervals (ISI) of the input post-

synaptic potentials (PSP) are independently distributed according to a Poisson distribution with mean

and variance λ = 14 ms (not shown). The same results can be obtained for a Gaussian independent

random inhibitory synaptic input by considering the reverse potential Vr = −50 mV in equation (6)

of the main text. The main difference here is a larger range of the input intensity I, where the mean
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synaptic weight grows with increasing I [Fig. S3(a), (c)]. For this simulation the update of synaptic

weights is taken in the form kij → kij + δ ·
∑

W (∆tij), and the sum is taken by all spikes of the pre- or

post-synaptic neuron fitting between the last two spikes of the firing neuron.

Qualitatively the same conclusions can be drawn for an independent white noise: The HH neurons are

subjected to an additive noise I inputi (t) = µξi(t), where ξi are independent normally distributed random

variables,
〈

ξi
〉

= 0 and
〈

ξi(t), ξj(t
′)
〉

= δ(i− j)δ(t− t′). Parameter µ controls the noise intensity. In this

case the noise can be considered as a direct somatic stimulation as compared to a synaptically-mediated

input, see Ref. [4]. As for synaptic input, the noise induces an increase of the amount of coupling in the

HH neural ensemble with STDP, and there exists an optimal noise strength µopt where the mean synaptic

weight K is maximal [Fig. S3(b)]. Also the coupling matrix attains a similar structure, and the noise leads

to the emergence of connections from slow to fast neurons [Fig. S3(d)]. STDP significantly counteracts

the suppression of synchronization in the neural ensemble by the noise as reflected by the behavior of the

LFP [Fig. S3(b)]. For example, the standard deviation (std) of LFP≈ 0.024mV for the noise of intensity

µ = 1.1 in the ensemble with STDP [Fig. S3(b), blue triangles], whereas std LFP≈ 0.014mV for the same

noise strength in the ensemble without STDP and fixed coupling matrix KFix [Fig. S3(b), green dashed

curve]. This corresponds to 16% and 51% of the relative suppression of synchronization, respectively, as

related to the noisy-free case where std LFP≈ 0.0287mV.

The random input does not significantly influence the frequency of synchronized neurons with STDP,

as illustrated in Fig. S3 (e) and (f). Only the excitatory synaptic input may slightly accelerate the

oscillations from 71.8 Hz to 72.7 Hz [Fig. S3 (f), blue triangles], whereas the noise input keeps the mean

frequency nearly constant, and the inhibitory input slightly slows the neurons down [Fig. S3 (e), black

asterisks and blue triangles].

S2. PHASE OSCILLATORS

A. Noise-free phase differences

We derive expression (2) of the main text for the phase shifts ϕj of the locked phase oscillators for the

fixed upper-triangular coupling matrix KFix = {kij} as in the strongly coupled regime, i.e., kij = k = 1

for i < j, and kij = 0 otherwise. For this we consider the ensemble of locked phases ψi = ωt+ ϕi, where

the synchronization frequency ω = ωN is the largest natural frequency of the phase-locked oscillators for

such a coupling topology, see Fig. S1(d). The equations then read

ϕ̇i = ω̃i +
k

N

∑

j>i

(sinϕj cosϕi − cosϕj sinϕi), (S2)

where ω̃i = ωi − ωN , i = 1, 2, . . . , N . Since the phase shifts ϕi are constant in the phase-locked regime,

we obtain

Ci+1 sinϕi − Si+1 cosϕi =
Nω̃i

k
, (S3)

where Si+1 =
∑N

j=i+1 sin(ϕj) and Ci+1 =
∑N

j=i+1 cos(ϕj). Denoting Di+1 = S2
i+1 + C2

i+1 and dividing

equation (S3) by
√

Di+1 we arrive to

sin (ϕi − θi+1) =
Nω̃i

k
√

Di+1

, (S4)

where sin(θi+1) = Si+1/
√

Di+1 and cos(θi+1) = Ci+1/
√

Di+1. From the last equation we obtain expres-

sion (2) of the main text
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Figure S4: Noise-induced distribution of the phase differences for fixed coupling matrix KFix.

(a) Phase differences ∆ψij versus the natural frequency ωj of the pre-synaptic oscillator j for fixed post-synaptic

oscillators i as indicated in the plot. The dashed black curves depict the theoretical prediction from equation (S5),

and symbols illustrate the mean (time-averaged) phase differences ∆ψij(µ) obtained from numerical simulations

for the noise intensity µ = 0.05. (b) Deviations of the mean phase differences ∆ψij(µ) from the noise-free phase

differences ∆ψij(0) versus noise intensity for i = 100 and indices j indicated in the legend. The dashed black curves

depict the function a · µ2.5 for fitted values of coefficient a. In the subplot the absolute values of the deviations

are shown in log-log scale. (c) Numerically fitted exponent γ of the concentration parameter κ(∆ψij) ∼ µγ versus

natural frequency of the pre-synaptic oscillators for three fixed post-synaptic oscillators i as indicated in the legend.

The natural frequencies ωi are uniformly distributed in the interval [0.9, 1.1], ωi = 0.9 + 0.2(i− 1)/(N − 1).

ϕi = arcsin

(

Si+1
√

Di+1

)

+ arcsin

(

Nω̃i

k
√

Di+1

)

, (S5)

and can calculate the phase differences ∆ψij = ψj − ψi = ϕj − ϕi by letting ϕN = 0 [Fig. S4(a), black

dashed curves].

B. Noise-induced distribution of phase differences

We found that the mean (averaged over time) phase differences ∆ψij are only slightly influenced by

a weak noise, see Fig. S4(a). However, if the noise increases, the mean phase differences ∆ψij start

to deviate from those of the noise-free phase ensemble according to a power law ∼ µλ with λ ≈ 2.5

which seems to be independent of the natural frequencies of the oscillators [Fig. S4(b)]. For a complete

description of the noise-induced dynamics of the phase differences, the above behavior of ∆ψij has to be

taken into account. In this study we neglect it, since we are interested in the effect of weak to moderate

noise.

We approximate the noise-induced distribution of the phase differences ∆ψij of the phase ensemble

with fixed coupling matrix KFix by the von Mises distribution (equation (3) of the main text)

M(κ, ϕ) =
1

2πI0(κ)
exp(κ cos(ϕ− ϕ0)), (S6)
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and find the concentration parameters κ and mean phase differences when noise intensity varies. For small

values of κ, the von Mises distribution is close to a uniform distribution, whereas for large values of κ it

approaches a Gaussian distribution with mean ϕ0 and variance 1/κ [5]. The von Mises distribution (S6)

can thus be used to approximate the spectrum of possible spreads of the phase differences ∆ψij of well

synchronized noisy oscillators with narrowly distributed phase differences as well as of desynchronized

oscillators where the their phase differences fill the entire unit circle with a nearly uniform distribution.

We found that the considered von Mises distribution (S6) well approximates the statistics of the noisy

phase differences for the corresponding parameters κ and ϕ0, see Fig. 3(a) of the main text.

Interestingly, parameter κ fitted to the distribution of the phase differences obtained by numerical

simulations demonstrates a power-law dependence on the noise strength κ(∆ψij) ∼ µγ , see Fig. 3(b)

of the main text. Moreover, the exponent γ seems to be independent of the natural frequencies of the

oscillators i and j. We plot γ versus the natural frequency ωj of the pre-synaptic oscillators for different

post-synaptic oscillators i in Fig. S4(c). As one can see, γ ≈ −2 except for fast oscillators with large ωj .

The fast oscillators of the ensemble are sensitive to noise and may get desynchronized by noise with the

other oscillators with broadly distributed phase differences, see Fig. 3(a) of the main text for j = 200.

Then, for a large noise, the behavior of the concentration parameter κ(∆ψij) may slightly deviate from

the above power law for large natural frequencies, and the fitted parameter γ somewhat departs from the

value −2 for large ωj [Fig. S4(c)] . However, the above power law with γ = −2 is satisfied either for small

noise or for not particularly large natural frequencies, and we use it for our theoretical approximation.
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Figure S5: Approximation of the frequency dependence of the concentration parameter κ. (a)

Contour lines of the function F (ωi, ωj) ≡ Fconst for the values Fconst = 0.1 (◦), 0.2 (�), 0.3 (⋄), 0.4 (△), 0.5

(▽), 0.6 (×), and 0.7 (∗). The black dashed curves depict the fitting by the formula (S7) with parameters in

Table S1. (b) Function Fi(ωj) = F (ωi, ωj) for three post-synaptic oscillators i as indicated in the legend. The

dashed black curves show the theoretical approximation of F (ωi, ωj) for β = −9.52, while symbols illustrate the

results of numerical simulations for noise µ = 0.1. Other parameters as in Fig. S4.

C. Frequency dependence of the concentration parameter κ

Below we show how we obtained the form of function F (ωi, ωj) = βω̃iω̃j/(ω̃i + ω̃j) in expression (4) of

the main text for the concentration parameter κ of the von Mises distribution. For this we fix the noise

strength, e.g., µ = 0.05 and calculate κ(∆ψij) by numerical fitting of the phase difference distribution

densities by the von Mises distribution for different indices i and j, i.e., for different natural frequencies

ωi and ωj . Since the exponent γ in equation (4) of the main text seems to be independent of the

natural frequencies [Fig. S4(c)], we calculate F (ωi, ωj) = κ(∆ψij)/µ
γ with γ = −2. The contour lines

F (ωi, ωj) ≡ Fconst in the parameter plane (ωi, ωj) are shown in Fig. S5(a) for different values of Fconst.

We found that the contour lines align along symmetric hyperbolas

(ωi −B)(ωj −B) = A, (S7)
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Fconst 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A 0.000124 0.000459 0.000994 0.001755 0.002838 0.003854 0.005548

B 1.0897 1.0790 1.0682 1.0576 1.0478 1.0357 1.0270

Res 0.000017 0.000018 −0.000017 −0.000043 0.00011 −0.00028 0.00022

B0 −0.103 −0.105 −0.106 −0.106 −0.104 −0.107 −0.104

Table S1: Parameters of the numerical fitting of function F (ωi, ωj).

where parameters A and B can be found by numerical fitting of the contour lines and are listed in

Table S1. We represent parameter B = B0Fconst + ωN and rewrite equation (S7) in the form

(ωi − ωN )(ωj − ωN )−B0Fconst [(ωi − ωN ) + (ωj − ωN )] = A−B2
0F

2
const. (S8)

Interestingly, the residual term Res = A−B2
0F

2
const attains very small values, while B0 slightly fluctuates

around B0 = −0.105, see Table S1. We thus neglect the term A − B2
0F

2
const and set B0 = −0.105 in

equation (S8), which leads to the above form of function F (ωi, ωj) with parameter β = 1/B0 ≈ −9.52.

Finally, we verified the obtained empirical formula of F (ωi, ωj) for other values µ of the noise strength

and found a perfect agreement with numerical simulations, see Fig. S5(b).

S3. SUPPLEMENTARY VIDEOS

Video 1: Animated time course of the coupling matrix of the HH neural ensemble with STDP and

independent random synaptic excitatory input of intensity I = 0.15. The synaptic weights kij are encoded

in color ranging from 0 (blue) to 0.5 (red). The elements of the initial coupling matrix K(0) = {kij(0)}

are Gaussian distributed around the mean value K(0) = 0.5 with standard deviation 0.02. The STDP

and input are switched on at time t = 100 s.

Video 2: Animated time course of the coupling matrix of the phase ensemble with STDP and independent

Gaussian noise of intensity µ = 0.185. The coupling weights kij are encoded in color ranging from 0 (blue)

to 1 (red). The elements of the initial coupling matrix K(0) = {kij(0)} are Gaussian distributed around

the mean value K(0) = 1 with standard deviation 0.01. The STDP and noise are switched on at time

t = 2000 ms. The time was accelerated after t = 30 s.
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