Web Material

Who is More Affected by Ozone Pollution? A Systematic Review and Meta-Analysis

Web Appendix. Search strategy and exclusion criteria

Web Table 1. Summary of studies of modification for associations between ozone and mortality

Web Table 2. Summary of studies of modification for associations between ozone and hospital admissions or emergency room visits

Web Figure 1. PRISMA flow diagram showing number of studies identified, included, or excluded from analysis

Web Figure 2. Summary of study characteristics across 167 studies of ozone and mortality or hospital admissions

Web Figure 3. Percent increase in risk of cardiovascular mortality for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Web Figure 4. Funnel plot for estimates of association between ozone and cardiovascular mortality for studies included in meta-analysis, by age

Web Figure 5. Percent increase in risk of respiratory mortality for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Web Figure 6. Funnel plot for estimates of association between ozone and respiratory mortality for studies included in meta-analysis, by age

Web Figure 7. Percent increase in risk of cardiovascular hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Web Figure 8. Funnel plot for estimates of association between ozone and cardiovascular hospital admissions for studies included in meta-analysis, by age

Web Figure 9. Percent increase in risk of respiratory hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Web Figure 10. Funnel plot for estimates of association between ozone and respiratory hospital admissions for studies included in meta-analysis, by age

Web Figure 11. Percent increase in risk of asthma hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Web Figure 12. Funnel plot for estimates of association between ozone and asthma hospital admissions for studies included in meta-analysis, by age

References for Web Material

Web Appendix - Search strategy and criteria

Search of MEDLINE through PubMed for studies indexed by 21June2013.

Search A: ("modified" or "modification" or "modify" or "modifying" or modifier or modifiers) AND (effect or effects) AND ("air pollution" or "air pollutant" or "air pollutants") AND ("time series" or "case crossover" or "short term")

Search B: ("modified" or "modification" or "modify" or "modifying" or modifier or modifiers) AND (effect or effects) AND ("ozone" or "O3" or "O(3)")

Search C: ("emergency department" or "emergency visit" or "emergency visits" or "emergency room" or "hospital" or "hospitalisations" or "hospitalisation" or "hospitalisations" or "mortality") AND ("ozone" or "O3" or "O(3)") AND ("time series" or "case crossover" or "short term")

Search D: ("air pollution" or "air pollutant" or "air pollutants" or "ozone" or "O3" or "O(3)") AND ("susceptible" or "susceptibility") AND ("emergency department" or "emergency visit" or "emergency visits" or "emergency visits" or "emergency visits" or "mortality") room" or "hospitalisations" or "hospitalisations" or "hospitalisations" or "mortality")

Search E: ("ozone" OR "O3" OR "O(3)") AND (age OR sex OR gender OR SES OR income) AND ("emergency department" OR "emergency visit" OR "emergency visits" OR "emergency room" OR "hospital" OR "hospitals" OR "hospitalisations" OR "hospitalisations" OR "mortality")

Exclusion criteria:

- 1. Published 1988 or later
- 2. Published in a language other than English
- 3. Non-research article including review, workshop report, commentary, etc.
- 4. Not a population-based (epidemiology) study, such as human exposure studies, toxicology, or ecology
- 5. Did not address human health outcomes of mortality, hospital admissions, or emergency room visits
- 6. Study population other than adults. Studies comparing risks in children versus adults, with no other analysis of modification were excluded
- 7. Did not report results for modification of ozone estimates of associations, such as studies that did not consider ozone, considered ozone main associations but not modification, or considered ozone as a confounder only
- 8. Did not examine short-term ozone exposure

Web Table 1. Summary of studies of modification for associations between ozone and mortality

Note: The results presented show (+) when a higher level of the modifier is associated with a higher health risk estimate and a (-) when a higher level of the modifier is associated with a lower health risk estimate. Only statistically significant associations are reported in the table. Reference numbers refer to the reference list for the Web Material, which differs from the reference list for the main text.

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Anderson et al. (2001) ¹	West Midlands conurbation, U.K. (10/94-12/96). Average (avg) 61 total, 28 CVD, and 10 respiratory (resp) deaths/day.	Daily maximum 8-hour average. Based on 2 monitoring sites. <i>Lag:</i> 0, 1, 2, 3, 02, 03. Results presented for lag 01 based on previous studies.	Total, CVD, resp	Individual: age (0-14, 15-64, ≥65 yr) Temporal: season (warm: AprSep., cool: OctMar).	Generalized additive model. Stratification for modification by age; interaction terms for season.	Season: higher in warm for total mortality
Atkinson et al. (2012) ²	10 conurbations (5 urban, 5 rural), U.K. (1993- 2006). median of 11- 155/day per area	Daily 8-hr max. Lag 01.	Total	Temporal: season (Spring: AprJune, summer: July-Sep., Fall: OctDec.; Winter: Jan Mar.)	City-specific Poisson regression. Meta-analysis to combine city-specific associations. Stratification for modification.	Season: higher for spring than summer in urban areas.
Bell et al. (2004) ³	95 communities, U.S. (1/87-12/00)	Daily O ₃ . Lag 0, 1, 2, 3, 06	Non-accidental	Individual: age (<65, 65-74, >75 yr) Temporal: season (warm: AprOct., all year)	City-specific Poisson regression. Bayesian hierarchical modeling to generate overall estimates. Stratification for modification.	n/a
Bell et al. (2005) ⁴	144 estimates from 39 previously conducted studies. Not all estimates in all analyses. (studies published 1999 to 21Jun04)	O ₃ metrics in original studies converted to 24- hr avg. Multiple short- term lags.	Total, CVD, resp	Community: region (US, non-US), age (elderly, all ages), season (warm season, all year)	Meta-analysis of results from previously conducted studies. 2-stage Bayesian hierarchical modeling. Stratification for modification.	n/a
Bell and Dominici (2008) ⁵	98 communities, U.S. (1/87-12/00)	Daily O ₃ . Lag 06	Non-accidental	Temporal: season (warm: AprOct., all year) Community: prevalence of central air conditioning (AC), unemployment, use of public transportation, long-term temperature	City-specific Poisson regression. Bayesian hierarchical modeling with community-level characteristics for modification.	Unemployment (+): higher with higher unemployment Race: higher with higher % African- Americans Transportation (+): higher with higher use of public transportation AC (-): higher with lower central AC Temperature (-): higher with lower long- term temperature

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Berglind et al. (2009) ⁶	5 cities (Augsburg, Barcelona, Helsinki, Rome, Stockholm), Europe (recruited 1992- 2002, followed 6-12 yr), 25,006 myocardial survivors (>35 yr)	Daily 8-hr max, AprSep. Lag 01, 05, 0-14.	For survivors of myocardial infarction: CVD, total	Individual: age (35-64, 65-74, >75 yr, all ages), time after MI (<1 yr, >1 yr after first MI)	City-specific Poisson regression of cohort data. Meta-analytic pooling to generate overall estimates.	Age (-): higher for youngest age group.
Borja-Aburto et al. (1998) ⁷	Mexico City, Mexico (1/93-7/95), avg 32 deaths/day	24-hr avg. Lags up to 5 previous days.	Non-accidental	Individual: age (>65, all)	Poisson regression. Stratification for modification.	n/a
Bremner et al. (1999) ⁸	London, U.K. (1992- 1994). avg 169 deaths/day	24-hr avg. Lag 0, 1, 2, 3, 01, 02, 03.	All cause, resp, CVD	Individual: age (0-64, >65, 65-74, >75) Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Interaction terms for modification by season.	Season: higher in warm season (CVD and resp for >75 yr), higher in cool season (all cause for >65 yr)
Cakmak et al. (2007) ⁹	7 urban centers in Santiago, Chile (1/97- 12/03). avg 69.69 non- accidental deaths/day.	Daily 1-hr max. Population- weighted.	Non-accidental, CVD, resp	Individual: age (<64, 65-74, 75-85, >85 yr) Temporal: season (warm: OctMar., cool: AprSep.)	Center-specific Poisson regression. Restricted maximum-likelihood methods used to pool center-specific estimates. Results for modification presented across all centers.	Age (+): higher for older persons
Cakmak et al. (2011) ¹⁰	7 urban centers, Chile (1/97-12/07). avg 7.29- 15.8 days/day per center	Daily 8-hr max. Lag 06.	Non-accidental	Individual: age (<64, 65-74, 75-84, >85 yr), sex, education (<primary school, primary school, high school, some college, university), employment (unemployed, blue collar, white collar) Community: income at census tract level</primary 	City-specific Poisson regression. Random effects model to estimate overall associations. Stratification for modification. Results for modification presented across all cities.	Age (+): higher for >85 than <64 yr Education (-): higher <primary school="" than<br="">university Employment (-): higher for unemployed than white collar</primary>
Cheng and Kan (2012) ¹¹	Shanghai, China (1/01- 12/04)	8-hr avg (10 am- 6 pm). Lag 0	Non-accidental, CVD, resp	(quartiles) Temporal: temperature (low, medium, high, using 5 sets of cutoffs)	Generalized additive model. Stratification for modification.	Temperature (-): higher during cool days (total non-accidental, CVD, resp)
Chock et al. (2000) ¹²	Pittsburgh, PA, US (1989-1991). 25,609 deaths.	1-hr max from noon-8 pm. Lag 0	Total	Individual: age (<75, >75 yr, all year and by season) Temporal: season (spring, summer, winter, autumn)	Poisson regression. Stratification for modification by age; interaction terms for modification by season.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
de Almeida et al. (2011) ¹³	Oporto, Portugal (2000- 04). avg 38.5 deaths/day.	Daily 8-hr max. Lag 0, 1, 2, 3, 01, 03.	Non-accidental, CVD, resp	Individual: age (all ages, >65 yr) Temporal: season (all year, summer: AprSep., winter: OctMar., total non-accidental)	Generalized additive models. Stratification for modification	n/a
de Leon et al. (2003) ¹⁴	New York, NY (1/85- 12/94). avg. 179.42 admissions/day	24-hr avg. Lag 01	Circulatory, cancer	Individual: age (<75 yr, >75 yr), co-morbidities (with and without contributing resp causes)	Poisson regression. Stratification for modification.	n/a
de Oliveira et al. (2011) ¹⁵	Rio de Janeiro State, Brazil (1/02-12/06) 1,058 deaths	24-hr avg Lag 0, 1, 2, 3, 4, 5, 6, 7, 8, 9	Resp	Individual: sex (by age: all ages, >65 yr), age (all ages, >65 yr, by sex)	Time-series model. Stratification for modification.	n/a
Faustini et al. (2012) ¹⁶	Rome, Italy (1/05-11/09). 15,884 deaths of COPD patients. 145,681 COPD patients.	Daily 8-hr max. AprSep. Lag 0, 01, 2-5, 0-5.	Non-accidental, CVD, cerebrovascular, resp (>35 yr)	Individual: co-morbidity (COPD patient, general population without COPD)	Poisson regression and case crossover. Stratification for modification.	n/a
Fischer et al. (2003) ¹⁷	The Netherlands (1986- 1994). ~330 deaths/day	Daily 8-hr max. Lag 1	CVD, COPD, pneumonia	Individual: age (<45, 45-64, 65-74, >75 yr)	Poisson regression. Stratification for modification.	Age (+): higher in oldest 2 groups than <45 for COPD, than 45-64 for pneumonia
Garrett and Casimiro (2011) ¹⁸	Lisbon, Portugal (1/04- 12/06). 1,042 deaths	24-hr average, Lag 0, 1, 2, 3, 4, moving averages Lag 1 to 4.	Non-accidental all cause, CVD	Individual: age (>65 yr, all ages)	Generalized additive modeling. Stratification for modification.	n/a
Goldberg et al. (2001) ¹⁹	Montreal, Canada (1984- 1993). 133,904 deaths	24-hr avg. Lag 0, 1, 02.	Non-accidental, neoplasm, lung cancer, CVD, coronary artery disease resp (all ages, >65, season), nonmalignant digestive diseases, injuries and poisonings, other non-accidental causes, diabetes mellitus, renal diseases (warm, all year)	Individual: age (<65 yr, >65 yr, all) Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Stratification for modification.	Age (+): higher for older group (non- accidental). Season: Higher in warm season (non- accidental, neoplasm, resp)
Goldberg et al. 2006) ²⁰	Montreal, Canada (1984- 1993). 3,653 diabetes deaths	24-hr avg. Lag 0, 1, 02.	Underlying cause of diabetes, diabetes within <1 yr of death and comorbidity (CVD, cancer, airway disease, chronic coronary artery disease, congestive failure, atherosclerosis) (>65 yr)	Individual: sex, co- morbidities Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Stratification for modification	n/a
Gouveia and Fletcher (2000) ²¹	Sâo Paulo, Brazil (1991- 3). 151,756 deaths	Daily 1-hr max. Lag 0, 1, 2	All cause, resp	Individual: age (all cause: all, >65; resp: <5, >65)	Poisson regression. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Gryparis et al. (2004) ²²	23 European cities (1990-7, years differed by city). avg 6-347 deaths/day per city	Daily 1-hr and 8- hr max. Lag 01.	Total, resp, CVD	Temporal: season (warm: AprSep, cool: OctMar.)	City-specific Poisson regression. Fixed effects pooled regression and random effects modeling to estimate overall associations.	Season: higher in summer for all-cause, resp, CVD
Hoek et al. (1997) ²³	Rotterdam, The Netherlands (1983-91). Median 18 deaths/day	24-hr avg. Lag 0, 1, 2	Total	Individual: age (<78 yr, >78 yr) Temporal: season (warm: May-Oct., cool: NovApr.)	Poisson regression. Stratification for modification.	n/a for season (full associations not provided for associations by age)
Hoek et al. (2000) ²⁴	The Netherlands (1986- 1994). Separate analyses for 4 major cities, The Netherlands without the 4 cities, entire country. avg 328 deaths/day. 3287 deaths.	8-hr avg (noon-8 pm). Lag 0, 1, 2, 06.	Non-accidental (>1 month)	Temporal: season (summer: May-Sep., winter: NovMar., all year) Community: urbanicity (4 major cities, remaining areas)	Poisson regression. Stratification for modification.	Season: higher in summer
Ito et al. (2005) ²⁵ [Two studies from this paper]	43 previously conducted studies (published 1990- 2003)	24-hr avg.	Total	Temporal: season (winter, summer, all year) Community: long-term pollution levels (O3, PM10, NO2), temperature	Meta-analysis of results from previously conducted studies. Stratification for modification.	Season: higher associations in warm season
Ito et al. (2005) ²⁵ [Two studies from this paper]	6 cities, U.S. (1985-94)	24-h. Lag 01.	Non-accidental	Temporal: season (warm: AprSep, cool: OctMar.)	Poisson regression. Stratification for modification. City- specific results combined to estimate overall associations. Modification results by season provided by city and overall.	n/a
Kan et al. (2008) ²⁶	Shanghai, China (1/01- 12/04). 173,911 deaths. avg 119.0 deaths/day	Daily 8-hr max. Lag 01.	Non-accidental, CVD, resp	Individual: sex (all cause), age (5-44, 45-64, >65 yr) (all cause), education (illiterate or primary school, middle school of above) Temporal: season (warm: AprSep., cool: OctMar.)	Time-series model. Stratification for modification.	Season: higher effect in cool season for total mortality.
Kim et al. (2004) ²⁷	Seoul, Republic of Korea (1/95-12/99). Avg 90.08 deaths/day	Daily 1-hr max. Lag 1	Non-accidental	Temporal: season (summer: June-Aug., all year)	Poisson regression. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Kwon et al. (2001) ²⁸	Seoul, Republic of Korea (1994-8). 1,807 CHF patients. avg 1/0 deaths/day for CHF patients, 90.4 deaths/day for all causes	Daily 1-hr max. Lag 0.	Non-accidental deaths for persons with CHF (admitted with CHF 1994-6, died 1994-8)	Individual: pre-existing conditions (CHF patients, general population). For CHF patients: sex, age (<75, >75 yr), time from CHF admission to death (<4, >4wk)	Case crossover and Poisson regression. Stratification for modification.	Time from CHF admissions (+): higher effect for >4 weeks from admission to death
Levy et al. (2005) ²⁹	Meta-analysis of 48 estimates from 28 existing studies	Short-term exposure.	Total (as defined by original study) for all ages	Temporal: season (summer, winter, as defined by the original study) Community: region (N. America, Europe); AC prevalence, long-term O ₃ , cooling degree days based on monthly mean temperature (<median, >median)</median, 	Meta-regression to generate with hierarchical linear model to generate overall effect and investigate modification.	O ₃ level (-): higher with low ozone levels. AC (-): higher for cities with cities with lower AC prevalence Season: higher in summer
Liang et al. (2009) ³⁰	Central Taiwan (1997-9)	8-hr avg (9 am-5 pm). Lag 0, 1, 2, 3, 4, 5, cumulative lags up to 5 days	Non-accidental, resp, CVD	Individual: age (>65 yr, all ages) Temporal: season (summer: June-Aug., winter: DecFeb.)	Time-series analysis. Stratification for modification.	n/a
Lin and Liao (2009) ³¹	Kaohsiung, Taiwan (1995-9). 33,818 deaths. avg. 3.18 deaths/day	24-hr avg. Lag 0, 1, 2, 3-5.	Non-accidental, CVD	Individual: age (>65 yr, all ages) Temporal: temperature (days with mean temperature 19.7, 24.8, 27.6°C)	Poisson regression. Stratification for modification.	n/a
Lipfert et al. (1995) ³²	Philadelphia, PA, U.S. (1991-5). avg 120.2 deaths/day	Daily 1-hr max. Lag 01.	Non-accidental	Individual: age (<65 yr, >65 yr)	Regression model. Stratification for modification.	n/a (Central estimates presented only)

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Medina-Ramon and Schwartz (2008) ³³	48 cities, U.S. (May-Sep. 1989-2000). 2,729,640 deaths.	Daily 8-hr max. Lag 02.	Non-accidental	Individual: sex (all ages, <60 yr, >60 yr), race (black, other), education (\leq high school, other), co- morbidities as secondary cause (asthma, COPD, atherosclerosis, atherosclerotic CVD, atherosclerotic heart disease, CHF, atrial fibrillation, stroke, diabetes, inflammatory) Community: mean O ₃ level, central AC prevalence, population density, mean temperature (for populations >65 yr, women >60 yr, blacks, those with atrial fibrillation)	City-specific case only model. Interaction terms for individual-level effect modifiers. Random effects meta-regression to generate overall effect and investigate modification of community characteristics.	Age (+): higher for older persons Sex: higher for women (>60 yr) Co-morbidity: higher for those with atrial fibrillation Ozone (-): higher with lower long-term O ₃ levels (for the elderly or black populations) AC (+): higher with higher AC prevalence (those with atrial fibrillation)
Moolgavkar (2000) ³⁴	3 counties (Cook Co., IL; Los Angeles, CA; Maricopa, CA), U.S. avg 40-116 deaths/day per county	24-hr avg. Lag 0, 1, 2, 3, 4, 5	Non-accidental	Temporal: season (warm: AprSep., all year)	Poisson regression. Stratification for modification. Modification analyzed separately for each county.	n/a
Ng et al. (2013) ³⁵	20 cities, Japan (1/02- 12/07). 791,507 deaths. avg 0.5-133.9 per city.	Daily 8-hr max. Lag 02.	Non-accidental, CVD, resp (>65 yr)	Temporal: season (warm: June-Aug., cool: DecFeb., moderate: MarMay and Sep Nov.)	City-specific generalized linear regression. Inverse- variance meta-analysis to generate overall association. Stratification for modification	Season: higher for moderate than cool or warm seasons (all cause), higher for moderate than cool (CVD), higher for cool than warm (resp)
O'Neill et al. (2004) ³⁶	Mexico City, Mexico (1996-8). 206,510 deaths	24-hr avg. Lag 01.	Non-accidental	Individual: age (>65 yr, all ages) Community: % homes with electricity, % with piped water, % with drainage (3 strata); % literacy (4 strata); % indigenous language speakers (5 strata); SES index (3 strata) (by age)	Poisson regression. Stratification for modification.	 SES index: higher for high than medium SES (all ages, ≥65 yr) Literacy (+): higher for most literate than 2nd least literate (of 4 strata) (>65 yr) Indigenous speakers (-): higher for medium (of 5 strata) than 2nd most indigenous speakers (of 5 strata) (all ages, >65 yr)

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Ou et al. (2008) ³⁷	Hong Kong (1998) 24,357 deaths	Daily 8-hr max. Lag 0, 1, 2, 3	Non-accidental (>30 yr)	Individual: age (>30, >65 yr), education (none, primary, secondary or higher); employment (never employed, white- collar, blue-collar); housing (private permanent, public rental) for all ages and >65 yr	Poisson regression model. Stratification for modification by age; interaction terms for SES indicators (occupation)	Occupation (+/-): higher for blue-collar than never-employed or white-collar (all ages, or >65 yr)
Ou et al. (2012) ³⁸	Hong Kong (1998) 23,484 deaths	24-hr avg. Lag 02.	Non-accidental (>30 yr)	Individual: diet (fish, meat, vegetables, fruits, soy, dairy products) (regular consumption: >1/week, <1 week)	Case crossover. Interaction terms for modification.	Fruit intake (-): higher with less fruit consumption
Parodi et al. (2005) ³⁹	Genoa, Italy (8/93- 12/96). 27,228 deaths. avg 21.8 deaths/day	24-h, daily 8-hr max, 8-hr (10 am-6 pm). Lag 0, 1, 02	Non-accidental, CVD	Individual: age (>75 yr, all ages) Temporal: season (warm: May-Oct., all year, by age); temperature (>26, <26°C)	Poisson regression. Interaction terms for modification by temperature; stratification for modification by season and age.	Temperature (+): higher on hotter days (CVD)
Pattenden et al. (2010) ⁴⁰	15 conurbations, U.K. (May-Sep., 1993-2003). 592,320 deaths. avg 5- 154 deaths/day per conurbation.	Daily 8-hr max. Lag 01. Other lags in sensitivity analysis.	Non-accidental, CVD, resp	Individual: age (0-64, 65-74, 75-84, >85 yr, all- cause) Temporal: temperature (hot: 2-day average >95th percentile, cool: <95th percentile)	Community-specific Poisson regression. Random effects meta- analysis to generate overall effect. Interaction terms for modification by temperature; stratification for modification by age. Modification results for temperature presented for each conurbation and overall.	Temperature (+): higher on hot days (London and Cardiff: all-cause; overall, all cause: 65-74 yr)

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Peng et al. (2013) ⁴¹	86 U.S. cities, 23 European cities, 12 Canadian cities (1987-97, years varied by city). 85 cities with year-round data.	Daily 1-hr max. Lag 1, 01, 02.	Non-accidental	Individual: age (<75, \geq 75 yr) Temporal: season (warm: AprSep., all year) Community: NO ₂ coefficient of variation (CV), SO ₂ , O ₃ CV, NO ₂ /PM ₁₀ , temperature, age (% >75 yr), age standardized mortality, unemployment	City-specific Poisson regression. Hierarchical modeling to generate region-specific estimates (U.S., Europe, Canada). Stratification for modification by age and season; hierarchical regression for modification by community-level characteristics.	Higher associations with lower NO ₂ CV (-) (U.S.); higher SO ₂ (+) (Canada, U.S.), higher O ₃ CV (+) (U.S.), lower O ₃ CV (-) (Europe), higher NO ₂ /PM ₁₀ (+) (U.S.) Temperature (-): higher with lower temperature (U.S.) Age (+): higher for older communities (Canada) Unemployment (+): higher with more unemployment (U.S.)
Penttinen et al. (2004) ⁴²	Helsinki, Finland (1988- 1996). 3,288 deaths, median 17 deaths/day.	Daily 8-hr and 1- hr max. Lag 0, 1, 03	Non-accidental, resp	Individual: age (15-64, 65-74, >75 yr) Temporal: season (summer: AprJuly, non- summer: AugMar.)	Poisson regression. Stratification for modification.	Season: higher in summer (all cause, resp)
Prescott et al. (1998) ⁴³	Edinburgh, Scotland (10/92-6/95). avg 14.5 deaths/day.	24-h. Lag 0, 1, 02.	Non-accidental	Individual: age (<65 yr, >65 yr)	Poisson regression. Stratification for modification.	n/a
Qian et al. (2007) ⁴⁴	Wuhan, China (7/00- 6/04). 89,131 deaths	8-hr avg (10 am- 6 pm). Lag 0, 1, 2, 3, 03.	Non-accidental, CVD, stroke, cardiac, resp, cardiopulmonary	Individual: age (<65 yr, >65 yr)	Poisson regression. Stratification for modification.	Age (+): higher for older group (stroke)
Qian et al. (2010) ⁴⁵	Wuhan, China (7/00- 6/04). 89,131 deaths. avg 61.0 deaths/day.	8-hr avg (10 am- 6 pm). Lag 0, 1, 2, 3, 4, 01, 03	Non-accidental, CVD, stroke, cardiac, resp, cardiopulmonary, non-cardiopulmonary	Individual: age (<65 yr, >65 yr), sex Temporal: temperature (lowest 5% of days, avg 2.2 °C, highest 5% of days: avg 33.1 °C, normal: avg 18.0 °C,)	Generalized additive models. Stratification for modification.	Temperature (+): higher on high temperature days (non-accidental)

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Rainham et al. (2005) ⁴⁶	Toronto, Canada (1981- 1999). avg. 46.7 deaths/day	24-hr avg. Lag 0, 1, 2.	Non-accidental, cardio-resp, non- cardio-resp, other causes	Temporal: air mass type by synoptic weather category (dry moderate, dry polar, moist moderate, moist polar, moist tropical, transition); season (warm: June-Aug., cool: DecFeb., by air mass type)	Generalized linear models. Stratification for modification.	Season: higher for summer season (all- cause; all-cause, cardio-resp, or other causes in dry moderate; cardio-resp in moist moderate; all-cause and other causes in moist tropical; other causes in transition) Air mass: higher for some air mass types than others, varying by season and cause: lower for moist tropical, dry moderate, transition, dry polar, moist moderate, moist polar, moist tropical
Ren et al. (2008) ⁴⁷	60 cities, eastern US (1987-2000)	24-hr avg. Lag 02.	Non-accidental	Temporal: maximum temperature (non-linear continuous; categories: low, medium, high)	City-specific Poisson regression. Two-stage hierarchical model to estimate overall associations. Non-linear interaction terms and stratification for modification. Modification results presented for each city and overall.	Temperature (+): higher on higher temperature days (overall across 60 cities)
Ren et al. (2009) ⁴⁸	95 cities, U.S. (May- Oct., 1987-2000)	24-hr avg. Lag 0, 1, 2, 03.	CVD	Temporal: maximum temperature (non-linear continuous; categories: low, medium, high)	City-specific Poisson regression. Bayesian meta-analysis to generate overall effect. Non-linear interaction terms and stratification for modification.	Temperature (+): higher on high temperature days for some regions (Northeast, industrial Midwest, Northwest)
Ren et al. (2010) ⁴⁹	3 counties in eastern Massachusetts, U.S. (May-Sep., 1995-2002). 60,302 deaths	Daily 8-hr max, Lag 03, and other lags.	Non-accidental, CVD, resp disorders, diabetes (>35 yr)	Individual: age (35-64, 65-74, 75-84, >85 yr); race (white and non- Hispanic black, American Indian, Hispanic, Asian or Pacific, other); gender; education (>8, 9-12, 13- 16, >17 yr), marital status (never, married or separated, widowed, divorced) Community: population density, household income, poverty (quartiles)	Case crossover. Interaction terms for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Revich and Shaposhnikov (2010) ⁵⁰	Moscow, Russia (2003- 2005). avg 331.2 all cause, 114.5 ischemic heart disease, 68.8 cerebrovascular disease deaths/day	24-hr avg. Lag 0, 1, 01.	Non-accidental, ischemic heart disease, cerebrovascular	Individual: age (all ages, >75 yr)	Time-series model. Stratification for modification.	n/a
Renya et al (2012) ⁵¹	Mexicali, Mexico (2003- 2007). avg 9 deaths/day.	Daily 8-hr max, 1-hr max Lag 0, 1, 2, 3, 4, 5, 6, 7	Non-accidental	Temporal: season (winter, summer)	Poisson regression. Interaction models for modification.	n/a
Romieu et al. (2012) ⁵²	6 cities, Latin America (Brazil, Chile, Mexico) (1997-2005). avg 12.0- 165.44 deaths/day per city.	Daily 8-hr max. Lag 0, 1, 2, 3, 03.	Non-accidental, cardiopulmonary, resp, CVD, cerebrovascular- stroke, COPD, lower resp infection. Not all outcomes and cities used in all analyses.	Individual: age (>65 yr, all ages, all outcomes but lower resp infection); <1 and 1-4 yr (resp), <1, 1- 14 yr (lower resp infection) for 3 cities. (by season and SES) Temporal: season (warm: OctMar., cool: AprSep for Brazil and Chile; warm: May-Sep., cool: OctApr. for Mexico) Community: SES index based on education, income, housing conditions (areas within 4 cities)	City-specific Poisson regression. Meta- regression and meta- analyses to generate overall effect. Stratification for medication. Modification results presented for each city and overall (age)	Age (+/-): higher for some ages others, varying by season and cause: higher for all ages, >65 yr, children (<1 or 1-4 yr), infants (<1 yr) Season: higher for some season than others, varying by age and cause: higher for warm or cool season SES (+/-): higher for some SES levels, varying by cause and city: higher for high or low SES
Sacks et al. (2012) ⁵³	Philadelphia, PA, U.S. (May 12, 1992- Sep. 30, 2005). 17,968 deaths.	Daily 8-hr max. Lag 01.	CVD	Temporal: season (warm: AprSep., cool: OctMar.)	Time series model. Indicator variable for modification.	n/a
Schwartz (2005) ⁵⁴	14 counties, U.S. (1986- 93). 847.406 deaths	Daily 1-hr max. Lag 0.	Non-accidental	Temporal: season (warm: May-Sep., cool: OctApr.)	City-specific case crossover. Random effects model to generate overall associations. Stratification for modification.	Season: higher in warm season
Simpson et al. (1997) ⁵⁵	Brisbane, Australia (1/97-10/93). 2,496 deaths	8-hr avg (10 am- 6 pm), daily 1-hr max. Lag 0, 1, 2, 3, 4, 5, 04, 05, 06	Non-accidental, CVD, resp	Individual: age (<65 yr, >65 yr) Temporal: season (summer: OctMar., winter: AprSep., yearly)	Poisson regression. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Simpson et al. (2000) ⁵⁶	Melbourne, Australia (JanAug., 1/91-8/96). avg 55.3 deaths/day	24-h, daily 1-hr and 4-hr max. Lag 0, 1, 2, 02, 04.	Non-accidental, CVD, resp	Individual: age (all ages, >65 yr, by season) Temporal: season (warm: NovMar., cool: AprOct.)	Poisson regression. Stratification for modification by age; interaction terms for modification by season.	n/a
Smith et al. (2009) ⁵⁷	98 cities, U.S. (1987- 2000).	24-hr avg, daily 1-hr and 8-hr max Lag 0, 1, 2, 01	Non-accidental	Temporal: season (summer: AprOct, all year) Community: central or window AC prevalence; 77 variables, primarily related to population distribution, housing, education, race, income; long-term summer O ₃ , PM ₁₀ , PM _{2.5} , SO ₂ , temperature (> or < median)	City-specific Poisson regression. Random effects model to generate overall effect and investigation community- level modification. Stratification for modification by age or season.	Temperature (+): higher on higher temperature days (summer), higher in communities with lower temperature SO (+) ₂ : higher on high SO ₂ days (year round analysis), higher in communities with higher long-term SO ₂ PM ₁₀ (+): higher on high PM ₁₀ days (year round analysis, summer) AC (+/-): higher for cities with higher window AC prevalence, lower for cities with higher central AC prevalence Residential mobility (-): lower for cities with higher mobility (different house in 1995; proportion >65 yr, renters >65 yr, home owners >65 yr moved since 1995) Transportation: higher with more use of public transportation, or less proportion driving to work Latitude (+): higher with higher latitudes
Son et al. (2012) ⁵⁸	Seoul, Republic of Korea (1/00-12/07). 261,952 deaths.	Daily 8-hr max. Lag 0, 1, 2, 01, 1-2, 02	Total, CVD, resp	Individual: sex (by sex and education), age (35- 64, 75-74, >75 yr, education (none, <12, >12 yr, unknown), marital status, occupation (professional; manual; technical service, mechanic, or physical labor; unemployed; unknown) Temporal: season (warm: May-Sep., all year) (total)	Case crossover. Interaction terms for modification by individual-level variables; stratification for modification by season.	Education: higher for unknown than none (CVD: all, women), higher for none than unknown (total, resp) Age (-): higher for 35-65 than >75 yr (CVD: women)

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Stafoggia et al. (2010)59	10 cities, Italy (Apr	Daily 8-hr max.	Non-accidental (>35 yr)	Individual: sex, age (35-	City-specific case	Sex: higher for women.
	Sep., 2001-2005).	Lag 0, 1, 2, 3, 4,		64, 65-74, 75-84, >85 yr,	crossover. Random effects	
	127,860 deaths	5, 01, 2-5, 05.		by sex)	meta-analysis to generate overall effect.	Age (+): higher for >85 yr than 75-84 yr (women), higher for >85 yr than all other
				Community: census-	Stratification for effect	age groups and all ages
				block income (low,	medication.	
				medium, high, 4 cities),		
				location of death (out of		
				hospital, out of hospital		
				with last discharge 2-28d		
				death, in hospital,		
				nursing home), co-		
				morbidities (diabetes,		
				hypertension, MI, cardiac		
				ischemic disease,		
				pulmonary circulation,		
				conduction disorders,		
				dysrhythmias, heart		
				failure, cerebrovascular,		
				chronic pulmonary		
				disease, number of		
				chronic conditions (0, 1,		
				2, >3)). Out of hospital		
				admissions analyzed		
				separately by age, sex,		
				income, and co-		
26				morbidities.		
Sunyer et al. (1996) ⁶⁰	Barcelona, Spain (1985-	Daily 1-hr max.	Total, CVD, resp	Individual: age (>70 yr,	Poisson regression.	Season: higher in warm season (CVD)
	91). 2,557 deaths.	Lag 0, 1, 2, 3, 4,		all ages, all cause)	Interaction terms for	
		5, 03.			modification.	
				Temporal: season		
				(warm: AprSep., cool:		
				OctMar.)		

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Sunyer et al. (2002) ⁶¹	Barcelona, Spain (1985- 95) 1,080 deaths	Daily 1-hr max. Lag 02.	Total for persons with emergency department visits for asthma 1985-95 (≥14 yr)	Individual: co-morbidity (1 previous asthma admissions, >1 asthma admissions, >1 asthma admission), severity of previous emergency department visit (released within 24h, hospital referral), # emergency department visits within 1000days (<2.26, \geq 2.26), sex, age (\geq 65 yr, >65 yr), season (AprSep., OctMar.) (by admission status)	Case-crossover within a cohort study. Stratification for modification by previous admission; interaction terms for other effect modifiers.	Age (-): higher for younger group (1 previous asthma admissions)
Verhoeff et al. (1996) ⁶²	Amsterdam, The Netherlands (1986-92). avg 19 deaths/day	Daily 1-hr max. Lag 0, 1, 2	Total	Temporal: season: (warm: May-Oct., all year)	Poisson regression. Stratification for modification.	n/a
Vichit-Vadakan et al. (2010) ⁶³	Bangkok, Thailand (6/97-5/03) avg 95 deaths/day.	Daily 8-hr max. Lag 0, 1, 2, 3, 4, 5, 01, 02, 03, 04, 05	Non-accidental	Individual: sex, age (0- 4, 5-44, 18-50, 45-64, >50, >65, >75 yr)	Poisson regression. Stratification for modification.	Age (+): higher for >75 yr than 18-50 yr
Villeneuve et al. (2003) ⁶⁴	Vancouver, Canada (1/86-12/98). 93,612 deaths.	24-hr avg. Lag 0, 1, 2. 02	All cause, resp, CVD (>65 yr)	Community: family income (quintiles)	Time series model. Stratification for modification.	n/a
Wong et al. (2007) ⁶⁵	Hong Kong (1/08-12/08). 24,053 deaths	24-h. Lag 0, 1, 2, 3	Non-accidental, cardio-resp (>30 yr)	Individual: age (>30, >65 yr, by exercise status), exercise status (never: <1, ever: >1/month; never: <1/month, low: >1/month and <1/week, moderate: 1-3/week, high: >4/week; by age)	Poisson regression. Stratification and interaction terms for modification by exercise status. Stratification for modification by age.	Exercise status (+/-): higher for never than ever exercisers; higher for never or low than moderate or high exercisers, higher for high than moderate exercisers (all cause, >30 yr); higher for never exercisers than other groups; higher for low than moderate or high exercisers; higher for high than moderate exercisers (all cause, >65 yr); higher for never or low than moderate exercisers; higher for high than moderate exercisers; higher for high than moderate exercisers; cardio-resp, >30 yr); higher for never or low than moderate exercisers, higher for low than high exercisers (cardio-resp, >65 yr)
Wong et al. (2008) ⁶⁶	Hong Kong (1/96-12/02). 215,240 deaths. avg 19 deaths/day.	Daily 8-hr max (1 am-6 pm) Lag 0, 1, 2, 3, 4	Mortality: non-accidental, CVD, resp	Community: social deprivation index (low, med, high)	Poisson regression and case only model. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Wong et al. (2009) ⁶⁷	Hong Kong (1996-2002). avg 16.2 resp, 5.8 COPD, and 23.8 CVD deaths/day.	Daily 8-hr max. Lag 01	Mortality: resp, COPD, CVD	Community: influenza	Poisson regression. Interaction terms for modification.	Influenza intensity (+): higher at higher influenza intensity (resp, COPD)
Wong et al. (2010) ⁶⁸	Hong Kong (mortality: 1/92-12/02). avg 84.2 deaths/day	Daily 8-hr max. Lag 0, 1, 2, 3, 4, 01, 04.	Non-accidental, CVD, resp	Individual: age (>65 yr, all ages) Community: social deprivation index (low, medium, high)	Poisson regression and case only model. Stratification for modification.	n/a
Wong et al. (2012) ⁶⁹	Hong Kong (1/85-6/95). avg 72 deaths/day	8-hr avg (10 am- 6 pm). Lag 01	Non-accidental, CVD, resp	Individual: age (>65 yr, all) Temporal: pre- and post-intervention to lower fuel S content	Poisson regression. Stratification for modification.	Age (+): Higher in older persons (CVD) Intervention (+): higher after intervention (all cause, resp)
Yang et al. (2012) ⁷⁰	Jiangsu Province, China (1/06-12/08). avg 33.6 deaths/day	24-hr avg, daily 1-hr and 8-hr max. Lag 0, 1, 2, 3, 4, 5, 6, 01, 04, 06.	Non-accidental.	Individual: age (0-4, 5- 44, 45-64, >65 yr), sex, education (low: illiterate or primary school, high: middle school or above). Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Stratification for modification.	Age (+): higher for >65 than 5-44 yr Season: higher in cool season
Zanobetti and Schwartz (2008) ⁷¹	48 cities, U.S (1989- 2000). 1,614,124 deaths	Daily 8-hr max. Summer: June- Aug. Lag 0, long-term lags up to 20 days	All cause, CVD, resp, stroke	Community: income (% households >65 yr with income >\$50,000), % population >65 yr poverty, % population with central CA, summer apparent temperature, variance of summer apparent temperature, population density	City-specific Poisson regression. Meta- regression to estimate overall associations. Meta-regression for modification.	n/a
Zanobetti and Schwartz (2008) ⁷²	48 cities, U.S. (1989- 2000). 6,951,395 deaths.	Daily 8-hr max. Lag 0.	All cause	Individual: age (0-20, 21-30, 31-40, 41-50, 51- 60, 61-70, 71-80, >80 yr) Temporal: season (winter: DecFeb., spring: MarMay, summer: June-Aug., autumn, SepNov.)	City-specific case crossover. Meta- regression to generate overall effect. Interaction terms for modification.	Season: higher for spring or summer than winter or autumn.

Study	Location and Time Frame	Exposure and Lag Structure	Mortality Outcome	Potential Modifiers	Statistical Models	Statistically Significant Results
Zhang et al. (2006) ⁷³	Shanghai, China (1/01- 12/04). avg 119.0 deaths/day	8-hr (10 am-6 pm) avg. Lag 01, 04.	Total non-accidental, CVD, stroke, heart disease, resp, COPD, acute resp infection	Individual: age (0-4, 5- 44, 45-64, >65 yr) (non- accidental), sex (non- accidental) Temporal: season (warm: AprSep., cool: OctMar.)	Generalized additive model. Stratification for modification.	Season: higher for cold season (non- accidental)

Web Table 2. Studies of modification for associations between ozone and hospital admissions or emergency room visits

Note: The results presented show (+) when a higher level of the effect modifier is associated with a higher health risk estimate and a (-) when a higher level of the effect modifier is associated with a lower health risk estimate. Only statistically significant associations are reported in the table. Reference numbers refer to the reference list for the Web Material, which differs from the reference list for the main text.

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Anderson et al. (1997) ⁷⁴	6 European cities (Amsterdam, Barcelona, London, Milan, Paris, Rotterdam). (1977-91, varied by city). avg 1-20 admissions/day per city.	8-hr avg (9 am-5 pm), daily max 1-hr. Lag 0, 1, 2, 3, 4, 5.	Hospital admissions: COPD	Temporal: season (warm: AprSep., cool: OctMar)	City-specific Poisson regression. City-specific associations pooled. Stratification for modification (overall across cities).	Season: higher in warm season
Anderson et al. (1998) ⁷⁵	London, U.K. (4/87-2/92). avg 35.1 admissions/day.	8-hr avg (9 am-5 pm) and daily max 1-hr. Lag 0, 1, 2, cumulative lags up to 3 days.	Emergency hospital admissions: asthma	Individual: age (0-14, 15-64, ≥65 yr) Temporal: season (warm: AprSep., cool: OctMar)	Poisson regression. Stratification for modification.	Season: higher in warm season (all ages, 0-14 yr).
Anderson et al. (2001) ¹	West Midlands conurbation, U.K. (10/94-12/96). avg 71 CVD and 66 respiratory admissions/day.	Daily 8-hr max. Lag 0, 1, 2, 3, 0-2, 0-3.	Hospital admissions: respiratory, CVD, cardiac, ischemic heart disease (IHD) (65+), stroke (65+), asthma (15- 64), COPD (65+)	Individual: age (0- 14,15-64,≥65 yr) (resp) Temporal: season (warm: AprSep., cool: OctMar).	Generalized additive model. Stratification for modification by age; interaction terms for season.	n/a
Arbex et al. (2009) ⁷⁶	Sâo Paulo, Brazil (2/01- 12/03). 1,769 ED visits, avg 1.66 visits/day	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5, 6, cumulative effect of 2, 3, and 6 days.	<i>Emergency department</i> <i>visits:</i> COPD (>40 yr)	Individual : sex, age (40- 64, ≥64 yr)	Poisson regression. Stratification for modification.	n/a
Atkinson et al. (1999) ⁷⁷	London, U.K. (1/92- 12/94). Average 150.6 resp and 172.5 lower resp disease/day.	Daily 8-hr and 1-hr maxes. Lag 0, 1, 2, 3, 01, 02, 03.	Emergency hospital admissions: resp, asthma, COPD+asthma (≥65 yr), lower resp (≥65 yr), CVD, IHD	Individual: age (0- 14,15-64, ≥65y for resp, asthma; 0-64, ≥65y for CVD)	Poisson regression. Stratification for modification by age, interaction terms for season.	Age (+): higher for older persons for CVD.
				Temporal: temperature and humidity (tertiles) for resp and CVD, season (warm: AprSep, cool: OctMar.)		
Atkinson et al. (1999) ⁷⁸	London, U.K. (1/92- 12/94). 121,610 admissions.	Daily 8-hr and 1-hr max. Lag 0,1,2,3, 03, 01, 02	Hospital admissions: all resp complaints, asthma, other resp complaints	Individual: age (0-14, 15-64, ≥65y for other and all resp complaints; 0-14, 15-64, all ages) (for asthma)	Poisson regression. Stratification for modification by age, interaction terms for season.	Age (+): higher for older persons.
				Temporal: season (warm: AprSep., cool: OctMar)		

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Ballester et al. (2001) ⁷⁹	Valencia, Spain (1994- 6). avg 7.0 CVD admissions/day.	Daily 8-hr and 1-hr max. Lag 0, 1, 2, 3, 4, 5.	<i>Emergency hospital</i> <i>admissions</i> : CVD, heart, cerebrovascular, digestive disease	Temporal : season (warm: May-Oct., cool: NovApr.)	Poisson regression. Stratification for modification.	n/a.
Bhaskaran et al. (2011) ⁸⁰	15 conurbations, England and Wales (2003-2006). 79,288 MIs.	Sub-daily metrics of 1-6, 7-12, 13-18, 19-24, 25- 72h	Hospital admissions: MI, other acute coronary syndromes	Individual: age (<60, 60-69, 70-79, \geq 80 yr), prior coronary heart disease, smoking (current, former, never) Temporal: season (summer: July-Aug., other).	Case-crossover. Interaction terms for modification.	n/a
Buadong et al. (2009) ⁸¹	Bangkok, Thailand (4/02-12/06). 33, 458 hospital visits, avg 19 cases/day.	Daily 1-hr max. Lag 0, 1, 01, 02.	Hospital visits: CVD	Individual: age (<15, 15-64, ≥65 yr)	Poisson regression. Stratification for modification.	Age (+): higher for older persons.
Burnett et al. (1995) ⁸²	Ontario, Canada (1/83- 12/88). avg 14.4 CVD and 16.0 resp admissions/day.	Daily 1-hr max. Lag 1	Hospital admissions: CVD, resp	Temporal : season (warm: AprSep., cool: OctMar. for CVD, warm: May-Aug., cool: SepApr. for resp)	Time series model. Stratification for modification.	n/a
Cakmak et al. (2006) ⁸³	10 cities, Canada (4/93- 3/00). 316,234 hospitalizations. avg 1.9- 48 admissions/day per city.	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5	Emergency hospital admissions: cardiac	Individual: sex Community: family education (quartiles), family income (quartiles)	City-specific time series model. Random effects model to estimate overall associations. Stratification for modification. Results for modification presented across all cities.	n/a
Cakmak et al. (2006) ⁸⁴	10 cities, Canada (4/93- 3/00). 215,544 hospitalizations. avg 1.9- 28.2 admissions/day per city	24-hr avg. Lag 0, 1, 2, 3, 4, 5.	Hospital admissions: resp	Individual: sex Community: income (quartiles), education (<grade 9,="" 9-13,="" some<br="">trade school or university, university)</grade>	City-specific Poisson regression. Random effects model to estimate overall associations. Stratification for modification. Results for modification presented across all cities.	n/a
Cakmak et al. (1998) ⁸⁵	Toronto, Canada (4/81- 12/91)	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5.	Hospital admissions: resp	Temporal: season (summer: June-Aug., all year)	Multiple regression approaches. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Canova et al. (2012) ⁸⁶	London, U.K. (5/08- 7/10). 209 subjects age ≥18y	Daily 8-hr max. Lag 0, 1, 2, 3, 01, 03.	Hospital admissions: asthma or COPD	Individual: sex; age (18-54, 55-74, ≥75 yr); previous diagnosis of asthma, COPD, or asthma+COPD; smoking (yes/no); uric acid, Vitamin A, Vitamin C, Vitamin E, Vitamin A or E corrected for cholesterol (high, low); 12 gene polymorphisms Temporal: season (warm: AprSep., all	Case-crossover. Stratification for modification.	Vitamin E (-): higher for lower Vitamin E during warm season. Genetic variant (NQO1 (rs1800566)): higher for CC than CC, TT for all year data.
Carlsen et al. (2013) ⁸⁷	Reykajavik, Iceland (1/03-12/09). 24,430 visits, avg 9.6 visits/day	Daily 8-hr max. Lag 0, 02, 05.	Emergency room visit, summed with admissions for stroke or cardio-resp (≥18 yr)	year) Individual: sex, age (<70, >70 yr) Temporal: season (warm: Apr. 16- Oct. 15, cool: remaining days)	Poisson regression. Stratification for modification.	n/a
Cassino et al. (1999) ⁸⁸	New York, U.S. (1/89- 12/93). 3,020 visits	24-hr and daily 1-hr max. Lag 0, 1, 2, 3	<i>Emergency department</i> <i>visits</i> : asthma	Individual: age (continuous), sex, race (African-American, Hispanic, other), smoking (never, <13 pack-yr, ≥13 pack-yr).	Poisson regression. Stratification for modification for smoking. For other modifiers, used logistic regression to compare risk of one group (e.g., males) to another (e.g., females) after high O ₃ days.	Smoking (+): higher for ≥13 pack-yr than <13 pack-yr or never smokers; ≥31 pack-yr more likely to have ED visit after high O ₃ day than never smoker. Sex: women more likely to have ED visit after high O ₃ day than
Castellsague et al. (1995) ⁸⁹	Barcelona, Spain (1986- 9). avg. 1.7 visits/day in summer	Daily 1-hr max. Lag 0, 1, 2, 3, 4, and cumulative lags.	<i>Emergency room visits:</i> asthma (15-64 yr)	Temporal: season (warm: July-Sep., cool: JanMar.)	Poisson regression. Stratification for modification.	n/a
Chang et al. (2005) ⁹⁰	Taipei, Taiwan (1997- 2001). avg 40.80 admissions/day	24-hr avg. Lag 02	Hospital admissions: CVD	Temporal : temperature (warm: $\geq 20^{\circ}$ C, cool: $< 20^{\circ}$ C)	Case crossover. Stratification for modification.	Temperature (+): higher for warmer days
Cheng et al. (2007) ⁹¹	Kaohsiung, Taiwan (1996-2004). 82,587 admissions. avg. 25 admissions/day	24-hr avg. Lag 02	Hospital admissions: pneumonia	Temporal: temperature (warm: ≥23°C, cool: <23°C)	Case crossover. Stratification for modification.	n/a
Cheng et al. (2009) ⁹²	Kaohsiung, Taiwan (1996-2002) 9,349 admissions. avg 2.33 admissions/day.	24-hr avg. Lag 02	Hospital admissions: MI	Temporal: temperature (warm: >25°C, cool: <25°C)	Case crossover. Stratification for modification.	Temperature (+): higher on warm days after adjustment by PM ₁₀

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
`Cheng et al. (2009) ⁹³	Kaohsiung, Taiwan (1996-2006) 110,013 admissions	24-hr avg. Lag 02.	Hospital admissions: pneumonia	Individual: co-morbidity of secondary diagnosis (hypertension, diabetes, dysrhythmia, COPD, upper resp infections, asthma, cerebrovascular disease, congestive heart failure (CHF), ischemic heart failure) (on cool and warm days) Temporal: temperature (warm: >25°C, cool: <25°C)	Case crossover. Stratification for modification.	n/a
Chiu et al. (2009) ⁹⁴	Taipei, Taiwan (1996- 2004). 152,594 admissions. avg 46 admissions/day.	24-hr avg. Lag 02	Hospital admissions: pneumonia.	Temporal: temperature (warm: $\geq 23^{\circ}$ C, cool: $\langle 23^{\circ}$ C)	Case crossover. Stratification for modification.	Temperature (+): higher on warm days
Chiu et al. (2009) ⁹⁵	Taipei, Taiwan (2000-6). 21,581 ER visits. avg 8.44 visits/day	24-h. Lag 0.	Hospital admissions: arrhythmia	Individual: secondary diagnosis (hypertension, diabetes, CHF) Temporal: temperature (warm: >23°C, cool: <23°C)	Case crossover. Stratification for modification.	Co-morbidity: higher for those with CHF on warm days, higher for those with hypertension on cool days
Corea et al. (2012) ⁹⁶	Mantua, Italy (1/06- 12/08). 781 admissions.	Daily 8-hr max. Lag 0.	Hospital admissions: ischemic stroke, cerebrovascular	Individual: sex	Case crossover. Stratification for modification.	n/a
Dales et al. (2009) ⁹⁷	7 urban centers, Santiago Province, Chile (2001-5). avg 2.5 admissions/day	24-hr avg. Lag 0, 1, 2, 3, 4, 5.	Hospital admissions: migraine, headache with specified cause, headache not otherwise specified	Individual: age (<64, >64 yr), sex Temporal : season (warm: OctMar., cool: AprSep.)	Center-specific Poisson regression. Random effects modeling to generate overall estimate. Stratification for modification. Results for modification presented across all centers.	n/a
Dales et al. (2010) ⁹⁸	7 municipalities, Santiago, Chile (2001- 2005). avg 1.549 venous thrombosis and 0.754 pulmonary embolism admissions/day.	Daily 1-hr max. distributed lags 0-14 days.	Hospital admissions: venous thrombosis, pulmonary embolism	Individual: sex, age (≤64, >64 yr) Temporal: season (warm: OctMar.), cool: AprSep.)	Municipality-specific time-series model. Random effects model to generate overall associations. Stratification for modification.	Age: higher for younger (venous thrombosis, pulmonary embolism) Season: higher in warm season (pulmonary embolism)
Dales et al. (2012) ⁹⁹	Santiago, Chile (1/01- 12/08). avg 1.79 admissions/day	24-h. Lag 0, 1, 2, 3, 4, 5	Hospital admissions: principal diagnosis of diabetes	Individual: age (≤ 64 , 65-74, 75-84, ≥ 85 yr), sex Temporal: season (warm: OctMar., cool: AprSep.)	Generalized linear model. Stratification for modification.	Sex: higher for women

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Díaz et al (2001) ¹⁰⁰	Madrid, Spain (2/91- 9/96). avg 59.9 admissions/day	24-hr avg. Multiple single day lags explored.	Hospital admissions: unscheduled admissions excluding traumas and births, circulatory, resp	Temporal: season (summer: June-Sep., winter: DecMar., all year)	Univariate AutoRegressive Integrated Moving Average (ARIMA) modeling. Stratification for modification by season.	n/a (Central estimates presented only)
Freitas et al. (2010) ¹⁰¹	Lisbon, Portugal (1999- 2004). avg 17 resp and 31 circulatory admissions/day	Daily 1-hr max. Lag 0.	Hospital admissions: resp, COPD, circulatory, asthma, cardiac, IHD	Individual: age (<15, 15-64, >64 yr, all)	F and t tests, Pearson correlations, linear trend analysis. Stratification for modification.	n/a
Glad et al. (2012) ¹⁰²	Allegheny County, PA, U.S. (1/02-12/05). 6,979 visits	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5, 05	<i>Emergency room visits:</i> asthma as primary diagnosis	Individual: age (<18, 18-64, >64, all), sex, race (Caucasian American, African American, all)	Case crossover. Stratification for modification.	n/a
Gwynn and Thurston (2001) ¹⁰³	New York, NY, U.S. (1988-90). 1,096 admissions	24-hr avg. Lag 1.	Hospital admissions: unscheduled resp	Individual: race (white, non-white), insurance (privately insured or Medicare, Medicaid or uninsured)	Negative binomial regression. Stratification for modifications.	Race: higher for non-whites
Halonen et al. (2010) ¹⁰⁴	Helsinki (1998-2004). 36,313 CVD admissions (median 33 admissions/day), 18,465 resp admissions (median 45 admissions/day)	Daily 8-hr max during warm season (May-Sep.). Lag 0, 1, 2, 3, 4, 5, 04.	Hospital admissions: coronary heart disease, stroke, arrhythmia, pneumonia, asthma- COPD, CVD, resp (≥15 yr)	Individual: age (15-64, ≥65 yr)	Poisson regression. Stratification for modification.	n/a
Hsieh et al. (2010) ¹⁰⁵	Taipei, Taiwan (1996- 2006). 23,420 MI admissions, avg 5.83 admissions/day	24-hr avg. Lag 02.	Hospital admissions: MI	Temporal: temperature (warm: >23°C, cool: <23°C)	Case crossover. Stratification for modification.	Temperature: higher on cool days (when adjusted by CO)
Jalaludin et al. (2006) ¹⁰⁶	Sydney, Australia (1/97- 12/01). avg 55.2 CVD visits/day	24-hr avg. Lag 0, 1, 2, 3, 0-1	<i>Emergency department</i> <i>visits</i> (≥65 yr): CVD, cardiac disease, IHD, stroke	Temporal: season (warm: NovApr., cool: May-Oct.)	Time series model. Stratification for modification.	n/a
Jones et al. (1995) ¹⁰⁷	Baton Rouge, LA, U.S. (6.90-8/90). 1,265 visits	24-hr avg. Lag 0, 0-2.	Emergency department visits	Individual: age (0-17, 18-60, <u>></u> 61 yr)	Times series model. Stratification for modification.	Age (+/-): higher for adults than older or younger populations.
Kaplan et al. (2009) ¹⁰⁸	Calgary, Canada (4/99- 12/06). 5,191 patients.	Daily 1-hr max. Lag 0, 1, 3, 04, 06.	Hospital admissions: appendicitis ≥18y	Individual: age (18-34, 35-64, ≥65 yr), sex Temporally: season (Spring: MarMay, Summer: June-Aug., Autumn: SepNov., winter: DecFeb.)	Case crossover. Stratification for modification	Season: Higher in Autumn than Spring (some lag)
Kim et al. (2007) ¹⁰⁹	Seoul, Republic of Korea (2002). 92,535 visits	Daily 1-hr max, summer only. Lag 2.	Emergency out-patient hospital visits: asthma	Individual: insurance premiums (quintiles). Community: insurance premium by district	Case crossover. Interaction terms and stratification for modification.	n/a

Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Hong Kong (1/00-12/05). 61,176 hospitalizations. avg 31.9 admissions/day	Daytime avg (9 am-5 pm). Lag 0, 1, 2, 3, 4, 5, 01, 02, 05	Emergency hospital admissions: asthma	Individual: age (0-14, 15-65, >65 yr) Temporal: season (warm: AprNov., cool: DecMar.)	Poison regression. Stratification for modification by age; interaction terms for modification by season.	Age (-): higher for younger (15- 65) than older (>65 yr)
8 cities, France (1998- 2003, years varied by city). 11,105,389 admissions	24-hr avg. Lag 01	Hospital admissions: CVD, cardiac, IHD, stroke (all excluding outpatient units)	Individual: age (≥65 yr, all ages)	City-specific Poisson regression. Random effects model to generate overall estimates. Stratification for modification.	n/a
Kaohsiung, Taiwan (1996-2003). 25,108 admissions, avg 8.6 admissions/day.	24-hr avg. ag L02	Hospital admissions: COPD	Temporal: temperature (≥25°C, <25°C)	Case crossover. Stratification for modification.	n/a
Kaohsiung, Taiwan (1996-2004). 13,475 admissions, avg. 4.1 admissions/day	24-hr avg. Lag 02. For days >20°C	Hospital admissions: CHF	Temporal: temperature (warm: ≥25°C, cool: <25°C)	Case crossover. Stratification for modification.	n/a
Taipei, Taiwan (1996- 2005). 28,070 admissions, avg 7.68 admissions/day.	24-hr avg. Lag 02.	Hospital admissions: primary diagnosis CHF	Individual: co- morbidities (with and without secondary diagnosis) (warm days only)	Case crossover. Stratification for modification.	n/a
Republic of Korea (12/97-12/99). avg 12.4 admissions/day	Daily 1-hr max. Lag 1, 2, 3	Hospital admissions: IHD (≥64 yr)	Individual: age (≥64 yr, all ages) Temporal: season (summer: June-Aug., all vear)	Time-series model. Stratification for modification.	Age (+): higher for older populations than all ages (year- round results).
Los Angeles, CA, U.S. (1992-Dec. 21, 1995). Avg 406-450 CVD, 172- 241 pulmonary, 72-77 cerebrovascular admissions/day per season	Daily 1-hr max. Lag 0, 1.	Hospital admissions: CVD, pulmonary, cerebrovascular, abdominal (≥30 yr)	Temporal: season (winter: JanMar., spring: AprJune, summer: July-Sep., autumn: OctDec.)	Poisson regression. Stratification for modification.	Season: higher in summer than winter (abdominal); higher in spring than summer than winter (CVD)
Windsor, Ontario, Canada (4/95-12/00). 4,214 admissions	-	Hospital admissions: resp diseases	Individual: sex (by age), age (0-14, 15-64, ≥65 yr)	Time-series. Case crossover. Stratification for modification.	n/a
Southern California Air Basin, U.S. (1988-95). 54,863 admissions.	Daily 8-hr max (Apr Oct.). Lag 0, 1, 2, 01, 02, 03	Hospital admissions: IHD (Southern California Kaiser Permanente members)	Individual: co- morbidities (with or without secondary diagnosis of CHF or arrhythmia) Temporal: season (warm cascon: Apr. Oct	Poisson regression. Stratification for modification.	n/a
	 61,176 hospitalizations. avg 31.9 admissions/day 8 cities, France (1998- 2003, years varied by city). 11,105,389 admissions Kaohsiung, Taiwan (1996-2003). 25,108 admissions, avg 8.6 admissions/day. Kaohsiung, Taiwan (1996-2004). 13,475 admissions, avg. 4.1 admissions/day Taipei, Taiwan (1996- 2005). 28,070 admissions, avg 7.68 admissions/day. Republic of Korea (12/97-12/99). avg 12.4 admissions/day Los Angeles, CA, U.S. (1992-Dec. 21, 1995). Avg 406-450 CVD, 172- 241 pulmonary, 72-77 cerebrovascular admissions/day per season Windsor, Ontario, Canada (4/95-12/00). 4.214 admissions Southern California Air Basin, U.S. (1988-95). 	61,176 hospitalizations. avg 31.9 admissions/daypm). Lag 0, 1, 2, 3, 4, 5, 01, 02, 058 cities, France (1998- 2003, years varied by city). 11,105,389 admissions24-hr avg. Lag 012003, years varied by city). 11,105,389 admissions24-hr avg. ag L02(1996-2003). 25,108 admissions, avg 8.6 admissions/day.24-hr avg. Lag 02. For days >20°CKaohsiung, Taiwan (1996-2004). 13,475 admissions/day.24-hr avg. Lag 02. For days >20°CTaipei, Taiwan (1996- 2005). 28,070 admissions, avg 7.68 admissions/day.24-hr avg. Lag 02.Republic of Korea (12/97-12/99). avg 12.4 admissions/dayDaily 1-hr max. Lag 1, 2, 3Los Angeles, CA, U.S. (1992-Dec. 21, 1995). Avg 406-450 CVD, 172- 241 pulmonary, 72-77 cerebrovascular admissions/day per seasonDaily 1-hr max. Lag 0, 1.Windsor, Ontario, Canada (4/95-12/00). 4,214 admissions24-h. Lag 0, 01, 02Southern California Air Basin, U.S. (1988-95).Daily 8-hr max (Apr Oct.) Lag 0, 1, 2, 01, 02,	61,176 hospitalizations. avg 31.9 admissions/daypm). Lag 0, 1, 2, 3, 4, 5, 01, 02, 05 $admissions: asthma$ 8 cities, France (1998- 2003, years varied by city). 11.105,389 admissions24-hr avg. Lag 01 $Hospital admissions:$ CVD, cardiac, IHD, stroke (all excluding outpatient units)Kaohsiung, Taiwan (1996-2003). 25,108 admissions, avg 8.6 admissions/day.24-hr avg. ag L02 $Hospital admissions:$ COPDKaohsiung, Taiwan (1996-2004). 13,475 admissions, avg 4.1 admissions/day.24-hr avg. Lag 02. For days >20°C $Hospital admissions:$ CHFTaipei, Taiwan (1996- 2005). 28,070 admissions, avg 7.68 admissions/day.24-hr avg. Lag 02. $Hospital admissions:$ primary diagnosis CHFRepublic of Korea (12/97-12/99), avg 12.4 admissions/dayDaily 1-hr max. Lag 1, 2, 3 $Hospital admissions:$ (VD, pulmonary, cerebrovascular admissions/day per seasonLos Angeles, CA, U.S. (192-Dec. 21, 1995). Avg 406-450 CVD, 172- 241 pulmonary, 72-77 cerebrovascular admissions/day per seasonDaily 1-hr max. Lag 0, 1. Daily 1-hr max. Lag 0, 1. Hospital admissions: resp diseasesWindsor, Ontario, Canada (4/95-12/00). 4,214 admissions24-h. Lag 0, 01, 02 Ot.). Lag 0, 1, 2, 01, 02, O3 $Hospital admissions:HO (Southern California AirBasin, U.S. (1988-95).S4,863 admissions.$	61.176 hospitalizations, avg 31.9 admissions/daypm). Lag 0, 1, 2, 3, 4, 5, 01, 02, 05 $admissions:$ asthma15-65, >65 yr)8 cities, France (1998- 2003, years varied by city). 11.105.389 admissions24-hr avg. Lag 01 $Hospital admissions:CVD, cardiae, IHD,stroke (all excludingoutpatient units)Individual: age (\geq 65 yr,all ages)Kaohsiung, Taiwan(1996-2003). 25,108admissions, avg 8.6admissions, avg 8.6admissions, avg 8.6admissions, avg 8.724-hr avg. Lag 02, Fordays >20°CHospital admissions:COPDTemporal: temperature(\geq 25^{\circ}C, < < 25^{\circ}C)Kaohsiung, Taiwan(1996-2004). 13.475admissions, avg 7.68admissions, avg 7.68admissions/day24-hr avg. Lag 02, Fordays >20°CHospital admissions:CHFTemporal: temperature(warm: \geq 25^{\circ}C, < < < C^{\circ}C)Republic of Korea(1297-12/99), avg 12.4admissions/dayDaily 1-hr max. Lag 1, 2,3Hospital admissions:trimary diagnosis CHFIndividual: co-morbidities (with andwithout secondarydiagnosis) (varm daysonly)Los Angeles, CA, U.S.(1297-12/99), avg 12.4admissions/dayDaily 1-hr max. Lag 1, 2,3Hospital admissions:CVD, pulmonary,cerebrovascular,abdominal (\geq 30 yr)Temporal: season(summer: June-Aug., allyear)Los Angeles, CA, U.S.(1297-12/99), avg 12.4admissions/dayDaily 1-hr max. Lag 0, 1.CD, pulmonary,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,2, 2, 1000,<$	61.176 hospitalizations. avg 31.9 admissions/day pm). Lag 0, 1, 2, 3, 4, 5, 01, 02, 05 admissions: asthma 15-65, >65 yr) modification by sgs; interaction terms for modification by sgs.on. 8 cities, France (1998. 2003, years varied by city), 11, 105, 339 24-hr avg. Lag 01 Hospital admissions: CVD, cardiac, HD, stroke (all excluding outpatient units) 15-65, >65 yr) modification by sgs; interaction terms for modification by cove. Mar.) 8 cities, France (1998. 2003, years varied by city), 11, 105, 339 24-hr avg. Lag 01 Hospital admissions: CVD, cardiac, HD, stroke (all excluding outpatient units) Temporal: temperature (25°C, <25°C)

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Medina-Ramon et al. (2006) ¹¹⁹	36 cities, U.S. (1986-99). 578,006 COPD admissions, 1,384,813 pneumonia admissions.	Daily 8-hr max. Lag 0, 1, 2	Hospital admission: emergency or urgent admissions COPD, pneumonia (≥65 yr)	Temporal: season (warm, cool) (16 cities) Community: mean summer (June-Aug.) apparent temperature, variance of summer apparent temperature, % of those ≥65y in poverty, prevalence of central AC, annual mortality rate for emphysema for those ≥65y as smoking indicator (all for warm season only)	Case crossover. Random effects model to generate overall effect and investigate modification.	Season: higher in warm season (COPD, pneumonia) Temperature variance (-): higher with lower variance of summer apparent temperature (COPD) AC: higher with lower AC prevalence (pneumonia)
Middleton et al. (2008) ¹²⁰	Nicosia, Cyprus (1/95- 12/04). 178,091 admissions	24-hr avg, daily 8-hr max. Lag 0, 1, 2	Hospital admission: total, CVD, resp, CVD+resp	Individual: sex, age (<15, ≥15 yr, for total admissions, resp) Temporal: season (warm: AprSep., cool: NovMar.) (total, CVD, resp)	Poisson regression. Stratification for modification by age; interaction terms for modification by season.	Sex: higher in women (resp) Season: higher in warm season for persons ≥15
Moolgavkar (2000) ¹²¹	Los Angeles Co., CA; Maricopa Co., AZ, Cook County, IL (1987-95). Median 33-172 CVD and 13-63 resp admissions/day	24-hr avg. Lag 0, 1, 2, 3, 4, 5	Hospital admissions: CVD, cerebrovascular (≥65 yr)	Temporal: season (warm: AprSep., all year)	County-specific Poisson regression. Stratification for modification. Modification results for each city.	n/a
Morgan et al. (1998) ¹²²	Sydney, Australia (1/91- 12/94). avg 47.2 heart disease admissions/day, 15.5 (1-14 yr) and 9.0 (15-64 yr) asthma admissions/day	Daily 1-hr max. Lag 0, 1, 2, cumulative lags.	Hospital admissions: asthma, heart disease	Individual: age (1-14, 15-64y for asthma; 0-64, ≥65 yr, all ages for heart disease)	Poisson regression. Stratification for modification.	n/a
Namdeo et al. (2011) ¹²³	Lees, West Yorkshire, UK (4/02-12/05). 20,961 admissions	Daily 8-hr max. Lag 1, 2, 3	Hospital admissions: resp	Individual: age (<60, 60-69, 70-74, 75-79, ≥80 yr)	Poisson regression. Stratification for modification.	Age (+/-): higher for 70-74 than \geq 80 or <60y for lag 0, higher for \geq 80 than <60y for lag 2
Nauenberg and Basu (1999) ¹²⁴	Los Angeles, CA, U.S. (1991-4). 11,240 asthma admissions. 34,564 control admissions	24-hr avg. Lag 0, 07.	Emergency and urgent hospital admissions: asthma, non-resp (control group)	Individual:: insurance (total asthma; asthma with Medical, CA's Medicare program; insurance other than Medical; uninsured)	Poisson regression. Stratification for modification.	n/a

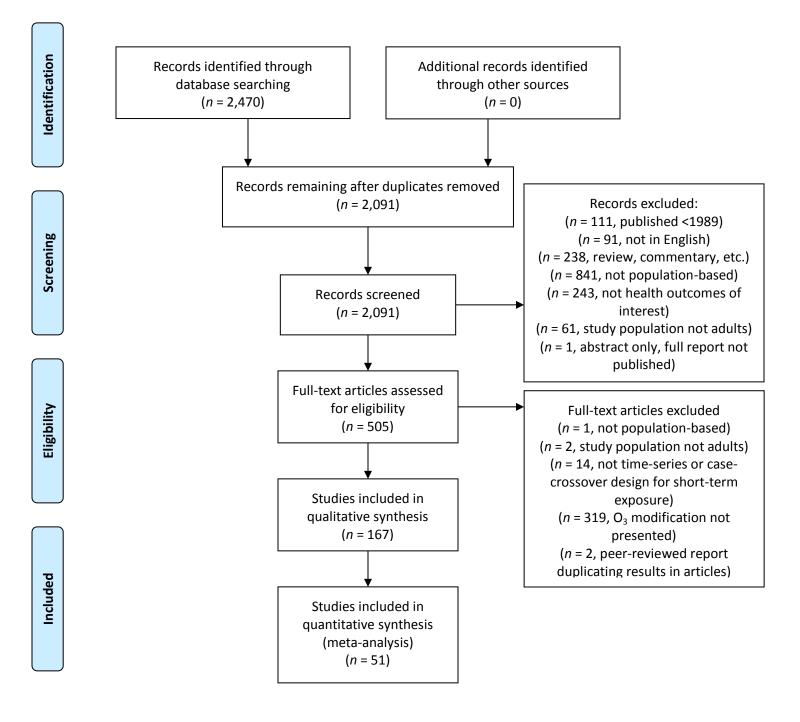
Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Oudin et al. (2010) ¹²⁵	Scania, Sweden (1/01- 12/05). 11,267 ischemic stroke admissions, 1,681 hemorrhagic stroke admissions	24-hr avg. Lag 0, 1, 2	Hospital admissions: ischemic stroke, hemorrhagic stroke	Individual: sex, age at diagnosis (<78, >78 yr), smoking (≥1 cigarette/day 3 months prior to stroke, <1 cigarette/day), residence in major city (yes, no) Temporal: season (warm: May-Sep., cool:	Poisson regression. Case crossover. Stratification and interaction terms for modification.	n/a
				OctMay)		
Paulu and Smith (2003) ¹²⁶	Maine, U.S. (2000-2). 8,020 visits	Daily 8-hr max. Lag 0, 1, 2, 3, 4, 03.	Hospital emergency department visits: asthma (≥2 yr)	Individual: age (2-14, $15-34$, $35-64$, ≥ 65 yr), sex (by age)	Case crossover. Stratification for modification.	n/a
				Temporal: season (warm: 28-day period starting May 22 or 23 and ending Sep. 10 or 11, cool: remaining days)		
Peel et al. (2007) ¹²⁷	Atlanta, GA, U.S. (1/93- 8/00). 156,283 visits	Daily 8-hr max (warm season). Imputed values for days missing data. Lag 02	<i>Emergency department</i> <i>visits:</i> IHD, dysrhythmia, peripheral and cerebrovascular disease, CHF	Individual: co-morbidity of secondary diagnosis (hypertension, diabetes, COPD, CHF, dysrhythmia)	Case crossover. Stratification for modification.	Co-morbidity: higher for those with COPD (peripheral and cerebrovascular disease)
Pereira Filho et al. (2008) ¹²⁸	Sao Paulo, Brazil (1/01- 7/03). avg 17.4 visits/day	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5, 6, cumulative lags from lag 01 to 06.	Emergency room visits: CVD (≥18 yr)	Individual: comorbidity (with and without diabetes)	Times series. Stratification for modification.	n/a
Petroeschevsky et al. (2001) ¹²⁹	Brisbane, Australia (1/97-12/94). avg 30.1 admissions/day	Daily 1-hr max, 8-hr avg (10 am-6 pm). Lag 0, 1, 2, 3, 02, 04.	Emergency hospital admissions: resp, asthma, CVD	Individual: age (resp: 0- 4, 5-14, 15-64, ≥65y; asthma: 0-14, 15-64; CVD: 15-64, ≥65 yr)	Poisson regression. Interaction terms for modification by season; stratification for modification by age.	Age (+): higher for ≥65 than 0- 4y (resp) Season: higher for winter (resp 15-64 yr), lower in autumn (resp ≥65 and all ages), lower in winter (asthma 0-14 yr), higher in summer (CVD all ages), lower in spring (CVD, all ages)
Poloniecki et al. (1997) ¹³⁰	London, U.K. (4/87- 3/94). avg 26.7 admissions/day	8-hr avg (9 am-5 pm). Lag 1	Hospital admissions: acute MI	Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Stratification for modification.	n/a
Ponce de Leon et al. $(1996)^{131}$	London, U.K. (4/87- 2/92). avg 125.7 admissions/day	Daily 1-hr max, 8-hr avg (9 am-5 pm). Lag 0, 1, 2, 01, 02	Hospital admission: resp	Individual: age (0-14, 15-64, ≥65 yr)	Poisson regression. Stratification for modification.	Age (+): higher for ≥ 65 than 0- 4y
				Temporal: season (warm: AprSep., cool: OctMar.)		Season: higher in warm season (all ages, 15-64, ≥65 yr)

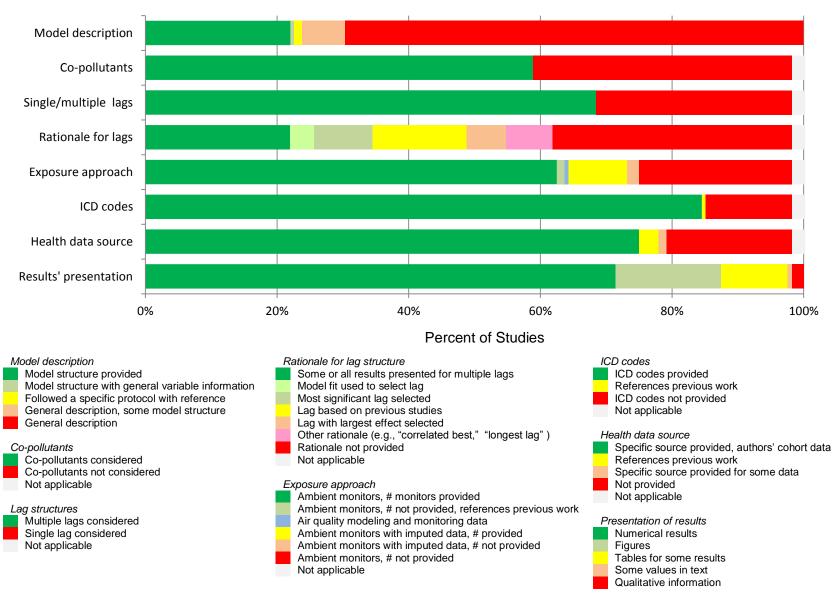
Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Prescott et al. (1998) ⁴³	Edinburgh, Scotland (10/92-6/95). avg 12.1 CVD and 6.9 resp admissions/day	24-hr avg. Lag 0, 1, 02.	Hospital admissions: CVD, resp	Individual: age (<65, \geq 65 yr), co-morbidities: previous CVD/resp admissions (all, >1, >2, >4)	Poisson regression. Stratification for modification.	n/a
Qiu et al. (2012) ¹³²	Hong Kong (1/98-12/07). 3,652 admissions	8-hr avg (10 am-6 pm). Lag 0, 1, 2, 3, 01, 02, 03.	Emergency hospital admissions: IHD	Temporal: season (warm: May-Oct., cool: NovApr.), relative humidity (<80%, ≥80%), season and humidity (warm/dry, warm/humid, cool/dry, cool/humid)	Poisson regression. Interaction terms for modification.	Season: higher for cool season Humidity (-): higher for low humidity days Season/humidity: lower for warm/humid than warm/dry or cool/dry
Sarnat et al. (2013) ¹³³	Atlanta, GA (1/99- 12/02). 270,816 visits	24-hr avg. Lag 02	<i>Emergency department</i> <i>visits</i> : asthma and wheeze	Community: low or high air exchange rate (AER) (above or below median, tertiles), % in poverty (low, high).	Poisson regression for each of 186 zip codes. Interaction terms for modification by AER, stratification for modification by both poverty and AER.	n/a
Santus et al. (2012) ¹³⁴	Milan, Italy (1/07-12/08). 45,770 admissions.	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5, 02, 3-5.	<i>Emergency room</i> <i>admissions:</i> upper resp tract infection, asthma, pneumonia, COPD exacerbation	Individual: sex, age (COPD exacerbation: ≥65 yr, all ages; other causes: ≥16, ≥65 yr, all ages), race (Caucasian, other) Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Stratification for modification.	Sex: higher for women (COPD exacerbation) Race: lower for Caucasian (asthma, pneumonia), higher for Caucasian (COPD exacerbation) Season: higher for warm season (upper resp tract infection, asthma)
Schouten et al. (1996) ¹³⁵	Amsterdam and Rotterdam, The Netherlands (1977-89). avg 6.70 (Amsterdam) and 4.79 (Rotterdam) resp admissions/day	24-hr avg, daily 8-hr max. Lag 0, 1, 2, 01, 02, 03, 04, 05.	Hospital admissions: resp, COPD, asthma (Amsterdam only)	Individual: age (15-64, ≥65 yr, resp) (age for Rotterdam modeled separately for 1977-81, 1982-4, 1985-9) Temporal: season (summer: May-Oct., winter: NovApr., by age)	Poisson regression. Interaction terms for modification. Method to generate overall effect not specified. Modification results presented for each city. Modification for both cities combined for resp all ages.	Age (+): higher for older group (resp, Rotterdam, 1977-81) Season: higher in summer (resp, all ages, overall)
Schwartz (1994) ¹³⁶	Birmingham, AL, U.S. (MarNov., 1/86-12/89). avg 5.9 pneumonia and 2.2 COPD admissions/day	24-hr avg, daily 1-hr max. Lag 0, 1, 2	Hospital admissions:	Temporal: season (warm: AprAug., all year, for pneumonia); temperature (excluding extreme temperature, all days)	Poisson regression. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Schwartz (1996) ¹³⁷	Spokane, WA, U.S. (AprOct., 1/88-12/90). 4,241 admissions. avg. 2.9 admissions/day.	24-h, daily 1-hr max. Lag 0, 1, 2	Hospital admissions: resp (≥65 yr)	Temporal: temperature (all days, exclude extreme temperature: <16.4°F or >76.6°F) (resp)	Poisson regression. Stratification for effect medication.	n/a
Silverman and Ito (2010) ¹³⁸	New York, NY, U.S. (AprAug., 1999-2006). 6,008 ICU admissions, median 5 admissions/day. 69,375 non-ICU admissions, median 54 admissions/day.	Daily 8-hr max. Lag 01, 04	Hospital admissions: ICU asthma, non-ICU asthma	Individual: age (<6, 6- 18, 19-49, ≥50 yr)	Poisson regression. □ ² test for heterogeneity of effect estimates by age groups.	Age (+/-): higher for 6-18 than other age groups (non-ICU asthma admissions)
Son et al. (2013) ¹³⁹	8 cities, Republic of South Korea (1/03- 12/08). avg 5.7-36.3 admissions/day per city	Daily 8-hr max. Lag 0, 1, 2, 3, 01, 02, 03.	Hospital admissions: allergic disease, asthma, selected resp disease, CVD	Individual: sex, age $(0-14, 15-64, 65-74, \ge 75 \text{ yr})$ (overall) Temporal: weekday (weekdays, all days), season (spring, summer, fall, winter)	City-specific Poisson regression. Bayesian hierarchical modeling to generate overall effect. Stratification for modification. Modification results for weekday and season presented for each city and overall.	Season: higher for fall than spring (Ulsan: allergic disease, asthma), higher in winter than other seasons (overall: resp), higher for winter than summer or fall (Seoul: resp), higher for summer than fall (Busan: CVD), higher for summer than spring (Ulsan: CVD)
Spix et al. (1998) ¹⁴⁰	4 European cities (London, Amsterdam, Rotterdam, Paris) (1977- 92, years differed by city)	Daily 8-hr max from 9 am-5 pm, daily 1-hr max	Hospital admissions: emergency and non- emergency admissions for Paris, emergency admissions for other cities.	Individual: age (15-64, ≥65 yr) Temporal: season (warm: AprSep., cool: OctMar.)	City-specific Poisson regression. Random effects and fixed effects modeling to generate overall estimates. Analysis for season by age.	n/a
Stieb et al. (2000) ¹⁴¹	Saint John, Canada (7/92-6/94). 19,821 visits. avg 14.4 visits/day.	24-hr avg, daily 1-hr max. Single day lags up to lag 10, multi-day lags up to previous 5 days.	Emergency department visits:	Temporal: season (May-Sep., all year)	Generalized additive models. Stratification for modification.	n/a
Sunyer et al. (1997) ¹⁴²	4 cities (Barcelona, Helsinki, Paris, London), Europe (1986-92, years differed by city). avg 0.7- 13.1 adult admissions/day	Daily 8-hr max. Lag 0, 1, 2, 3, 01, 02, 03, 04.	Emergency room visits and admissions:	Individual: age (<15, 15-64 yr) Temporal: season (warm: AprSep., cool: OctMar.)	City-specific Poisson regression. Fixed effects and random effects models to generate overall effect. Stratification for modification.	n/a
Szyszkowicz (2008) ¹⁴³	Edmonton, Canada (4/92-3/02). 10,881 visits	24-h, daily 1-hr max. Lag 02.	<i>Emergency department</i> <i>visits:</i> acute ischemic stroke	Individual: age (20-64, 65-100 yr), sex Temporal: season (warm: AprSep, cool: OctMar., all)	Generalized linear mixed models. Clusters by time (year, month, day of week). Stratification for modification.	n/a (Central estimates presented only)

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Szyszkowicz et al. (2008) ¹⁴⁴	Edmonton, Canada (4/92-3/02). 62,563 visits	24-hr avg. Lag 0, 1, 2	Emergency department visits: asthma	Individual: sex (by age), age ($<10, \ge 10$ yr) Temporal: season (warm: AprSep., cool: OctMar., by age and sex)	Poisson regression using cluster analysis. Stratification for modification.	Age (-): higher for younger group (women in warm season)
Szyszkowicz et al. (2010) ¹⁴⁵	Edmonton, Canada (4/92-3/02). 69,547 visits	24-hr avg. Lag 0, 1, 2, 3, 4	Emergency department visits: cellulitis	Individual: sex, age men: 0-2, 12-14, 15-34, 35-65, ≥66y; women: 3- 11, 15-34, 35-64, ≥66 yr) Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Stratification for modification.	Sex: higher for men (all year, cool season), higher for women (warm season) Age (+/-): higher for 0-2 than 15-34 (men), higher for 35-65 than 15-43 (women) Season: higher for warm season (all, women)
Szyszkowicz et al. (2010) ¹⁴⁶	Vancouver, Canada (1/99-2/03). avg 1.1 visits/day. 1,605 visits.	24-hr avg. Lag 0, 1, 2	<i>Emergency department</i> <i>visits:</i> suicide attempt or ideation	Individual: sex Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression to clustered counts. Case crossover. Stratification for modification.	n/a (Central estimates presented only)
Szyszkowicz and Rowe (2010) ¹⁴⁷	Edmonton, Canada (3/92-3/02) 68,714 chest pain visits, 66,092 weakness visits	24-h. Lag 0, 1, 2	Emergency department visits: chest pain, weakness	Individual: sex Temporal: season (warm, cool, designations not specified)	Poisson regression to clustered counts. Stratification for modification.	n/a (Central estimates presented only)
Ténias et al. (1998) ¹⁴⁸	Valencia, Spain (1994- 5). avg 1 visit/day	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5	Hospital emergency visits: asthma (≥14 yr)	Temporal: season (warm: May-Oct., cool: NovApr.)	Poisson regression. Stratification and interaction terms for modification.	n/a
Tenías et al. (2002) ¹⁴⁹	Valencia, Spain (1/94- 12/95). 1,298 admissions	Daily 1-hr max. Lag 0, 1, 2, 3, 4, 5	Hospital admissions: COPD (≥14 yr)	Temporal: season (warm: May-Oct., cool: NovApr.)	Poisson regression. Interaction terms for modification.	n/a
Tsai et al. (2003) ¹⁵⁰	Kaohsiung, Taiwan (1997-2000). 23,179 admissions. avg 3.55 primary intracerebral hemorrhage, 8.73 ischemic stroke admissions/day	24-hr avg, Lag 02	Hospital admissions: stroke (primary intracerebral hemorrhage, ischemic stroke)	Temporal: temperature (<20°C, ≥20°C)	Case crossover. Stratification for modification	n/a
Tsai et al. (2006) ¹⁵¹	Kaohsiung, Taiwan (1996-2003). 17,682 admissions. avg 6.05 admissions/day	24-hr avg. Lag 02	Hospital admissions: asthma	Temporal: temperature (warm: ≥25°C, cool: <25°C)	Case crossover. Stratification for modification.	Temperature (+): higher on warm days (adjusted for NO ₂ or PM ₁₀)
Tsai et al. (2009) ¹⁵²	Taipei, Taiwan (2000-6). 21,581 visits. avg 8.44 visits/day	24-hr avg. Lag 0	<i>Emergency room visits</i> : cardiac arrhythmia	Temporal: temperature $(<23^{\circ}C, \ge 23^{\circ}C)$	Case crossover. Stratification for modification.	n/a

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Tsai et al. (2012) ¹⁵³	Taipei, Taiwan (1999- 2009). avg 6.86 admissions/day	Lag 02.	Hospital admission: primary diagnosis of MI	Individual: Secondary diagnosis of hypertension, diabetes, dysrhythmia, CHF, COPD, pneumonia, upper resp infections, asthma	Case crossover. Stratification for modification by both temperature and comorbidity.	n/a
				Temporal: temperature (warm: >23°C, cool: <23°C)		
Villeneuve et al. (2006) ¹⁵⁴	Edmonton, Alberta, Canada (4/92-3/02). 12,422 visits	Daily 1-hr max. Lag 0, 12, 02	<i>Emergency department</i> <i>visits:</i> acute ischemic stroke, hemorrhagic stroke, transient cerebral ischemic (≥65 yr)	Individual: sex (by season) Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Stratification for modification.	Season: higher in warm season for transient cerebral ischemic
Villeneuve et al. (2007) ¹⁵⁵	Edmonton, Alberta, Canada (4/92-3/02). 58,888 visits.	Daily 1-hr max. Lag 0, 1, 02, 04	Emergency department visits: asthma	Individual: age (2-4, 5- 14, 15-44, 45-64, 65-74, ≥75 yr) Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Stratification for modification.	Age (-): higher 2-4 than 65-74y (cool season) Season: higher for cool than warm (5-14 yr)
Villeneuve et al (2012) ¹⁵⁶	Edmonton, Alberta, Canada (2003-2009). 5,927 visits	Daily 1-hr max. Lag 0, 01, 02	Hospital visits: all strokes, ischemic stroke, hemorrhagic stroke, transient ischemic attack	Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Stratification for modification.	Season: higher in warm season (ischemic stroke, hemorrhagic stroke), higher in cool season (transient ischemic stroke)
Wilson et al. (2005) ¹³⁷	Portland, Maine, US (AprSep., 1998-2000) and Manchester, New Hampshire, US (Apr Sep., 1996-2000). avg 2.6-7.4 asthma, 16.6-49.0 resp admissions/day per city	Daily 8-hr max. Lag 1, 01, 04, and other unspecified lags.	Emergency room visits: resp, asthma	Individual: age (0-14, 15-64, ≥65 yr) Community: season (summer: June-Aug., AprSep.)	Poisson regression. Stratification for modification. Associations presented separately for each city.	n/a

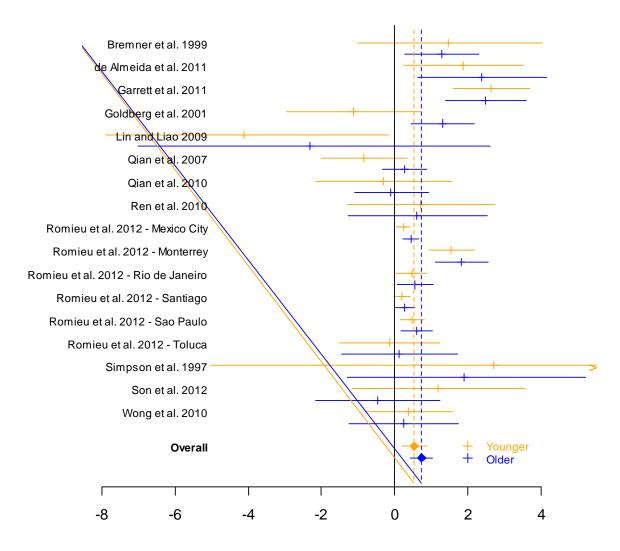

Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Winquist et al. (2012) ¹⁵⁸	St. Louis, U.S. (1/01- 6/07). 5,709,926 emergency department visits, 1,999,708 hospital admissions	Daily 8-hr max. Lag 04.	Emergency department visits, hospital admissions, hospital admissions through emergency department, non-elective hospital admissions: resp, asthma/wheeze, pneumonia, CVD, dysrhythmia, CHF	Individual: age (0-1, 2- 18, 19-64, ≥65 yr, not all age categories for all outcomes) Community: zip-code level poverty area (yes, no)	Poisson regression. Stratification for modification.	Age (+/-): lower for ≥ 65 than 0- 1 or 2-18y (emergency department visits: resp); lower for ≥ 65 than 2-18 y (hospital admissions through ED: resp); lower for 19-64 than 2-18y (emergency department: asthma/wheeze); higher for 0-1 than 2-18 or 19-64y (hospital admissions: pneumonia); higher for 0-1y than other age groups (non-elective hospital admissions, hospital admission through ED: pneumonia); higher for ≥ 65 than 19-64y (hospital admissions through ED: CVD) Poverty (+): higher for poverty areas (emergency department visits: CVD, dysrhythmia)
Wong et al. (1999) ¹⁵⁹	Hong Kong (1994-5). avg 131 resp, 101 CVD admissions/day	24-hr avg. Lag 0, 1, 2, 3, 4, 5, cumulative lags up to 5 days	Emergency hospital admissions: resp, CVD	Individual: age (0-4, 5- 64, \geq 65 yr) Temporal: season (cool: DecMar., all year)	Poisson regression. Interaction terms for modification by season; stratification for modification by age.	Age (+): higher for eldest than 5-64 than 0-4y (resp)
Wong et al. (2002) ¹⁶⁰	Hong Kong (1995-7), London, U.K. (1992-4)	Daily 8-hr max. Lag 0, 1, 2, 3, 01.	<i>Emergency hospital</i> <i>admissions:</i> asthma (15- 64 yr), resp (≥65 yr), cardiac (all ages), IHD (all ages)	Temporal: season (warm: AprSep., cool: OctMar.)	Poisson regression. Interaction terms for modification. Modification results presented for each city.	Season: higher in cool season (cardiac, all ages, Hong Kong.), higher in warm season (although protective) in warm season (asthma, 15-64 yr, London)
Xu et al. (2013) ¹⁶¹	Allegheny Co., PA, U.S. (9/94-12/00). 26,210 stroke admissions	24-hr avg. Lag 0, 1, 2, 3	Hospital admission: stroke, ischemic stroke >65y	Individual: age (65-79, \geq 80 yr), sex	Case crossover. Stratification for modification.	n/a
Yang et al. (2003) ¹⁶²	Vancouver, CA, U.S. (1986-98). avg 9.4 admissions/day (≥65 yr)	24-hr avg, daily 1-hr max. Lag 1, 2, 3, 4, 5	Hospital admissions: resp (<3, ≥65 yr)	Community: family income (quintiles)	Case crossover. Stratification for modification.	n/a
Yang et al. (2004) ¹⁶³	Kaohsiung, Taiwan (1997-2000). 29,661 admissions. avg. 20 admissions/day.	24-hr avg. Lag 02.	Hospital admissions: CVD	Temporal: temperature (warm: ≥25°C, cool: <25°C)	Case crossover. Stratification for modification.	Temperature (+): higher effect for warmer days.
Yang et al. (2006) ¹⁶⁴	Taipei, Taiwan (1996- 2004). 24,240 admissions. avg. 7.37 admissions/day.	24-hr avg.	Hospital admissions: CHF	Temporal: temperature (warm: ≥20°C, cool: <20°C)	Case crossover. Stratification for modification	Temperature (+): higher effect for warmer days.


Study	Location and Time Frame	Exposure and Lag Structure	Health Outcome	Potential Effect Modifiers	Statistical Models	Statistically Significant Results
Yang et al. (2007) ¹⁶⁵	Taipei, Taiwan (1996- 2003). 25,602 admissions, avg 8.76 admissions/day	24-hr avg. Lag 02.	Hospital admissions: asthma	Temporal: temperature (warm: ≥25°C, cool: <25°C)	Case crossover. Stratification for modification.	Temperature (-): higher for cooler days
Yang et al. (2007) ¹⁶⁶	Taipei, Taiwan (1996- 2003). 46,491 admissions. avg 15.91 admissions/day	24-hr avg. Lag 02.	Hospital admissions: COPD	Temporal: temperature (warm: ≥20°C, cool: <20°C)	Case crossover. Stratification for modification.	Temperature (+): higher for warmer days
Zanobetti and Schwartz (2006) ¹⁶⁷	Boston, MA (1995-9). 15,578 MI admissions, 24,857 pneumonia admissions.	24-hr avg. Lag 0, 01.	<i>Emergency hospital</i> <i>admissions:</i> MI, pneumonia	Temporal: season (warm: AprSep., cool: OctMar.)	Case crossover. Interaction terms for modification.	n/a

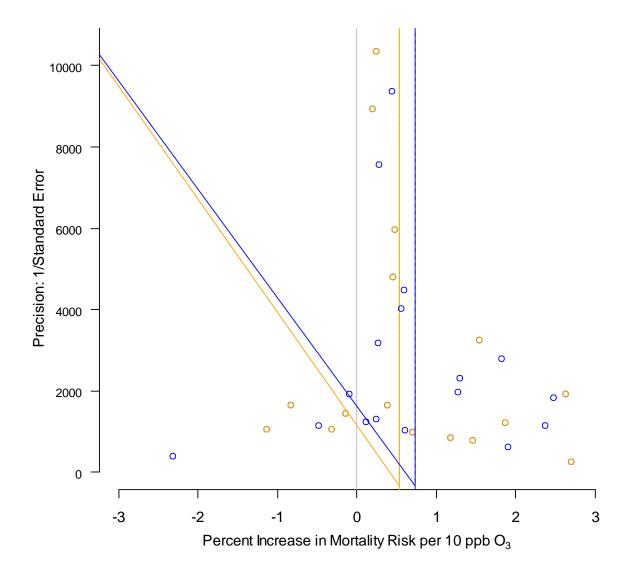
Web Figure 1 – PRISMA flow diagram showing number of studies identified, included, or excluded from analysis

Note: Format from Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 2009;6(6): e1000097. (doi:10.1371/journal.pmed1000097).

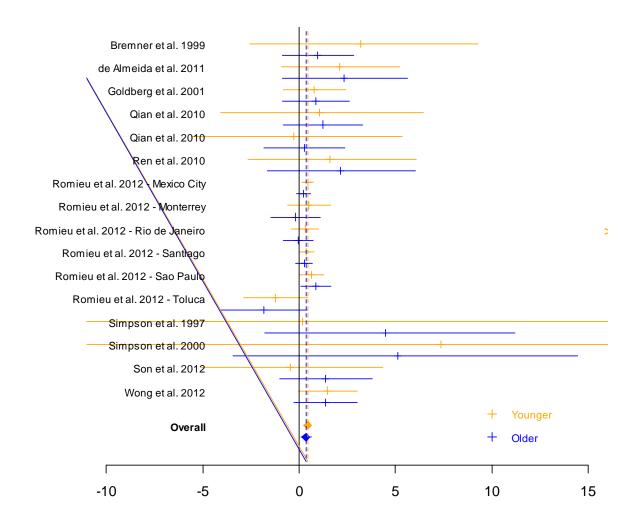
For more information, visit www.prisma-statement.org.



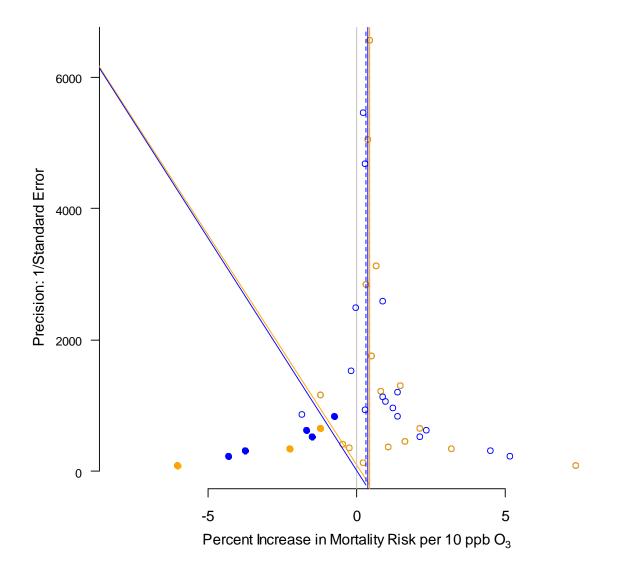
Web Figure 2. Summary of study characteristics across 167 studies of ozone and mortality or hospital admissions


Web Figure 3. Percent increase in risk of cardiovascular mortality for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

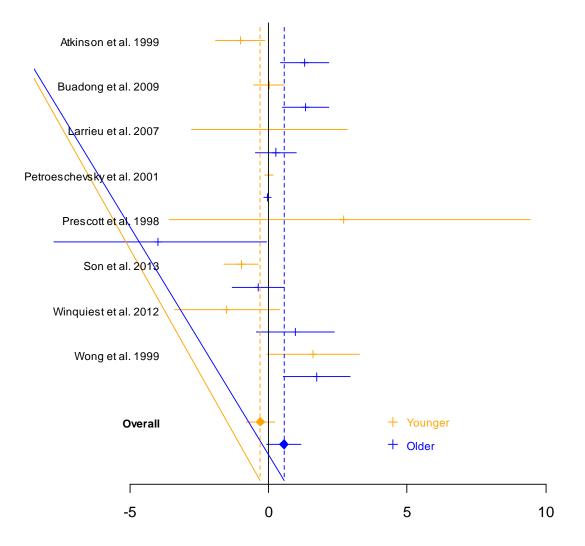
Note: Horizontal lines represent 95% intervals. The overall results reflect meta-analysis findings.


Web Figure 4. Funnel plot for estimates of association between ozone and cardiovascular mortality for studies included in meta-analysis, by age

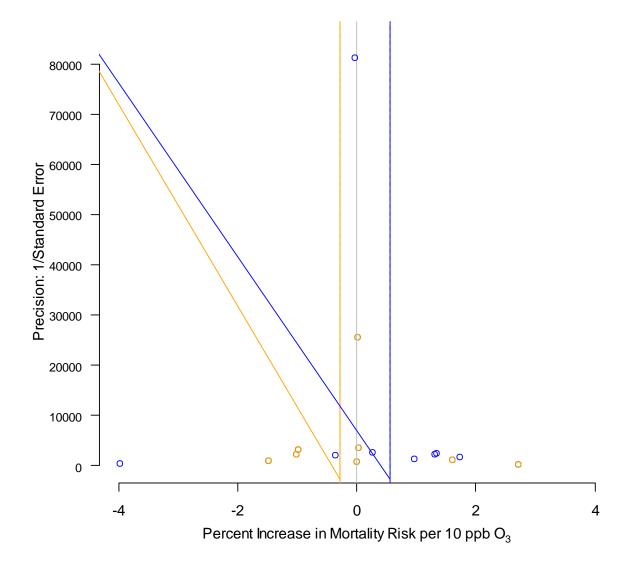
Note: Effect estimates show the percentage increase in risk per 10-ppb increase in 8-hr ozone. Open circles represent study estimates. Solid vertical lines represent overall estimates based on study results. Orange and blue represent estimates for younger and older populations, respectively.


Web Figure 5. Percent increase in risk of respiratory mortality for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

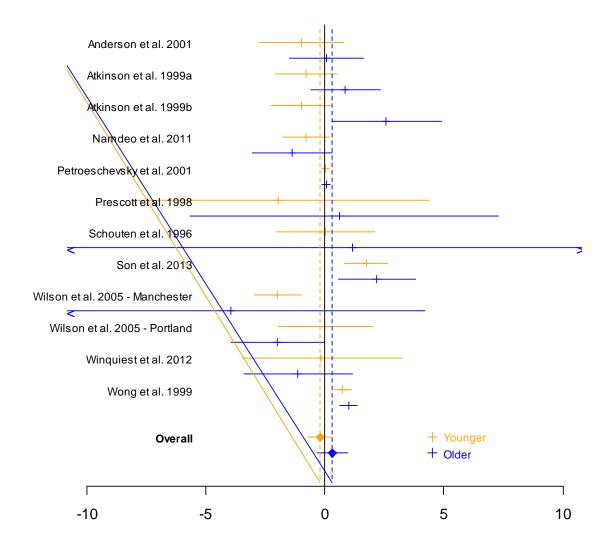
Note: Horizontal lines represent 95% intervals. The overall results reflect meta-analysis findings.


Web Figure 6. Funnel plot for estimates of association between ozone and respiratory mortality for studies included in meta-analysis, by age

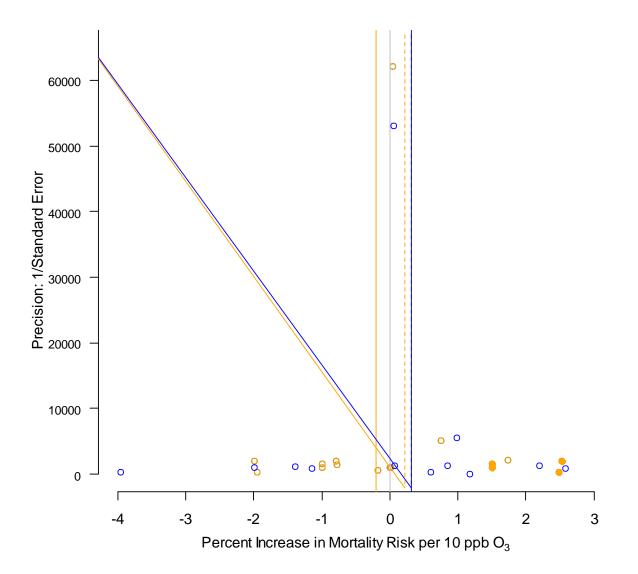
Note: Effect estimates show the percentage increase in risk per 10-ppb increase in 8-hr ozone. Open circles represent study estimates; closed circles represent "missing studies" from the trim-and-fill method to adjust for publication bias. Solid vertical lines represent overall estimates based on study results; dashed lines represent overall estimates adjusted for publication bias. Orange and blue represent estimates for younger and older populations, respectively.


Web Figure 7. Percent increase in risk of cardiovascular hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

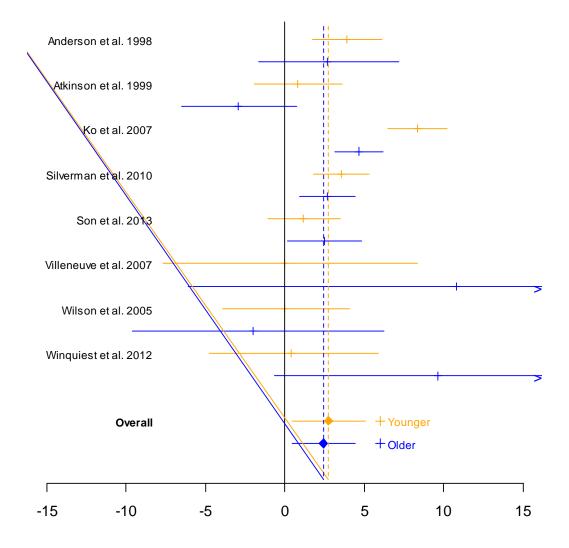
Note: Horizontal lines represent 95% intervals. The overall results reflect meta-analysis findings.


Web Figure 8. Funnel plot for estimates of association between ozone and cardiovascular hospital admissions for studies included in meta-analysis, by age

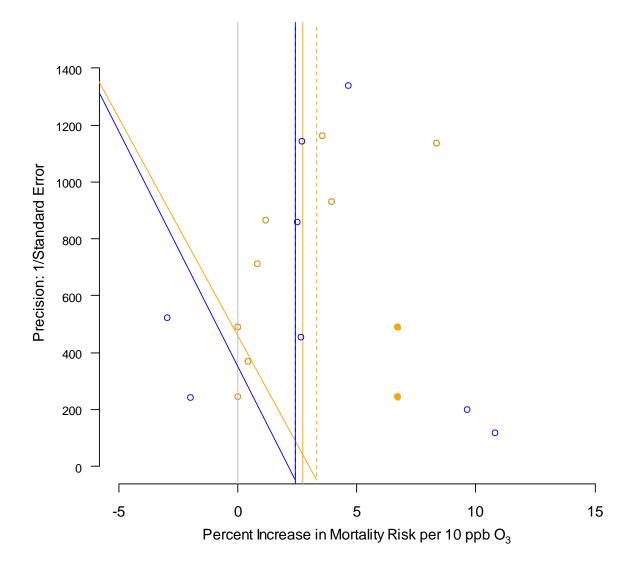
Note: Effect estimates show the percentage increase in risk per 10-ppb increase in 8-hr ozone. Open circles represent study estimates. Solid vertical lines represent overall estimates based on study results. Orange and blue represent estimates for younger and older populations, respectively.


Web Figure 9. Percent increase in risk of respiraotry hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Note: Horizontal lines represent 95% intervals. The overall results reflect meta-analysis findings.


Web Figure 10. Funnel plot for estimates of association between ozone and respiratory hospital admissions for studies included in meta-analysis, by age

Note: Effect estimates show the percentage increase in risk per 10-ppb increase in 8-hr ozone. Open circles represent study estimates; closed circles represent "missing studies" from the trim-and-fill method to adjust for publication bias. Solid vertical lines represent overall estimates based on study results; dashed lines represent overall estimates adjusted for publication bias. Orange and blue represent estimates for younger and older populations, respectively.


Web Figure 11. Percent increase in risk of asthma hospital admissions for 10-ppb increase in 8-hr ozone for studies included in meta-analysis, by age

Note: Horizontal lines represent 95% intervals. The overall results reflect meta-analysis findings.

Web Figure 12. Funnel plot for estimates of association between ozone and asthma hospital admissions for studies included in meta-analysis, by age

Note: Effect estimates show the percentage increase in risk per 10-ppb increase in 8-hr ozone. Open circles represent study estimates; closed circles represent "missing studies" from the trim-and-fill method to adjust for publication bias. Solid vertical lines represent overall estimates based on study results; dashed lines represent overall estimates adjusted for publication bias. Orange and blue represent estimates for younger and older populations, respectively.

References

- 1. Anderson, H.R., et al., Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. *Occup Environ Med*, 2001. 58(8):504-10.
- 2. Atkinson, R.W., et al., Concentration-response function for ozone and daily mortality: results from five urban and five rural U.K. populations. *Environ Health Perspect*, 2012. 120(10):1411-7.
- 3. Bell, M.L., et al., Ozone and short-term mortality in 95 US urban communities, 1987-2000. *J Am Med Assoc*, 2004. 292(19):2372-2378.
- 4. Bell, M.L., F. Dominici, J.M. Samet, A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. *Epidemiology*, 2005. 16(4):436-445.
- 5. Bell, M.L. F. Dominici, Modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. *Am J Epidemiol*, 2008. 167(8):986-97.
- 6. Berglind, N., et al., Ambient air pollution and daily mortality among survivors of myocardial infarction. *Epidemiology*, 2009. 20(1):110-8.
- 7. Borja-Aburto, V.H., et al., Mortality and ambient fine particles in southwest Mexico City, 1993-1995. *Environ Health Perspect*, 1998. 106(12):849-55.
- 8. Bremner, S.A., et al., Short-term associations between outdoor air pollution and mortality in London 1992-4. *Occup Environ Med*, 1999. 56(4):237-44.
- 9. Cakmak, S., R.E. Dales, C.B. Vidal, Air pollution and mortality in Chile: susceptibility among the elderly. *Environ Health Perspect*, 2007. 115(4):524-7.
- 10. Cakmak, S., et al., The risk of dying on days of higher air pollution among the socially disadvantaged elderly. *Environ Res*, 2011. 111(3):388-93.
- 11. Cheng, Y. H. Kan, Effect of the interaction between outdoor air pollution and extreme temperature on daily mortality in Shanghai, China. *J Epidemiol*, 2012. 22(1):28-36.
- 12. Chock, D.P., S.L. Winkler, C. Chen, A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. *J Air Waste Manag Assoc*, 2000. 50(8):1481-500.
- 13. de Almeida, S.P., E. Casimiro, J. Calheiros, Short-term association between exposure to ozone and mortality in Oporto, Portugal. *Environ Res*, 2011. 111(3):406-10.
- 14. De Leon, S.F., G.D. Thurston, K. Ito, Contribution of respiratory disease to nonrespiratory mortality associations with air pollution. *Am J Respir Crit Care Med*, 2003. 167(8):1117-23.
- 15. Oliveira, M.S., et al., Differential susceptibility according to gender in the association between air pollution and mortality from respiratory diseases. *Cad Saude Publica*, 2011. 27(9):1827-36.
- 16. Faustini, A., et al., Short-term effects of air pollution in a cohort of patients with chronic obstructive pulmonary disease. *Epidemiology*, 2012. 23(6):861-79.
- 17. Fischer, P., et al., Air pollution and mortality in The Netherlands: are the elderly more at risk? *Eur Respir J Suppl*, 2003. 40:34s-38s.
- 18. Garrett, P. E. Casimiro, Short-term effect of fine particulate matter (PM(2).(5)) and ozone on daily mortality in Lisbon, Portugal. *Environ Sci Pollut Res Int*, 2011. 18(9):1585-92.
- 19. Goldberg, M.S., et al., Associations between daily cause-specific mortality and concentrations of ground-level ozone in Montreal, Quebec. *Am J Epidemiol*, 2001. 154(9):817-26.
- 20. Goldberg, M.S., et al., Associations between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. *Environ Res*, 2006. 100(2):255-67.
- 21. Gouveia, N. T. Fletcher, Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status. *J Epidemiol Community Health*, 2000. 54(10):750-5.

- 22. Gryparis, A., et al., Acute effects of ozone on mortality from the "air pollution and health: a European approach" project. *Am J Respir Crit Care Med*, 2004. 170(10):1080-7.
- 23. Hoek, G., et al., Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, The Netherlands. *Arch Environ Health*, 1997. 52(6):455-63.
- 24. Hoek, G., et al., Daily mortality and air pollution in The Netherlands. *J Air Waste Manag Assoc*, 2000. 50(8):1380-9.
- 25. Ito, K., S.F. De Leon, M. Lippmann, Associations between ozone and daily mortality: analysis and meta-analysis. *Epidemiology*, 2005. 16(4):446-57.
- 26. Kan, H., et al., Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. *Environ Health Perspect*, 2008. 116(9):1183-8.
- 27. Kim, S.Y., et al., Determining the threshold effect of ozone on daily mortality: an analysis of ozone and mortality in Seoul, Korea, 1995-1999. *Environ Res*, 2004. 94(2):113-9.
- 28. Kwon, H.J., et al., Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. *Epidemiology*, 2001. 12(4):413-9.
- 29. Levy, J.I., S.M. Chemerynski, J.A. Sarnat, Ozone exposure and mortality: an empiric bayes metaregression analysis. *Epidemiology*, 2005. 16(4):458-68.
- 30. Liang, W.M., H.Y. Wei, H.W. Kuo, Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. *Environ Res*, 2009. 109(1):51-8.
- 31. Lin, C.M. C.M. Liao, Temperature-dependent association between mortality rate and carbon monoxide level in a subtropical city: Kaohsiung, Taiwan. *Int J Environ Health Res*, 2009. 19(3):163-74.
- 32. Lipfert, F.W., S.C. Morris, R.E. Wyzga, Daily mortality in the Philadelphia metropolitan area and size-classified particulate matter. *J Air Waste Manag Assoc*, 2000. 50(8):1501-13.
- 33. Medina-Ramon, M. J. Schwartz, Who is more vulnerable to die from ozone air pollution? *Epidemiology*, 2008. 19(5):672-9.
- 34. Moolgavkar, S.H., Air pollution and daily mortality in three U.S. counties. *Environ Health Perspect*, 2000. 108(8):777-84.
- 35. Ng, C.F., et al., Seasonal variation in the acute effects of ozone on premature mortality among elderly Japanese. *Environ Monit Assess*, 2013.
- 36. O'Neill, M.S., D. Loomis, V.H. Borja-Aburto, Ozone, area social conditions, and mortality in Mexico City. *Environ Res*, 2004. 94(3):234-42.
- 37. Ou, C.Q., et al., Socioeconomic disparities in air pollution-associated mortality. *Environ Res*, 2008. 107(2):237-44.
- 38. Ou, C.Q., et al., Dietary habits and the short-term effects of air pollution on mortality in the Chinese population in Hong Kong. *J Epidemiol Community Health*, 2012. 66(3):254-8.
- 39. Parodi, S., et al., Ozone air pollution and daily mortality in Genoa, Italy between 1993 and 1996. *Public Health*, 2005. 119(9):844-50.
- 40. Pattenden, S., et al., Ozone, heat and mortality: acute effects in 15 British conurbations. *Occup Environ Med*, 2010. 67(10):699-707.
- 41. Peng, R.D., et al., Acute effects of ambient ozone on mortality in Europe and North America: results from the APHENA study. *Air Qual Atmos Health*, 2013. 6(2):445-453.
- 42. Penttinen, P., P. Tiittanen, J. Pekkanen, Mortality and air pollution in metropolitan Helsinki, 1988--1996. *Scand J Work Environ Health*, 2004. 30 Suppl 2:19-27.
- 43. Prescott, G.J., et al., Urban air pollution and cardiopulmonary ill health: a 14.5 year time series study. *Occup Environ Med*, 1998. 55(10):697-704.
- 44. Qian, Z., et al., Short-term effects of gaseous pollutants on cause-specific mortality in Wuhan, China. *J Air Waste Manag Assoc*, 2007. 57(7):785-93.

- 45. Qian, Z., et al., Part 2. Association of daily mortality with ambient air pollution, and modification by extremely high temperature in Wuhan, China. *Res Rep Health Eff Inst*, 2010(154):91-217.
- 46. Rainham, D.G., et al., Synoptic weather patterns and modification of the association between air pollution and human mortality. *Int J Environ Health Res*, 2005. 15(5):347-60.
- 47. Ren, C., et al., Does temperature modify short-term effects of ozone on total mortality in 60 large eastern US communities? An assessment using the NMMAPS data. *Environ Int*, 2008. 34(4):451-8.
- 48. Ren, C., et al., Temperature enhanced effects of ozone on cardiovascular mortality in 95 large US communities, 1987-2000: Assessment using the NMMAPS data. *Arch Environ Occup Health*, 2009. 64(3):177-84.
- 49. Ren, C., S. Melly, J. Schwartz, Modifiers of short-term effects of ozone on mortality in eastern Massachusetts--a case-crossover analysis at individual level. *Environ Health*, 2010. 9:3.
- 50. Revich, B. D. Shaposhnikov, The effects of particulate and ozone pollution on mortality in Moscow, Russia. *Air Qual Atmos Health*, 2010. 3(2):117-123.
- 51. Reyna, M., et al., Relative risk of death from exposure to air pollutants: a short-term (2003-2007) study in Mexicali, Baja California, Mexico. *Int J Environ Health Res*, 2012. 22(4):370-386.
- 52. Romieu, I., et al., Multicity study of air pollution and mortality in Latin America (the ESCALA study). *Res Rep Health Eff Inst*, 2012(171):5-86.
- 53. Sacks, J.D., et al., Impact of covariate models on the assessment of the air pollution-mortality association in a single- and multipollutant context. *Am J Epidemiol*, 2012. 176(7):622-34.
- 54. Schwartz, J., How sensitive is the association between ozone and daily deaths to control for temperature? *Am J Respir Crit Care Med*, 2005. 171(6):627-31.
- 55. Simpson, R.W., et al., Associations between outdoor air pollution and daily mortality in Brisbane, Australia. *Arch Environ Health*, 1997. 52(6):442-54.
- 56. Simpson, R., et al., Effects of ambient particle pollution on daily mortality in Melbourne, 1991-1996. *J Expo Anal Environ Epidemiol*, 2000. 10(5):488-96.
- 57. Smith, R.L., B. Xu, P. Switzer, Reassessing the relationship between ozone and short-term mortality in U.S. urban communities. *Inhal Toxicol*, 2009. 21 Suppl 2:37-61.
- Son, J.Y., et al., Susceptibility to air pollution effects on mortality in Seoul, Korea: a casecrossover analysis of individual-level effect modifiers. *J Expo Sci Environ Epidemiol*, 2012. 22(3):227-34.
- 59. Stafoggia, M., et al., Susceptibility factors to ozone-related mortality: a population-based casecrossover analysis. *Am J Respir Crit Care Med*, 2010. 182(3):376-84.
- 60. Sunyer, J., et al., Air pollution and mortality in Barcelona. *J Epidemiol Community Health*, 1996. 50 Suppl 1:s76-80.
- 61. Sunyer, J., et al., Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. *Thorax*, 2002. 57(8):687-93.
- 62. Verhoeff, A.P., et al., Air pollution and daily mortality in Amsterdam. *Epidemiology*, 1996. 7(3):225-30.
- 63. Vichit-Vadakan, N., et al., Part 3. Estimating the effects of air pollution on mortality in Bangkok, Thailand. *Res Rep Health Eff Inst*, 2010(154):231-68.
- 64. Villeneuve, P.J., et al., A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. *J Expo Anal Environ Epidemiol*, 2003. 13(6):427-35.
- 65. Wong, C.M., et al., Does regular exercise protect against air pollution-associated mortality? *Prev Med*, 2007. 44(5):386-92.
- 66. Wong, C.M., et al., The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. *Environ Health Perspect*, 2008. 116(9):1189-94.

- 67. Wong, C.M., et al., Modification by influenza on health effects of air pollution in Hong Kong. *Environ Health Perspect*, 2009. 117(2):248-53.
- 68. Wong, C.M., et al., Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong. *Res Rep Health Eff Inst*, 2010(154):283-362.
- 69. Wong, C.M., et al., Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel. *Res Rep Health Eff Inst*, 2012(170):5-91.
- 70. Yang, C., et al., Alternative ozone metrics and daily mortality in Suzhou: the China Air Pollution and Health Effects Study (CAPES). *Sci Total Environ*, 2012. 426:83-9.
- 71. Zanobetti, A. J. Schwartz, Mortality displacement in the association of ozone with mortality: an analysis of 48 cities in the United States. *Am J Respir Crit Care Med*, 2008. 177(2):184-9.
- 72. Zanobetti, A. J. Schwartz, Is there adaptation in the ozone mortality relationship: a multi-city case-crossover analysis. *Environ Health*, 2008. 7:22.
- 73. Zhang, Y., et al., Ozone and daily mortality in Shanghai, China. *Environ Health Perspect*, 2006. 114(8):1227-32.
- 74. Anderson, H.R., et al., Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. *Eur Respir J*, 1997. 10(5):1064-1071.
- 75. Anderson, H.R., et al., Air pollution, pollens, and daily admissions for asthma in London 1987-92. *Thorax*, 1998. 53(10):842-848.
- 76. Arbex, M.A., et al., Urban air pollution and chronic obstructive pulmonary disease-related emergency department visits. *J Epidemol Community Health*, 2009. 63(10):777-783.
- 77. Atkinson, R.W., et al., Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. *Arch Environ Health*, 1999. 54:398-411.
- 78. Atkinson, R.W., et al., Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. *Eur Respir J*, 1999. 13(2):257-65.
- 79. Ballester, F., J.M. Tenías, S. Pérez-Hoyos, Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. *J Epidemiol Community Health*, 2001. 55:57-65.
- 80. Bhaskaran, K., et al., The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. *BMJ*, 2011. 343:d5531.
- 81. Buadong, D., et al., Association between PM10 and O3 levels and hospital visits for cardiovascular diseases in Bangkok, Thailand. *J Epidemiol*, 2009. 19(4):182-8.
- 82. Burnett, R.T., et al., Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases. *Am J Epidemiol*, 1995. 142(1):15-22.
- 83. Cakmak, S., R.E. Dales, S. Judek, Do gender, education, and income modify the effect of air pollution gases on cardiac disease? *J Occup Environ Med*, 2006. 48(1):89-94.
- 84. Cakmak, S., R.E. Dales, S. Judek, Respiratory health effects of air pollution gases: modification by education and income. *Arch Environ Occup Health*, 2006. 61(1):5-10.
- 85. Cakmak, S., R. Burnett, D. Krewski, Adjusting for temporal variation in the analysis of parallel time series of health and environmental variables. *J Expo Anal Environ Epidemiol*, 1998. 8(2):129-44.
- 86. Canova, C., et al., PM10-induced hospital admissions for asthma and chronic obstructive pulmonary disease: the modifying effect of individual characteristics. *Epidemiology*, 2012. 23(4):607-15.
- 87. Carlsen, H.K., et al., Ozone is associated with cardiopulmonary and stroke emergency hospital visits in Reykjavik, Iceland 2003-2009. *Environ Health*, 2013. 12:28.

- 88. Cassino, C., et al., Cigarette smoking and ozone-associated emergency department use for asthma by adults in New York City. *Am J Respir Crit Care Med*, 1999. 159(6):1773-9.
- 89. Castellsague, J., et al., Short-term association between air pollution and emergency room visits for asthma in Barcelona. *Thorax*, 1995. 50(10):1051-6.
- 90. Chang, C.C., et al., Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan. *Environ Res*, 2005. 98(1):114-9.
- 91. Cheng, M.F., et al., Air pollution and hospital admissions for pneumonia in a tropical city: Kaohsiung, Taiwan. *J Toxicol Environ Health A*, 2007. 70(24):2021-6.
- 92. Cheng, M.F., S.S. Tsai, C.Y. Yang, Air pollution and hospital admissions for myocardial infarction in a tropical city: Kaohsiung, Taiwan. *J Toxicol Environ Health A*, 2009. 72(19):1135-40.
- 93. Cheng, M.F., et al., Air pollution and hospital admissions for pneumonia: are there potentially sensitive groups? *Inhal Toxicol*, 2009. 21(13):1092-8.
- 94. Chiu, H.F., M.H. Cheng, C.Y. Yang, Air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. *Inhal Toxicol*, 2009. 21(1):32-7.
- 95. Chiu, H.F. C.Y. Yang, Air pollution and emergency room visits for arrhythmias: are there potentially sensitive groups? *J Toxicol Environ Health A*, 2009. 72(13):817-23.
- 96. Corea, F., et al., Airborne pollutants and lacunar stroke: a case cross-over analysis on stroke unit admissions. *Neurol Int*, 2012. 4(2):e11.
- 97. Dales, R.E., S. Cakmak, C.B. Vidal, Air pollution and hospitalization for headache in Chile. *Am J Epidemiol*, 2009. 170(8):1057-66.
- 98. Dales, R.E., S. Cakmak, C.B. Vidal, Air pollution and hospitalization for venous thromboembolic disease in Chile. *J Thromb Haemost*, 2010. 8(4):669-74.
- 99. Dales, R.E., et al., Air pollution and hospitalization for acute complications of diabetes in Chile. *Environ Int*, 2012. 46:1-5.
- 100. Diaz, J., et al., A model for forecasting emergency hospital admissions: effect of environmental variables. *J Environ Health*, 2001. 64(3):9-15.
- 101. Freitas, M.C., et al., Effect of particulate matter, atmospheric gases, temperature, and humidity on respiratory and circulatory diseases' trends in Lisbon, Portugal. *Environ Monit Assess*, 2010. 162(1-4):113-21.
- Glad, J.A., et al., The relationship of ambient ozone and PM(2.5) levels and asthma emergency department visits: possible influence of gender and ethnicity. *Arch Environ Occup Health*, 2012. 67(2):103-8.
- 103. Gwynn, R.C. G.D. Thurston, The burden of air pollution: impacts among racial minorities. *Environ Health Perspect*, 2001. 109 Suppl 4:501-6.
- 104. Halonen, J.I., et al., Ozone and cause-specific cardiorespiratory morbidity and mortality. *J Epidemiol Community Health*, 2010. 64(9):814-20.
- 105. Hsieh, Y.L., et al., Air pollution and hospital admissions for myocardial infarction in a subtropical city: Taipei, Taiwan. *J Toxicol Environ Health A*, 2010. 73(11):757-65.
- 106. Jalaludin, B., et al., Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. *J Expo Sci Environ Epidemiol*, 2006. 16(3):225-37.
- 107. Jones, G.N., et al., Ozone level effect on respiratory illness: an investigation of emergency department visits. *South Med J*, 1995. 88(10):1049-56.
- 108. Kaplan, G.G., et al., Effect of ambient air pollution on the incidence of appendicitis. *CMAJ*, 2009. 181(9):591-7.
- 109. Kim, S.Y., et al., Air pollution, socioeconomic position, and emergency hospital visits for asthma in Seoul, Korea. *Int Arch Occup Environ Health*, 2007. 80(8):701-10.

- 110. Ko, F.W., et al., Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. *Clin Exp Allergy*, 2007. 37(9):1312-9.
- 111. Larrieu, S., et al., Short term effects of air pollution on hospitalizations for cardiovascular diseases in eight French cities: the PSAS program. *Sci Total Environ*, 2007. 387(1-3):105-12.
- 112. Lee, I.M., et al., Air pollution and hospital admissions for chronic obstructive pulmonary disease in a tropical city: Kaohsiung, Taiwan. *Inhal Toxicol*, 2007. 19(5):393-8.
- 113. Lee, I.M., et al., Air pollution and hospital admissions for congestive heart failure in a tropical city: Kaohsiung, Taiwan. *Inhal Toxicol*, 2007. 19(10):899-904.
- 114. Lee, I.M., et al., Air pollution and hospital admissions for congestive heart failure: are there potentially sensitive groups? *Environ Res*, 2008. 108(3):348-53.
- 115. Lee, J.T., et al., Air pollution and hospital admissions for ischemic heart diseases among individuals 64+ years of age residing in Seoul, Korea. *Arch Environ Health*, 2003. 58(10):617-23.
- 116. Linn, W.S., et al., Air pollution and daily hospital admissions in metropolitan Los Angeles. *Environ Health Perspect*, 2000. 108(5):427-34.
- 117. Luginaah, I.N., et al., Association of ambient air pollution with respiratory hospitalization in a government-designated "area of concern": the case of Windsor, Ontario. *Environ Health Perspect*, 2005. 113(3):290-6.
- 118. Mann, J.K., et al., Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. *Environ Health Perspect*, 2002. 110(12):1247-52.
- 119. Medina-Ramon, M., A. Zanobetti, J. Schwartz, The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. *Am J Epidemiol*, 2006. 163(6):579-88.
- 120. Middleton, N., et al., A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms. *Environ Health*, 2008. 7:39.
- 121. Moolgavkar, S.H., Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. *J Air Waste Manag Assoc*, 2000. 50(7):1199-206.
- 122. Morgan, G., S. Corbett, J. Wlodarczyk, Air pollution and hospital admissions in Sydney, Australia, 1990 to 1994. *Am J Public Health*, 1998. 88(12):1761-6.
- 123. Namdeo, A., A. Tiwary, E. Farrow, Estimation of age-related vulnerability to air pollution: assessment of respiratory health at local scale. *Environ Int*, 2011. 37(5):829-37.
- 124. Nauenberg, E. K. Basu, Effect of insurance coverage on the relationship between asthma hospitalizations and exposure to air pollution. *Public Health Rep*, 1999. 114(2):135-48.
- 125. Oudin, A., et al., Estimation of short-term effects of air pollution on stroke hospital admissions in southern Sweden. *Neuroepidemiology*, 2010. 34(3):131-42.
- 126. Paulu, C. A.E. Smith, Tracking associations between ambient ozone and asthma-related emergency department visits using case-crossover analysis. *J Public Health Manag Pract*, 2008. 14(6):581-91.
- 127. Peel, J.L., et al., Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. *Am J Epidemiol*, 2007. 165(6):625-33.
- 128. Pereira Filho, M.A., et al., Effect of air pollution on diabetes and cardiovascular diseases in Sao Paulo, Brazil. *Braz J Med Biol Res*, 2008. 41(6):526-32.
- 129. Petroeschevsky, A., et al., Associations between outdoor air pollution and hospital admissions in Brisbane, Australia. *Arch Environ Health*, 2001. 56(1):37-52.
- 130. Poloniecki, J.D., et al., Daily time series for cardiovascular hospital admissions and previous day's air pollution in London, UK. *Occup Environ Med*, 1997. 54(8):535-40.

- 131. Ponce de Leon, A., et al., Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987-88 and 1991-92. *J Epidemiol Community Health*, 1996. 50 Suppl 1:s63-70.
- 132. Qiu, H., et al., Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions. *Int J Cardiol*, 2012.
- 133. Sarnat, J.A., et al., Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta. *J Expo Sci Environ Epidemiol*, 2013(6):606-15.
- 134. Santus, P., et al., How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. *Respir Res*, 2012. 13:95.
- 135. Schouten, J.P., J.M. Vonk, A. de Graaf, Short term effects of air pollution on emergency hospital admissions for respiratory disease: results of the APHEA project in two major cities in The Netherlands, 1977-89. *J Epidemiol Community Health*, 1996. 50 Suppl 1:s22-9.
- 136. Schwartz, J., Air pollution and hospital admissions for the elderly in Birmingham, Alabama. *Am J Epidemiol*, 1994. 139(6):589-98.
- 137. Schwartz, J., Air pollution and hospital admissions for respiratory disease. *Epidemiology*, 1996. 7(1):20-8.
- 138. Silverman, R.A. K. Ito, Age-related association of fine particles and ozone with severe acute asthma in New York City. *J Allergy Clin Immunol*, 2010. 125(2):367-373 e5.
- 139. Son, J.Y., et al., Short-term effects of air pollution on hospital admissions in Korea. *Epidemiology*, 2013. 24(4):545-54.
- 140. Spix, C., et al., Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of APHEA study results. Air Pollution and Health: a European Approach. *Arch Environ Health*, 1998. 53(1):54-64.
- 141. Stieb, D.M., et al., Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. *J Expo Anal Environ Epidemiol*, 2000. 10(5):461-77.
- 142. Sunyer, J., et al., Urban air pollution and emergency admissions for asthma in four European cities: the APHEA Project. *Thorax*, 1997. 52(9):760-5.
- 143. Szyszkowicz, M., Ambient air pollution and daily emergency department visits for ischemic stroke in Edmonton, Canada. *Int J Occup Med Environ Health*, 2008. 21(4):295-300.
- 144. Szyszkowicz, M., Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada. *Int J Occup Med Environ Health*, 2008. 21(1):25-30.
- 145. Szyszkowicz, M., et al., Ambient ozone and emergency department visits for cellulitis. *Int J Environ Res Public Health*, 2010. 7(11):4078-88.
- 146. Szyszkowicz, M., et al., Air pollution and emergency department visits for suicide attempts in vancouver, Canada. *Environ Health Insights*, 2010. 4:79-86.
- 147. Szyszkowicz, M. B. Rowe, Air pollution and emergency department visits for chest pain and weakness in Edmonton, Canada. *Int J Occup Med Environ Health*, 2010. 23(1):15-9.
- 148. Tenias, J.M., F. Ballester, M.L. Rivera, Association between hospital emergency visits for asthma and air pollution in Valencia, Spain. *Occupational and Environmental Medicine*, 1998. 55(8):541-547.
- 149. Tenias, J.M., et al., Air pollution and hospital emergency room admissions for chronic obstructive pulmonary disease in Valencia, Spain. *Arch Environ Health*, 2002. 57(1):41-7.
- 150. Tsai, S.S., et al., Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. *Stroke*, 2003. 34(11):2612-6.
- 151. Tsai, S.S., et al., Air pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan. *Inhal Toxicol*, 2006. 18(8):549-54.
- 152. Tsai, S.S., et al., Air pollution and emergency room visits for cardiac arrhythmia in a subtropical city: Taipei, Taiwan. *Inhal Toxicol*, 2009. 21(13):1113-8.

- 153. Tsai, S.S., et al., Air pollution and hospital admissions for myocardial infarction: are there potentially sensitive groups? *J Toxicol Environ Health A*, 2012. 75(4):242-51.
- 154. Villeneuve, P.J., et al., Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. *Eur J Epidemiol*, 2006. 21(9):689-700.
- 155. Villeneuve, P.J., et al., Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta, Canada. *Environ Health*, 2007.
 6:40.
- 156. Villeneuve, P.J., et al., Short-term effects of ambient air pollution on stroke: who is most vulnerable? *Sci Total Environ*, 2012. 430:193-201.
- 157. Wilson, A.M., et al., Air pollution, weather, and respiratory emergency room visits in two northern New England cities: an ecological time-series study. *Environ Res*, 2005. 97(3):312-21.
- 158. Winquist, A., et al., Comparison of emergency department and hospital admissions data for air pollution time-series studies. *Environ Health*, 2012. 11:70.
- 159. Wong, T.W., et al., Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. *Occup Environ Med*, 1999. 56(10):679-83.
- 160. Wong, C.M., et al., A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. *Environ Health Perspect*, 2002. 110(1):67-77.
- 161. Xu, X., et al., Association between Ozone Exposure and Onset of Stroke in Allegheny County, Pennsylvania, USA, 1994-2000. *Neuroepidemiology*, 2013. 41(1):2-6.
- 162. Yang, Q., et al., Association between ozone and respiratory admissions among children and the elderly in Vancouver, Canada. *Inhal Toxicol*, 2003. 15(13):1297-308.
- 163. Yang, C.Y., et al., Relationship between ambient air pollution and hospital admissions for cardiovascular diseases in kaohsiung, taiwan. *J Toxicol Environ Health A*, 2004. 67(6):483-93.
- 164. Yang, C.Y., Air pollution and hospital admissions for congestive heart failure in a subtropical city: Taipei, Taiwan. *J Toxicol Environ Health A*, 2008. 71(16):1085-90.
- 165. Yang, C.Y., et al., Air pollution and hospital admissions for asthma in a subtropical city: Taipei, Taiwan. *J Toxicol Environ Health A*, 2007. 70(2):111-7.
- 166. Yang, C.Y. C.J. Chen, Air pollution and hospital admissions for chronic obstructive pulmonary disease in a subtropical city: Taipei, Taiwan. *J Toxicol Environ Health A*, 2007. 70(14):1214-9.
- 167. Zanobetti, A. J. Schwartz, Air pollution and emergency admissions in Boston, MA. *J Epidemiol Community Health*, 2006. 60(10):890-5.