1	Supplementary Information
2	
3	Supplementary experimental procedures
4	Site management
5	Our experimental field received the incorporation of rice straw in October 2008.
6	Chemical fertilizer (ammonium sulfate 30 kg/ha) was applied to the field on April 23,
7	2009. Right after the fertilizer application, the plow layer (ca. 17 cm) was mixed by
8	rotary tiller. The field was tilled again and submerged under water on April 30. Rice
9	seedlings were transplanted on May 12, 2009. The first herbicide containing 15% (w/w)
10	bromobutide, 7.5% (w/w) fentrazamide, and 1.3% (w/w) bensulfuron-methyl was
11	applied on May 20 and the second one containing 1.8% (w/w) cyhalofop-butyl on May
12	25. During rice cultivation, temporal drainage (June 19–30) and intermittent irrigation
13	(July 1-August 31) with cycles of artificial drainage and irrigation were performed in
14	summer in order to suppress CH ₄ emissions (1). Additional fertilizer (ammonium
15	chloride 10 kg/ha) applications were performed on July 17 and 24. Water was
16	completely drained on September 1, and rice plants were harvested on September 22,
17	2009.
18	Measurement of denitrification and nitrification activity.
19	Denitrification activity of the soil samples was measured with the acetylene
20	block technique (2). The reaction mixture comprised 1 g (dry weight) fresh soil, 2 ml
21	sterilized water, and 50 µmol NaNO3 in a 10-ml glass vial. The vial was sealed with a
22	butyl rubber cap and the headspace gas was substituted to $Ar-C_2H_2$ (90:10 (v/v)) gas.
23	After incubation at 20°C for 24 h, the amount of N ₂ O produced in the headspace was
24	measured by gas chromatography as described previously (Saito et al., 2008).
25	Nitrification activity was assayed by measuring the amount of nitrate produced after
26	incubating 1.5 g (dry soil basis) fresh soil at 20°C with 15 ml sterilized water and 30
27	μ mol (NH ₄) ₂ SO ₄ in a 100-ml glass flask for 2 weeks under aerobic conditions.
28	
29	Optimization of number of PCR cycles for clone libraries.
30	In order to minimize PCR bias in the clone library analysis, number of PCR
31	cycles were optimized by qPCR with quenching fluorescence-labeled primer (Q-primer)
32	(3). Primers Q-10F (5'-CAGTTTGATYMTGGCTCAG-3') and Q-934R
33	(5'-CTGCTCCCCGCCAATTCCT-3'; 4) were labeled with fluorescence molecule at
34	their 5'-end site (J-Bio21, Tsukuba, Japan). Primers Q-10F and 907R (5), and A364a (4)
35	and Q-934R were used for the amplification of bacterial and archaeal 16S rRNA genes,
36	respectively. The 20 μ l reaction mixture comprised 1x Ex Taq Buffer, 2.5 mM dNTP,

- 1 0.1 μ M Q-primer, 0.1 μ M non-labeled primer, 0.5 μ g/ μ l BSA, and Ex Taq HS
- 2 polymerase (Takara Bio, Otsu, Japan). The qPCR conditions were as follows: initial
- denaturation at 95°C for 5 min, followed by 45 cycles of 95°C for 30 s, primer
- 4 annealing (54°C and 64 °C for bacteria and archaea, respectively) for 45 s, and 72°C for
- 5 60 s for bacteria (45 s for archaea). Based on the results of the qPCR with Q-primers,
- 6 optimal PCR cycle numbers were identified as being 16 and 19 for bacteria and archaea,
- 7 respectively. Bacterial and archaeal partial 16S rRNA were amplified under the same
- 8 PCR conditions with the optimal PCR cycle numbers.

9

1 References

- Uoki, Y., and S. Noda. 2001. Suppression of methane emission from Strong-Gley
 soils paddy field by water managements. Japanease Journal Soil Science and Plant
 Nutrition 72:449-452 (In Japanese).
- Tiedje, J. M. 1994. Denitrifiers, p. 245-267. *In* R.W. Weaver, J.S. Angle, P.J.
 Bottomley (ed.), Methods of soil analysis part 2. Microbiological and biochemical
 properties, Soil Science Society of America Inc., Wisconsin.
- Nishizawa, T., M. Komatsuzaki, N. Kaneko, and H. Ohta. 2008. Archaeal diversity
 of upland rice field soils assessed by the terminal restriction fragment length
- 10 polymorphism method combined with real time quantitative-PCR and a clone
- 11 library analysis. Microbes Environ. 23:237-243.
- Kemnitz, D., S. Kolb, and R. Conrad. 2007. High abundance of *Crenarchaeota* in a
 temperate acidic forest soil. FEMS Microbiol. Ecol. 60:442-448.
- 14 5. Engelbrektson, A., V. Kunin, K.C. Wrighton, N. Zvenigorodsky, F. Chen, H.
- 15 Ochman, and P. Hugenholtz. 2010. Experimental factors affecting PCR-based
- 16 estimates of microbial species richness and evenness. ISME J. 4:642-647.

17 18

		Closest reference sequences				
DGGE band	Microorganisms	Phylogenetic affiliations	Accession number	Identity (%)	Alignment	
А	Methylibium sp.	Betaproteobacteria/Burkholderiales	AB609313	100	196/196	
B1	Anabaena sp.	Cyanobacteria/Nostocales	FJ948087	98.8	171/173	
B2	Cylindrospermum sp.	Cyanobacteria/Nostocales	GU055195	98.8	171/173	
С	Anabaena sp.	Cyanobacteria/Nostocales	FN691915	98.9	174/176	
D	Anabaena sp.	Cyanobacteria/Nostocales	HE975017	100	164/164	
E	Cylindrospermopsis raciborskii	Cyanobacteria/Nostocales	JQ707296	100	174/174	
F1	Anabaena cylindrica	Cyanobacteria/Nostocales	HE975014	100	174/174	
F2	Anabaena cylindrica	Cyanobacteria/Nostocales	HE975014	99.4	173/174	
G	Nostoc sp.	Cyanobacteria/Nostocales	JF810617	100	174/174	

Table S1. Close relatives of sequences of the DGGE bands excised from polyacrylamide gel showed in Figure S2.

	Nu	Number of OTUs (Number of clones) ^a					
Phylogenic group	ОТ	OTUwB ^c		dB ^d			
Proteobacteria	47	(10,83,92,12)	30	(96, 17, 20, 94)			
Alphaproteobacteria	6	(0,7,8,0)	4	(5,0,0,5)			
Betaproteobacteria	14	(4,38,20,2)	10	(35,6,7,32)			
Gammaproteobacteria	2	(0,2,2,0)	4	(9,0,4,9)			
Deltaproteobacteria	25	(6,43,55,10)	12	(47,11,9,48)			
Cyanobacteria	8	(3,27,38,7))	1	(1,0,0,1)			
Bacteroidetes	7	(0,13,11,0)	4	(4,0,0,4)			
Actinobacteria	7	(0,9,9,1)	12	(23,6,4,28)			
Acidobacteria	5	(0,6,6,0)	7	(10,0,0,7)			
Chloroflexi	5	(0,10,8,0)	3	(4,0,0,6)			
Verrucomicrobia	2	(0,2,2,0)	2	(2,0,0,3)			
Spirochaetes	1	(0,1,2,0)	0	-			
Firmicutes	1	(0,2,1,0)	1	(1,0,0,1)			
Gemmatimonadetes	1	(0,1,1,0)	2	(9,1,2,11)			
Planctomycetes	0	-	3	(4,0,0,3)			
Nitrospira	0	-	1	(3,2,2,4)			
Unclassified Bacteria	11	(0,18,17,0)	12	(23,1,4,25)			
Total ^b	95	(13,171,188,20)	78	(180.27,32.187)			

1 **Table S2.** Taxonomic composition of the specific OTUs in the bacterial clone libraries.

^a A Number represents the total number of shared OTUs in each phylogenetic group,

and the numbers in parenthesis are the numbers of clones in the each OTUs originated

4 from the four libraries (BD1R, BW1R, BW2R, and BD2R).

⁵ ^b Total numbers of shared OTUs and sequences at phylum level.

⁶ ^c OTUs specific to the libraries BW1R and BW2R.

⁷ ^d OTUs specific to the libraries BD1R and BD2R.

			Ratio per total sequences (%) †			
Phylum	Family	BD1R	BW1R	BW2R	BD2R	BW1D
Proteobacteria	Geobacteraceae	9.45	5.86	5.29	5.13	5.61
Chloroflexi	Anaerolineaceae	5.52	5.67	5.19	3.94	15.82
Proteobacteria	Cystobacteraceae	3.65	4.16	4.72	3.02	2.00
Proteobacteria	Burkholderiales_incertae_sedis	2.43	3.31	5.29	3.48	0.20
Cyanobacteria	Family I	1.03	2.93	3.12	2.29	0.00
Proteobacteria	Rhodocyclaceae	1.59	2.08	1.23	1.37	1.30
Acidobacteria	Holophagaceae	0.84	1.42	0.85	0.64	0.70
Proteobacteria	Sinobacteraceae	0.84	1.42	1.32	0.37	0.90
Gemmatimonadetes	Gemmatimonadaceae	2.25	1.42	2.46	2.75	2.10
Planctomycetes	Planctomycetaceae	2.62	1.23	0.66	2.01	1.40
Actinobacteria	Acidimicrobiaceae	0.28	1.13	0.76	1.01	0.20
Proteobacteria	Pseudomonadaceae	1.22	1.13	1.04	0.55	0.10
Proteobacteria	Syntrophobacteraceae	0.19	0.95	0.57	0.09	0.50
Proteobacteria	Acetobacteraceae	0.37	0.95	1.61	0.46	0.10
Proteobacteria	Polyangiaceae	1.96	0.85	0.47	3.11	0.50
Proteobacteria	Comamonadaceae	0.37	0.85	1.79	0.82	0.20
Bacteroidetes	Chitinophagaceae	1.03	0.85	0.19	0.27	2.20
Proteobacteria	Syntrophaceae	0.09	0.66	0.85	0.82	0.70
Actinobacteria	Kineosporiaceae	0.28	0.57	0.00	0.92	0.00
Proteobacteria	Syntrophorhabdaceae	0.00	0.57	0.57	0.09	0.20
Firmicutes	Bacillaceae 1	0.00	0.57	0.09	0.09	0.50
Armatimonadetes	Chthonomonadaceae	0.75	0.57	1.04	1.01	1.10
Proteobacteria	Rhodospirillaceae	0.65	0.47	0.57	0.73	0.10
Proteobacteria	Alcaligenaceae	0.75	0.47	1.04	1.56	0.10
Proteobacteria	Desulfobulbaceae	0.19	0.38	0.76	0.09	0.40
Proteobacteria	Methylocystaceae	0.37	0.38	0.19	0.09	0.00
Proteobacteria	Oxalobacteraceae	0.09	0.38	0.28	0.27	0.20
Bacteroidetes	Cryomorphaceae	0.09	0.38	0.28	0.00	0.10
Actinobacteria	Intrasporangiaceae	0.28	0.28	0.00	0.09	0.00
Actinobacteria	Nocardioidaceae	0.47	0.28	0.47	0.37	0.00
Actinobacteria	Pseudonocardiaceae	0.00	0.28	0.09	0.09	0.00
Proteobacteria	Hyphomicrobiaceae	0.19	0.28	0.09	0.46	0.00
Proteobacteria	Xanthomonadaceae	0.47	0.28	0.66	0.46	1.20
Nitrospira	Nitrospiraceae	0.56	0.28	0.28	0.64	0.30
Chlorobi	Ignavibacteriaceae	0.47	0.28	0.19	0.00	0.30
Actinobacteria	Acidimicrobineae incertae sedis	0.28	0.19	0.28	0.18	0.40
Actinobacteria	 Micromonosporaceae	0.19	0.19	0.00	0.92	0.00
Actinobacteria	Thermomonosporaceae	0.00	0.19	0.09	0.00	0.00
Proteobacteria	Bdellovibrionaceae	0.09	0.19	0.09	0.27	0.10
Proteobacteria	Bradyrhizobiaceae	0.28	0.19	0.09	0.27	0.30
Proteobacteria	Caulobacteraceae	0.19	0.19	0.09	0.18	0.00
Proteobacteria	Neisseriaceae	0.00	0.19	0.09	0.09	0.00
Firmicutes	Clostridiaceae 1	0.00	0.19	0.28	0.18	0.10
Spirochaetes	Spirochaetaceae	0.00	0.19	0.76	0.18	0.60
Spirochaetes	Leptospiraceae	0.00	0.19	0.00	0.00	0.00
Actinobacteria	Conexibacteraceae	0.00	0.09	0.09	0.18	0.00
Actinobacteria	Geodermatophilaceae	0.65	0.09	0.19	0.46	0.00
Actinobacteria	Microbacteriaceae	0.00	0.09	0.00	0.00	0.00
Actinobacteria	Mycobacteriaceae	0.00	0.09	0.00	0.18	0.00
Proteobacteria	Desulfobacteraceae	0.19	0.09	0.28	0.09	0.00
Proteobacteria	Phaselicystidaceae	0.00	0.09	0.19	0.09	0.00
Proteobacteria	Kofleriaceae	0.09	0.09	0.19	0.18	0.00
Proteobacteria	Desulfovibrionaceae	0.00	0.09	0.00	0.00	0.10

Table S3	Taxonomic	distribution	of bacterial	sequences	at family-leve	l resolution.

Continued on the following page.

Proteobacteria	Rhodobiaceae	0.28	0.09	0.19	0.09	0.00
Proteobacteria	Xanthobacteraceae	0.00	0.09	0.00	0.18	0.10
Proteobacteria	Rhodobacteraceae	0.00	0.09	0.28	0.00	0.00
Proteobacteria	Hydrogenophilaceae	0.09	0.09	0.09	0.00	0.00
Proteobacteria	Methylococcaceae	0.09	0.09	0.38	0.00	0.20
Firmicutes	Gracilibacteraceae	0.00	0.09	0.00	0.00	0.00
Firmicutes	Pasteuriaceae	0.00	0.09	0.19	0.55	0.10
Firmicutes	Veillonellaceae	0.00	0.09	0.00	0.00	0.10
Chloroflexi	Chloroflexaceae	0.09	0.09	0.19	0.18	0.00
Armatimonadetes	Armatimonadaceae	0.09	0.09	0.00	0.00	0.00
Verrucomicrobia	Opitutaceae	0.00	0.09	0.38	0.18	0.10
Cyanobacteria	Family XI	0.09	0.09	0.76	0.00	0.00
Cyanobacteria	Family II	0.00	0.09	0.19	0.00	0.00
Bacteroidetes	Sphingobacteriaceae	0.00	0.09	0.09	0.00	0.10
Bacteroidetes	Cyclobacteriaceae	0.00	0.09	0.28	0.00	0.10
Spirochaetes	Brevinemataceae	0.00	0.09	0.09	0.00	0.00
Deinococcus-Thermus	Deinococcaceae	0.00	0.09	0.00	0.00	0.00
Actinobacteria	Iamiaceae	0.37	0.00	0.00	0.09	0.00
Actinobacteria	Nakamurellaceae	0.19	0.00	0.09	0.18	0.00
Actinobacteria	Cryptosporangiaceae	0.00	0.00	0.09	0.00	0.00
Actinobacteria	Sporichthyaceae	0.00	0.00	0.09	0.18	0.00
Actinobacteria	Micrococcaceae	0.00	0.00	0.09	0.09	0.20
Actinobacteria	Propionibacteriaceae	0.00	0.00	0.00	0.27	0.00
Actinobacteria	Streptomycetaceae	0.19	0.00	0.38	0.64	0.10
Actinobacteria	Coriobacteriaceae	0.00	0.00	0.00	0.27	0.30
Proteobacteria	Desulfuromonadaceae	0.09	0.00	0.09	0.00	0.20
Proteobacteria	Nannocystaceae	0.00	0.00	0.09	0.09	0.00
Proteobacteria	Bacteriovoracaceae	0.09	0.00	0.28	0.00	0.00
Proteobacteria	Rhizobiales_incertae_sedis	0.00	0.00	0.09	0.00	0.00
Proteobacteria	Rhizobiaceae	0.00	0.00	0.09	0.00	0.10
Proteobacteria	Beijerinckiaceae	0.00	0.00	0.00	0.09	0.00
Proteobacteria	Sphingomonadaceae	0.00	0.00	0.09	0.09	0.30
Proteobacteria	Burkholderiaceae	0.19	0.00	0.09	0.18	0.10
Proteobacteria	Methylophilaceae	0.00	0.00	0.09	0.00	0.00
Proteobacteria	Moraxellaceae	0.00	0.00	0.00	0.00	0.10
Proteobacteria	Coxiellaceae	0.00	0.00	0.09	0.00	0.10
Proteobacteria	Aeromonadaceae	0.00	0.00	0.09	0.00	0.00
Proteobacteria	Ectothiorhodospiraceae	0.00	0.00	0.00	0.00	0.20
Proteobacteria	Thiotrichales_incertae_sedis	0.00	0.00	0.00	0.00	0.10
Firmicutes	Ruminococcaceae	0.00	0.00	0.47	0.00	0.40
Firmicutes	Incertae Sedis III	0.00	0.00	0.00	0.09	0.00
Firmicutes	Clostridiales_Incertae Sedis XVIII	0.00	0.00	0.00	0.00	0.10
Firmicutes	Paenibacillaceae 1	0.00	0.00	0.09	0.09	0.00
Firmicutes	Thermoactinomycetaceae 1	0.00	0.00	0.00	0.09	0.00
Elusimicrobia	Elusimicrobiaceae	0.09	0.00	0.19	0.00	0.20
Chloroflexi	Caldilineaceae	0.00	0.00	0.00	0.00	0.10
Planctomycetes	Phycisphaeraceae	0.19	0.00	0.00	0.09	0.10
Verrucomicrobia	Verrucomicrobiaceae	0.09	0.00	0.09	0.00	0.10
Cyanobacteria	Family IV	0.00	0.00	0.47	0.00	0.00
Cyanobacteria	Family XIII	0.00	0.00	0.09	0.00	0.00
Cyanobacteria	Family IX	0.00	0.00	0.00	0.09	0.00
Cyanobacteria	Family VIII	0.00	0.00	0.00	0.09	0.00
Bacteroidetes	Cytophagaceae	0.00	0.00	0.00	0.09	0.00
Bacteroidetes	Porphyromonadaceae	0.00	0.00	0.19	0.00	0.00
Bacteroidetes	Flavobacteriaceae	0.00	0.00	0.09	0.00	0.20
Lentisphaerae	Victivallaceae	0.00	0.00	0.09	0.00	0.00
	unclassified family	54.44	52.17	46.46	53.39	55.56

[†] listed in order of ratio in BD1R.

Table S4. Taxonomic distribution of archaeal sequences at family-level resolution.

		Ratio per total sequences (%) †				
Phylum	Family	AD1R	AW1R	AW2R	AD2R	AW1D
Euryarchaeota	Methanosaetaceae	33.68	32.40	32.70	41.03	16.62
Euryarchaeota	Methanosarcinaceae	18.45	11.11	9.06	20.02	7.48
Euryarchaeota	Methanomicrobiales_incertae_sedis	3.31	6.35	7.88	3.99	9.60
Euryarchaeota	Methanospirillaceae	0.00	0.37	0.27	0.00	0.18
Euryarchaeota	Methanomicrobiaceae	0.00	0.28	0.18	0.09	0.18
Euryarchaeota	Methanocellaceae	3.69	9.90	8.88	6.25	16.07
Euryarchaeota	Methanobacteriaceae	1.23	0.84	1.00	0.54	1.48
Euryarchaeota	Thermoplasmatales_incertae_sedis	0.57	0.56	0.82	0.18	1.20
Crenarchaeota	Fervidicoccaceae	0.47	0.19	0.45	0.27	0.00
	unclassified family	38.60	38.00	38.77	27.63	47.18

[†] listed in order of ratio in AD1R.

Fig. S1. Water management, rice cultivation, and sampling histories in the paddy field used in this study. Water management periods were separated to five stages: before waterlogging (stage BW; until 29 April), waterlogging (stage W; April 30–June 18), temporal drainage (stage T; June 19–30), intermittent drainage (stage I; July 1–August 31), and after complete drainage (stage CD; after September 1). Asterisks (*) indicate the samples used for the clone library analysis.

Fig. S2. Reproducibility of DGGE profiles of bacterial communities based on DNA (A) or RNA samples (B) extracted with three replications. Numbers of the each lane at the DGGE profiles represent soil samples, 1, 0423; 2, 0430; 3, 0507; 4, 0514; 5, 0521; 6, 0528; 7, 0604, 8, 0610; 9, 0618; 10, 0625; 11, 0702; 12, 0709; 13, 0716; 14, 0723; 15, 0730; 16, 0806; 17, 0820; 18, 0903; 19, 0917; 20, 1001. These numbers in each sample ID represent the sampling date (month + day) described in the Fig. S1, eg;. 0423 and 0723 indicate the soil sample collected on 23 April and 23 July respectively. Lane M shows the profiles of DGGE Maker II (Nippon Gene, Tokyo, Japan).

Fig. S3. DGGE profiles of bacterial and archaeal communities. DGGE profiles of A) RNA-based DGGE targeting bacterial 16S rRNA; B) RNA-based DGGE targeting archaeal 16S rRNA; C) DNA-based DGGE targeting bacterial 16S rRNA gene; and D) DNA-based DGGE targeting archaeal 16S rRNA gene are shown. Numbers of the each lane at the DGGE profiles represent soil samples as described in legend of Fig. S2. Lane M shows the profiles of DGGE Maker II (Nippon Gene). DGGE bands indicated by alphabets (A to G) were excised from the gel for sequence analysis.

0.02

Fig. S4. Phylogenetic tree constructed based on the sequences obtained from the DGGE bands (Fig. S3A) and reference cyanobacterial sequences. Bootstrap values (>70%) with 1000 replicates are shown next to the branches. The 16S rRNA sequence of Bacillus subtilis (NC_00964) was used as an outgroup.