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Use of the temperature-sensitive allele: To tune CI protein level in the cell, we use the temperature-

sensitive allele cI857 (Hershey, 1971). In this mutant, CI bears a GCA to ACA mutation at bp 199 (Lieb, 1981). 

The precise way by which temperature dependence arises in this mutant is not known. Phenomenologically, 

two alternative scenarios have been invoked to describe the effect of temperature on CI in the cell: (1) active 

degradation of CI protein, at a temperature-dependent rate ( ) (Isaacs et al, 2003; Villaverde et al, 1993); 

(2) loss of functionality, such that only a fraction ( ) of CI proteins is active, i.e. able to bind DNA and 

regulate transcription (Zong et al, 2010; Gaitanaris et al, 1994). Importantly, both scenarios result in the same 

steady-state promoter activity levels if the following mapping is made: ( ) = ( ) ( ( )⁄ + ( )), where  

is the growth rate. In this work, we assume the second scenario, i.e. that the effect of temperature is to change 

the fraction of active CI molecules in the cell. This choice is motivated by three considerations. First, CI857 

has been found to be capable of renaturing in the cell (Gaitanaris et al, 1994), an observation inconsistent 

with irreversible degradation. Second, a model assuming a temperature-dependent fraction of active CI 

successfully predicts the stability of cI857 lysogens at different temperatures (Zong et al, 2010). Third, the 

increased degradation scenario was incapable of quantitatively reproducing the delayed switching kinetics 

observed in our experiments (Figure 3B-D). 

Predicting the steady-states of the lambda switch:  The steady-states are de�ined by the requirement that 

CI production is balanced by CI loss through dilution  

= ( ) − = 0  (1) 

where ( ) is PRM  activity (the amount of CI produced per generation time) and  is the mean concentration 

of CI molecules per cell. The rate of loss is 1, since units are chosen to be generation times (cell interdivision 

time/ln(2)).  

In our reporter strain, equation (1) must be modi�ied due to the fact that only a fraction of CI proteins, ( ), is 

active.   

= ( ) ( ) − = 0  (2) 

Where we have used the transformation →   so that  now represents the concentration of active CI 

molecules.  This expression may be rewritten: 

= ( ) ( )  (3) 

An additional feature of our strain is the presence of the �luorescent reporter.  Its steady-state is de�ined by 

the expression: 
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𝑑𝐹
𝑑𝑡

= 𝐹0𝑓(𝑥) − 𝐹 = 0  (4) 

where 𝐹 is the cell fluorescence and 𝐹0 is a normalization constant. We can therefore equate 𝐹 = 𝑓(𝑥) at 

steady-state using the appropriate normalization.   

We can also rewrite equation (3) as: 

𝑥(𝑇) = 𝜇(𝑇)𝐹(𝑇)  (5)  

This last relation allows us to construct the regulatory curve of the PRM promoter with respect to CI from 

experimental fluorescence data, i.e. plot 𝑓(𝑥) vs. 𝑥 as we do in Fig. 2A.  Conversely, given a theoretical fit for 

the dose response function 𝑓𝑇𝐻(𝑥) we can obtain a theoretical prediction of the steady-states of the system 

𝑓𝑇𝐻(𝑥)  vs. 𝜇(𝑥), since, at steady-state, 

 𝜇(𝑥) = 𝑥/𝑓𝑇𝐻(𝑥)  (6) 

This theoretical curve is shown as the solid line in Fig. 2B, where we have plotted the predicted steady-states 

using the theoretical fit for the dose-response obtained in Fig. 2A. 

Error propagation:  To propagate errors resulting from the fitting of experimental data, we first calculated 

the prediction bounds and confidence intervals for the fit of the PRM versus active CI data (Fig. 2A) to a Hill 

function, and for the fit of PRM activity variance versus mean to a power law (Fig. S6B,). This was done using 

Matlab’s curve fitting toolbox.  The prediction bounds represent the inference from the data that the true 

functional value of the fit lies within the prediction bounds with 95% certainty. To then estimate the 

prediction bounds for the PRM steady-states, the individual functions representing the upper and lower 

bounds of the PRM(CI) curve were transformed analogously to the nominal fit.  

To estimate the parameter bounds for the stochastic model (see Supplemental Information Below), 100 

random parameter sets were chosen from within the confidence intervals of both experimental fits above, 

subject to the further requirement that the mean standard error (MSE) of the fit be less than twice that of the 

fit given by Matlab’s curve fitting algorithm.  This requirement was imposed in order to closely match the 

prediction bounds of the individual fits.  The prediction bounds for the delay time and mean switching time in 

our stochastic model represent the minimum and maximum values of those observables obtained through 

this random sampling. 

Estimation of burst parameters from single-cell data:  The mean protein burst size 𝑏(𝑥) and burst 

frequency 𝑎(𝑥) were extracted from experimental data by calculating the dependence of the cell-to-cell 

variance 𝜎2 in PRM activity on the mean activity 𝑓. This was done as follows: the single-cell fluorescence data 
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from experiments at all temperatures (Fig. 2C) were combined, and then binned based on the level of active 

CI 𝑥. The variance and mean of red cell fluorescence were then approximated using a power law relation, 

 𝜎2 = [𝑓
𝜑

]1+𝛿 (Fig. S6B), with 𝛿 = 0.68 ± 0.14 and 𝜑 = 5.3 ± 3.5 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 in molecular units (see below). 

This allowed us to estimate the burst size and frequency for a given level of x, using the relation 𝑎 =  𝑓
2

𝜎2
 and 

𝑏 = 𝜎2

𝑓
, (Shahrezaei & Swain, 2008; Friedman et al, 2006; Mehta et al, 2008) (Fig. S6C). The parameter  𝜑 was 

rescaled from fluorescence units to molecule number, using the estimated value of ~300 total CI 

molecules/cell (Levine et al, 1979; Reichardt & Kaiser, 1971). 

A stochastic model for the lambda switch: We assume that the switching between lysogeny and lysis is 

governed by the stochastic kinetics of CI copy numbers. We therefore model these kinetics according to three 

assumptions (shown schematically in Fig. S6A): 

1.  CI is produced from PRM in geometrically distributed bursts of mean size b and frequency per 

generation a, both of which are functions of the instantaneous level of active CI (see Estimation of 

burst parameters from single-cell data).  

2. CI is diluted by cell division.  

3. The onset of lysis occurs once CI level in the cell drops below a certain threshold. 

These assumptions can be captured using a master equation, which specifies how the population structure (in 

terms of CI copy number) evolves in time (Kampen, 1981; Mehta et al, 2008). Specifically, the master 

equation is written as:  𝑑𝑝𝑛(𝜏)
𝑑𝜏

= ∑ 𝑊𝑛𝑚𝑝𝑚(𝜏)∞
𝑚=1  where 𝑝𝑛 is the probability of having n CI molecules/cell.   

𝑊𝑛𝑚 is a matrix coefficient describing the transition rate from state m to state n, and is completely defined by 

the following 4 rules:   

(1) The value of 𝑊𝑛𝑚 for 𝑛 = 𝑚 + 𝑘 is 𝑎(𝑚) × 𝑔(𝑘; 1
1+𝑏(𝑚)

)     where  𝑔(𝑘; 1
1+𝑏(𝑚)

) ≡

� 𝑏(𝑚)
1+𝑏(𝑚)

�
𝑘
� 1
1+𝑏(𝑚)

�   is a geometric distribution with success probability 1
1+𝑏(𝑚)

.  Thus, we 

interpret the burst size as the number of ‘failures’ (proteins created) before protein 

synthesis is successfully turned off (Mehta et al, 2008).  

(2) The value of 𝑊𝑛𝑚 for 𝑛 = 𝑚 − 1 is 𝑚.  CI is diluted in proportion to growth rate (which is 

1 in the units chosen) and copy-number. 

(3) The value of 𝑊𝑛𝑚 for 𝑛 < 𝑚 − 1 is 0.  CI copy-number cannot instantly decrease by more 

than 1. 

(4) In order to conserve probability 𝑊𝑛𝑛 ≡ −∑ 𝑊𝑛𝑚𝑚≠𝑛  i.e. the flux of probability into all 

other states from state 𝑚 is the flux out of 𝑚.  
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By using the experimentally determined burst parameters (see Estimation of burst parameters from 

single-cell data), we were able to fully parameterize the master equation above.  The solution of the master 

equation at arbitrary times was found by numerical matrix exponentiation: 𝑝(𝑛, 𝑡) = 𝑒𝑡𝑊𝑝(𝑛, 0), utilizing the 

expm function of Matlab, with a cutoff applied for very high values of 𝑛 (>2.5x the amount of CI produced per 

generation if the gene is constantly on). The initial distribution 𝑝(𝑛, 0) was obtained by evolving a negative 

binomial distribution for 100 generations, under the initial condition parameters (100% of CI being active.)  

Finally, in order to determine the fraction of lysogenic cells left at any given time, a threshold value of active 

CI was chosen based on a value that corresponds to the experimentally chosen partition between states (see 

Fig. S4).  The results of this model may be seen in the theoretical predictions (black line and shaded area) of 

Fig. 3C-D and in raw form in Fig. S7A-B. 

Estimating pleotropic effects of changes in temperature: In analyzing our results, we make the 

simplifying assumption that the effect of changing temperature is only to vary the fraction of active CI in the 

cell. Other physiological effects resulting from the change in temperature are neglected. To numerically test 

the validity of this approximation, we refer to the results of (Herendeen et al, 1979), who examined the 

change in abundance of 100 E. coli proteins in the temperature range 13.5-46℃. They found that the majority 

of proteins measured displayed <20% variation in abundance from 30-42℃, while >95% displayed less than 

60% variation.  Assuming this is a representative sample, and that this variation is linear in temperature 

change, we can determine the limits of what is likely to occur in the case of CI (Fig. S3).  PRM activity was 

allowed to vary by 30% from the nominal fit (solid line in Fig. 2A and Fig. S3A) when temperature is changed 

from 34℃ to 40℃ (effectively the worst-case scenario, since the temperature range is ½ that of the 30-

42℃ range of the study).  This variation is shown in the two dashed lines in Fig. S3A. This variability was then 

propagated to the predicted steady states of the system shown in Fig. 2B where the dashed lines are again 

the estimated limits of temperature variation.  As seen in Fig. S3B, the estimated limits of temperature 

variation are smaller than the experimental uncertainty in the fit  (shaded region in Fig. 2A-B and Fig. S3A-

B.)  In other words, temperature variation is not expected to be a dominant source of error in our analysis.  
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 FIGURE LEGENDS  

Table S1: The effect of using different models for the effect of temperature in the cI857 allele. Our 

experimental data of PRM activity at different temperatures (Fig. 2A) was �itted to a Hill function ( ) =

0{ + (1 − )/(1 + [ / 0 ]−  )}. In doing so, we used four different expressions describing how the fraction 

of active CI in the cell varies with temperature (the one used in the present study, as well as three from the 

literature: (Isaacs et al, 2003; Zong et al, 2010; Villaverde et al, 1993)). One sees that the expressions obtained 

for ( ) are very close to each other. The only exception is that (Zong et al, 2010) places the position of half-

maximum for the Hill function ( 0) at a signi�icantly lower value than all other models.  This difference 

amounts to a scaling of the assumed number of CI in a lysogen, and re�lects the particular way in which the 

temperature dependence was calibrated based on an earlier study, that of (Schubert et al, 2007).   

Fig. S1: Single-cell distributions of PRM Activity at different temperatures. Clear bars are the 

experimentally measured histograms of PRM activity, based on mCherry �luorescence (~100 cells per 

histogram). Red lines are �its to a gamma distribution (or the sum of two gamma distributions when 

bimodality was present). The top two sets of panels describe the experiments with initially lysogenic (�irst 

row) and initially lytic (second row) cultures. The bottom two sets of panels depict a selection of 

temperatures zoomed-in by a factor of 10, for clarity. 

 

Fig. S2: Comparison of our results with those of (Schubert et al, 2007). (A) PRM activity vs. CI concentration 

for cro+ (black squares) and cro- (gray squares) reporter strains, reproduced from (Schubert et al, 2007). 

Black line is a �it of the cro+ data to a Hill function. Blue circles are the linearly-scaled results of the present 

study, for comparison. (B) Predicted steady-states of PRM promoter activity with respect to the 

production/elimination ratio. This parameter is analogous to the parameter ( ) in our experiments. Note 

the absence of bistability in the cro- strain. 

 

Fig. S3: Estimating pleotropic effects of changes in temperature.  (A) PRM activity as a function of CI 

concentration. The main curve, as well as prediction bounds based on experimental error (shaded area), are 

reproduced from (Fig. 2A). The estimated error due to temperature-dependent variations in protein 

abundance (see Estimating pleotropic effects of changes in temperature ) is designated by the dashed 

lines. (B) Predicted steady states of PRM as a function of the fraction of active CI in the cell. The main curve, as 

well as prediction bounds based on experimental error (shaded area), are reproduced from (Fig. 2B).  The 

estimated error due to temperature-dependent variations in protein abundance (see Estimating pleotropic 

effects of changes in temperature ) is designated by the dashed lines. 

 



Fig. S4: Defining the lysis/lysogeny threshold. (A) Experimental fluorescence data from all temperatures 

shows a clear clustering of cells into subpopulations of lysogenic and lytic cells, predominately along the red 

and green axes.  We therefore classify cells based on a threshold slope in the red/green plane (dashed blue 

line) (B) By determining a threshold angle in the PR vs. PRM promoter activity plane which effectively 

separates the two subpopulations experimentally (dashed blue line), we are able to determine a 

corresponding value of effective CI (dashed red line) which is then used to set the threshold for switching in 

the stochastic model.   

 

Fig. S5: Fluorescence maturation kinetics. (A) The effect of fluorophore maturation on fluorescence of 

each channel. Cells from a 30℃-to-38℃ temperature shift experiment (see Fig. 3) were collected at the 2h 

time point, resuspended in PBS and stored at 4℃. The fluorescence level was measured at 0, 2 and 12 h after 

resuspension. Data points are mean over ~100 cells. Error bars are standard error over three independent 

experiments. (B)  The mean ratio of green fluorescence to total fluorescence from the same data set as panel 

A. This ratio was used in the experiment to discriminate lytic from lysogenic cells. The fact that it remains 

constant between 2 and 12 hours following cell resuspension (when imaging took place) indicates that 

maturation effects do not bias the measured kinetics. 

 

Fig. S6: Defining the parameters of the stochastic model. (A) A Stochastic model for PRM activity. The 

number of CI molecules per cell (N) increases via random bursts of production (burst size B), and decreases 

due to cell growth/division. If CI level falls below a threshold (depicted by a wall in the figure), a switch to 

lysis ensues. (B) The average burst size (𝑏) and frequency (𝑎) can be estimated from measuring the mean and 

variance of CI levels (see  Estimation of burst parameters from single-cell data) from experimental data at 

all temperatures. The variance versus mean plot is fitted to a power law, 𝜎2 = [𝑓
𝜑

]1+𝛿 , with 𝛿 = 0.68 ± 0.14 

and 𝜑 = 5.3 ± 3.5 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 in molecular units.  The shaded region represents the 95% confidence 

interval of the fit. (C) Estimating the burst parameters. By combining the power-law expression extracted in 

panel B with the known number of CI molecules in a lysogen (~300) (Reichardt & Kaiser, 1971; Levine et al, 

1979), we obtain the dependence of burst frequency and size on the number of active CI molecules in the cell. 

The shaded regions represent error bounds, obtained using 100 random instantiations of fitting parameters, 

in which both the PRM(CI) and the variance fit of panel B were allowed to vary within their respective 

confidence intervals. These random instantiations were later used to determine the uncertainty in predicted 

switching kinetics (see Fig. 3C-D.)     

 



Fig. S7: Results of Stochastic Model (A) CI copy-number distribution over time in a simulation of a 

temperature shift experiment (see  A stochastic model for the lambda switch.) Cells were initially at the 

lysogenic state,  𝜇 = 1. Results are shown for 4 values of end temperatures, corresponding to 𝜇 =

 0.15,0.12,0.09,0.06. The left-most panel shows the time evolution over 12 generations following shift to a 

temperature where both states are still stable. The distribution of CI changes only slightly, due to the very low 

switching rate. In the second panel, cells are shifted to a higher temperature supporting bistability, and 

bimodality is observed. In the two rightmost panels, cells are shifted to a temperature in which only lysis is 

stable, and a fast relaxation to that state is observed. (B) The fraction of cells (squares) remaining in the 

lysogenic state over time for the simulations described in panel A. The simulated switching kinetics 

reproduces the biphasic behavior of the experimental kinetics shown in Fig. 3B. 
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Source f ε H x0

Present Work 0.77 +/- 0.08 0.033 +/- 0.032 1.80 +/- 0.57 0.062 +/- 0.011

Isaacs et al. 2001 0.75 +/- 0.09 0.032 +/- 0.041 1.83 +/- 0.69 0.054 +/- 0.013

Villaverde et al.  1993 0.75 +/- 0.09 0.032 +/- 0.042 1.86 +/- 0.71 0.047 +/- 0.011

Zong et al. 2010 0.73 +/- 0.08 0.034 +/- 0.043 1.96 +/- 0.73 0.0074 +/- 0.0018

Table S1:  Hill �it parameters for various models of temperature dependence
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