Vol. 00 no. 00 2013
Pages 1-10

Supplemental Data

Pooya Zakeri 2, Ben Jeuris 3, Raf Vandebril 3, Yves Moreau !+

! Department of Electrical Engineering ESAT, SCD-SISTA KU Leuven, Leuven , Belgium.
2 Future Health Department, iMind, Leuven , Belgium.
3 Department of Computer Science, KU Leuven, Leuven, Belgium.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 METHODOLOGICAL APPROACH

Harmonic mean

The harmonic mean of positive numbers a1, .. ., ax is given by the expression

x -1
1 -1
%(al,...,ak):<k2ai) : (D
1=1
This mean is often used in situations where small numbers need to be emphasized and large outliers are less important.

Link between the Log-Euclidean and geometric mean

The Log-Euclidean mean can be considered as a generalization of the notion of geometric mean. Indeed, if z1, . . . , x5, are n positive numbers,

then their geometric mean is given by

G(z1,... xn) = (x1,.. .,xn)% = exp (i Zlog (ml)> . 2)
i=1

For SPD matrices, the log-Euclidean mean can be seen an approximation to the geometric mean by considering both as an adaptation of
the arithmetic mean towards positive definite matrices.

First of all, the arithmetic mean can be stated as follows:

XeRnXxn

k
A(Ar, .. Ay) = min DX = Al 3)
=1

Here, each term in the cost function expresses the Euclidean distance between matrices X and A;, and the minimizer will be exactly the

arithmetic mean as we know it. Now, by switching to positive definite matrices, we restrict the search space of X to this set (P,) and

© Oxford University Press 2013. 1

Zakeri et al

the Euclidean distance is replaced with the Riemannian distance between positive definite matrices. The new optimization problem has the

geometric matrix mean (the Karcher mean) as its minimizer:
k
G(Ar,.... Ax) = min > og(A; V2 X AT %)
=1

This shows the relation between the arithmetic and the geometric mean.

By contrast, there is an obvious one-to-one relation between the (Euclidean) vector space of symmetric matrices and the positive definite
matrices using the matrix exponential and logarithm. This relation allows an interesting interpretation for the log-Euclidean mean: we start
with the positive definite matrices A, ..., A, which we transform to symmetric matrices using the matrix logarithm. Of these transformed

matrices the arithmetic mean is taken, and finally, the result is tranformed back to the positive definite matrices using the matrix exponential.

The Karcher mean optimization algorithm

Manifold optimization corresponds to a generalization of classical optimization algorithms where geometric concepts, such as gradient,
Hessian, and others are redefined in the context of the manifold structure. In Algorithm 1, the general outline of such an optimization
algorithm is shown. Another important operation which arises in manifold optimization is that of a retraction, which is the generalization of
the action “taking a step in a certain direction”. The use of a retraction assures that each step in Algorithm 1 stays on the manifold, which is

one of the advantages of this type of optimization.

Algorithm 1 The Karcher mean optimization algorithm
Let Aq,..., A; be SPD matrices, Xo an initial guess, and Rx a retraction starting at a point X

e fork=0,1,...

e Determine the search direction £, using Steepest Descent, Conjugate Gradient, Newton, ...

e Xi.1 = Rx, (t*&;) where t* is an appropriate stepsize

e end

The computational cost of the steepest descent algorithm for the Karcher mean is of the order O(n>k) for one iteration. These iterations
are stopped when the (absolute or relative) distance between two consecutive iterations is less than some specified tolerance, or when a

maximum number of iterations is reached.

2 METHODS

2.1 Feature vectors

PsePSSM The PsePSSM was originally introduced in [Chou, 2001] to avoid complete loss of the sequence-order information.. In this
representative model the score of PSSM profiles (M;_,;) is first standardized (S;— ;) as described in [Shen and Chou, 2009], and then a

protein P can be represented as

Supplemental Data

Pf’sePSSM = [51 Sa... 8% G§ Gg s GSO]T7 (5)
with
_ 1 &

gj:Z;SHj (G=1,2,...,20), (6)

1=

2 .

G§ = L—¢ (Siﬂj _S(z‘+5)—>]') (.7 =1,2,...,20; §<L)’ 7

i=1

where the first 20 coordinates are associated with the conventional sequence order-free representation of PSSM described earlier (PS3), and

the other coordinates reflect the effect of sequence order. In our work the optimal range of £ is considered from O to 10.

Functional domain composition using InterPro and CDD

We used InterPro Release 18 (13th February 2013), which consists of 24,356 entries stated with 27,358 indexes. The feature vector for this
model is constructed by defining a vector domain type with 27,358 coordinates (FunD-InterPro) in which each coordinate is related to one
FunD index from InterPro. Then, the instructions described by [Chou and Shen, 2007] are followed. First, the program IPRSCAN [Quevillon
et al., 2005] is used to compare each protein sequence in our data set with each of the domain sequences in the InterPro database. For each
protein sequence in our data set, the i-th coordinate of its feature vector is then assigned 1 where the i-th domain sequence of the InterPro
database is significantly similar to a sequence segment in the protein domain sequence; otherwise, it is assigned 0.

The CDD database is a comparatively complete and well-annotated FunD database that consists of the domain models imported from
a series of well-known external protein FunD databases including 8,607 domains from NCBI CDD curation effort, 1,013 domains from
SMART v6.0, 13,672 domains from PFAM v26.0, 4,873 domains from COGs v1.0, 10,885 domains from PRK v6.0, and 4,284 domains
from TIGRFAM v13, organized into 3,295 multi-model superfamilies.

We utilized CDD v3.08 (01 NOV 2012), which contains 43,334 common domains and families from all source databases. The feature
vector for this model is constructed by defining a vector domain type with 43,334 coordinates (FunD-cdd) for a protein sequence in which
each coordinate is related to one FunD index from CDD. First, the program for reverse PSI-BLAST (RPS-BLAST) [Schaffer et al., 2001] is
used to compare each protein sequence in our data set with each of the domain sequences in the CDD database. For each protein sequence
in our data set, the ¢-th coordinate of its feature vector is assigned 1 when the i-th profile of the CDD database is significantly similar to the
profile of a protein domain sequence; otherwise, it is assigned .

Moreover, since the function of some proteins might be unknown, the InterPro and CDD database may fail to cover a benchmark data set
completely. Hence, the feature vector for these proteins becomes a null vector. This problem can be solved by the hybridization approach,
which uses another model representation for a protein sample corresponding to a null vector. Fortunately in the DD training data set, there
are just 3 and 10 proteins that did not have any FunD in the InterPro and CDD databases respectively. The randomized process described
by [Zakeri et al., 2011] is followed to assign their FunD vector. In addition, the two types of functional domain composition (InterPro and

CDD) can be integrated to form a single FunD feature vector with 70692 dimensions (FunD-Combined).

Zakeri et al

3 RESULTS

Supplemental Table 1 shows a summary of training and test data sets belonging to the 27 protein domain folds of SCOP corresponding to all

major structural classes : «, 8, a/8, a + .

Parameter selection details

For each protein feature except for SWrl and SWr2, the kernel widths are chosen heuristically, through rules of thumb which often yield
good results in practice [De Bie et al., 2007]. This results in a Gaussian RBF kernel, with bandwidth equal to twice the average Euclidean
distance of a data point to its nearest neighbour in the entire data set. For SWrl and SWr2, we use a Gaussian RBF kernel with bandwidth
equal to eight times the average euclidean distance of a data point to its nearest in the whole data set. This kernel width for SWr1 and SWr2,
as well as the C'-parameter, are chosen by maximizing the accuracy performance using 5-fold cross validation on the training set. For SW1
and SW2 data sources, this maximum is searched over a grid of multipliers of the average distance of the data point to its nearest neighbour in
the complete data set. A one-against-other SVM classifier is constructed based on each representative model of the protein samples. To train
SVMs, we used LIBSVM-3.1 implementation of the SVM algorithm [Chang and Lin, 2011]. The performance of the individual classifiers

on the DD test data is listed in Supplemental Table 2.

The detailed performance

As listed in Supplemental Table 3 we report the detailed performance of proposed kernel fusion framework 1 in predicting the folding type
of 383 protein domains of test set among 27 well-known protein domain folds with respect to a given accuracy measure such as correct
classification rate, Mattew’s correlation coefficient (MCC) and F-score of each fold.

Furthermore, 26 random kernels are generated in order to investigate the behaviour of the Arithmetic and log-Euclidean means after
sequentially adding random kernels. In (Supplemental Fig. 1) we report the effect of sequentially incorporating random kernels to 26 fold
informative kernel matrices. The performance of the combined kernel using LogE-KF and AM fluctuates slightly but the trend is downward
for both of them. Regarding the results of combined kernel through LogE-KEF, the success rate is almost decreasing over adding random
kernels, falling from 81.72% to just under 73% after adding 26th random kernel. A similar trend is observed for performances of the
fused kernel using AM, dropping from 60.57% to just under 53%. It is noticeable that the performance of fused kernel using LogE-KF is
considerably higher than the result of combined kernel using AM even after adding 26 random kernels. In addition, it is observed that both

approaches have not acute behavior in dealing with random kernels.

Heuristic and simple MKL method (AK-MKL)

We consider a heuristic and simple MKL method [Qiu and Lane, 2009], which chooses the kernel weights based on the relationship between
the kernel matrix and the covariance matrix of the target labels (AK-MKL) (for more details, see the supplemental data). The basic idea
behind their methods is that a kernel matrix K; with more similarity to the target labels (the covariance matrix) should contribute more to the

combined kernel. Obtaining the weight of each kernel is formulated as

A(K;,y)

=Sk s v (€))
S A(KLy)

%

Supplemental Data

Table 1. Summary of the protein domain fold and their secon-
dary structure class used in DD data set

Fold names Index N-Train N-Test
«
Globin-like 1 13 6
Cytochrome ¢ 3 7 9
DNA-binding 3-helical bundle 4 12 20
4-helical up-and-down bundle 7 7 8
4-helical cytokines 9 9 9
EF-hand 11 6 9
B
Immunoglobulin-like 20 30 44
Cupredoxins 23 9 12
Viral coat and capsid proteins 26 16 13
ConA-like lectin/glucanases 30 7 6
SH3-like barrel 31 8 8
OB-fold 32 13 19
Beta-trefoil 33 8 4
Trypsin-like serine proteases 35 9 4
Lipocalins 39 9 7
o/B
(TIM)-barrel 46 29 48
FAD (also NAD)-binding motif 47 11 12
Flavodoxin-like 48 11 13
NAD(P)-binding Rossmann-fold 51 13 27
P-loop 54 10 12
Thioredoxin-like 57 9 8
Ribonuclease H-like motif 59 10 14
Hydrolases 62 11 7
periplasmic binding protein-like 69 11 4
a+
[B-Grasp 72 7 8
Ferrdoxin-like 87 13 27
Small inhibitors, toxins, lectins 110 14 27
09
= B = Log Euclidean Mean
085 —
08~ “\‘:r"':""""""-""'-'~-|-.|___|=~ |
RN - o -8
o 0751 " ‘~n,»’n--n"'“'—u~"“‘~n__ﬂ___u_—ﬂ--n--n---l\ a _
c -l
©
E o7 —
2
&
0.65— —
os- @ N —
‘0_-0--0--°---°--o--¢_—<>--o--o--o--o--o---o\ N
055 - o--¢ 0 -0--0-_g- Q\o_-o--o

05 \ \ \ \ |
0 5 10 20 25

15
Sequentially adding 26 random kernels

Fig. 1. The effect of sequentially adding 20 random kernels to 26 base kernels.

Zakeri et al

Table 2. The comparison between the performance of different
protein features on the independent test set.

Protein feature Dimension Performance
Amino acid compos (C) 20 52.22
Hydroelectricity (H) 21 37.34
Polarity (P) 21 37.60
van der Walls volume (V) 21 34.73
Predicted secondary structure (S) 21 41.51
Polarizability (Z) 21 35.77
PseAA X =1(L1) 22 44.39
PseAA X =4 (L4) 28 43.08
PseAA A = 14 (L14) 48 43.86
PseAA A = 30 (L30) 80 38.64
SW with BLOSUMG62 (SWrl) 311 60.05
SW with PAMS50 (SWr2) 311 59.01
PSSM profile 400D (PS1) 400 56.14
PSFM profile (PS2) 20 62.14
PSSM profile 20D (PS3) 20 62.66
PsePSSM¢ = 0 ((PSp0) 20 33.42
PsePSSM ¢ = 1 (PSpl) 21 24.80
PsePSSM £ = 2 (PSp2) 22 30.55
PsePSSM £ = 3 (PSp3) 23 21.67
PsePSSM £ = 4 (PSp4) 24 25.59
PsePSSM £ = 5 (PP5) 25 31.07
PsePSSM £ = 6 (PSp6) 26 26.11
PsePSSM ¢ = 7 (PSp7) 27 27.94
PsePSSM¢ = 8 (PSp8) 28 28.46
PsePSSM £ = 9 (PSp9) 29 24.28
PsePSSM ¢ = 10 (PSpl0) 30 27.15

where y represents the target labels and A(K, y) is the (empirical) kernel-target alignment [Cristianini et al., 2002].

The results of sequentially adding sequence-based features

In Figure 2, we consider the effect of sequentially incorporating sequence-based features according to the decreasing order of their kernel
performances. The performance of the Hadamard product (elementwise) of base kernels (HPK) keeps increasing until PS2, PS3, SWrl,
SWr2, Ps1 and C are included, achieving a total accuracy of 67%. However, the total accuracy of HPK declines dramatically if we continue
to add less informative kernels. In fact, since the range of values of RBF kernel elements is between 0 and 1, multiplying more kernels causes
the non-diagonal elements of combined kernels to approach zero and prediction fails. Moreover, the performance of uniformly weighted HM
fluctuates by adding more features, but the trend is slightly upward, causing the best success rate of 65.80% to be achieved when adding
the last, least informative kernel. In addition, the performance of uniformly weighted linear combinations of base kernels increases slowly
by varying degrees until we include the sixteen most informative data sources, resulting in a best performance of 73.37%. Furthermore,
comparable results with the best existing protein fold meta-predictors are achieved using the uniformly weighted linear kernel integration of
16 protein features. This performance is comparable with the result of the best existing fusion frameworks for classifying protein folds. By
contrast, its performance decreases continuously if we continue to incorporate less informative protein features. However, there is a slight

rise after adding PSp9 and then the performance decreases again when combining all kernels. This observation suggests that sequence based

Supplemental Data

Table 3. The correct classification rate, Mattew’s correlation coefficient (MCC) and F-score results obtained using proposed kernel fusion frameworks on DD
dataset classified into 27 well-known protein domain folds.

Folding Type GeoFold LogEFold AMKFold HKFold
Accuraccy MCC Fscore Accuraccy MCC Fscore Accuraccy MCC Fscore Accuraccy MCC Fscore

Globin-like 100 1.00 1.00 100 1.00 1.00 100 1.00 1.00 100 1.00 1.00
Cytochrome ¢ 100 1.00 1.00 100 1.00 1.00 100 1.00 1.00 100 095 095
DNA-binding 3-helical bundle 95 097 0.97 90 095 095 40 0.55 0.53 85 .0.63 0.63
4-helical up-and-down bundle 100 1.00 1.00 100 1.00 1.00 100 0.78 0.76 87.5 093 093
4-helical cytokines 100 095 0.95 100 090 .90 100 0.80 0.78 66.7 0.81 0.80
EF-hand 66.7 0.81 0.80 66.7 0.81 0.80 66.7 0.81 0.80 66.7 070 0.71
Immunoglobulin-like 97.7 099 0.99 90.9 095 095 79.55 0.78 0.80 71.3 0.63 0.67
Cupredoxins 83.3 0.87 0.87 83.3 0.87 0.87 66.7 0.81 0.80 66.7 0.81 0.80
Viral coat and capsid proteins 84.6 0.88 0.88 92.3 092 092 79.5 052 051 69.2 0.78 0.78
ConA-like lectin/glucanases 83.3 091 091 83.3 091 091 66.7 0.70 0.67 66.7 0.81 0.80
SH3-like barrel 100 094 094 87.50 093 093 76.9 0.61 0.55 50 053 0.53
OB-fold 73.7 0.82 0.82 84.2 0.86 0.86 50 040 033 42.1 045 047
Beta-trefoil 100 1.00 1.00 75.00 0.75 0.75 375 0.75 0.75 75 0.86 0.86
Trypsin-like serine proteases 50 0.57 0.57 50 0.71 0.67 21 028 0.29 50 049 0.50
Lipocalins 100 0.79 0.78 100 076 0.74 100 0.63 0.58 100 0.83 0.82
(TIM)-barrel 100 0.77 0.78 100 0.69 0.69 93.8 053 0.53 62.5 0.46 0.52
FAD (also NAD)-binding motif ~ 91.7 091 092 91.7 091 0.92 66.7 072 0.73 91.7 091 092
Flavodoxin-like 61.6 0.78 0.76 30.8 049 044 30.8 0.49 044 30.8 0.44 042
NAD(P)-binding Rossmann-fold 92.6 090 091 85.2 0.84 0.85 55.6 0.55 0.58 59.3 071 0.71
P-loop 66.7 0.76 0.76 66.7 0.69 0.70 25 038 0.35 41.7 0.50 0.50
Thioredoxin-like 100 085 0.84 75 0.86 0.86 375 047 046 62.5 0.66 0.67
Ribonuclease H-like motif 75 086 0.85 75 0.86 0.86 0.08 028 0.15 50 0.70 0.67
Hydrolases 85.7 085 0.85 714 0.62 0.63 57.1 044 044 57.1 0.75 0.73
Periplasmic 50 071 0.67 25 0.50 0.40 0 0 0 25 0.50 0.40
B-Grasp 62.5 072 0.71 50 0.63 0.62 25 050 0.40 12.5 0.19 0.18
binding protein-like 55.6 0.71 0.70 37 0.56 0.53 11.1 0.27 0.19 51.8 0.55 0.57
Small inhibitors, toxins, lectins ~ 96.3 092 093 96.3 098 0.98 88.9 094 094 92.6 0.75 0.76

PsePSSM features that reflect the effect of sequence order carry almost no complementary information with other protein features extracted
from the PSSM profile (PS1, PS2, PS3, PSp0).

Similar trends are apparent for MKLdiv-dc, MKLdiv-conv and KA-MKL. The success rates fluctuate steadily but the trend is upward until
the first 17 informative kernels are included, giving a best performance of over 72%. However, their performances begin to decline by adding
less informative kernels and drop to 61.01%, 63.71%, and 61.88% respectively after combining all kernels. Although, it is worthwhile to
notice that KA-MKL is a more cost-effective technique than MKLdiv-dc and MKLdiv-conv. The performance of SimpleMKL rises when
incorporating PS2 and PS3, followed by a little drop after adding PS1, and then levels off until we fuse SWrl, SWr2, L1, L4. After adding
S there is a sudden increase and the method peaks at a performance of 70.23% when including L30, P, and H. The trend experiences a slight
decrease until we add V and Z and then there is a sudden drop by adding PSp0. If we continue to include less informative kernels, the
performance steadily evolves downward and drops to 56.92% when fusing all kernels. It is easy to see that the results obtained by employing
AM are comparable to the results of the MKL approaches for protein fold classification.

Contrary to the previous methods, the performance of AGH-KF increases gradually even when adding kernels considered to carry non-
complementary information by AM. Its success rate is consistently outperforming other uniformly weighted kernel integration methods and
almost always increases until the 26th kernel is included, resulting in the best performance of 86.68%. The same trend appears for LogE-KF,

but the performance drops a little if we add the least informative kernel, where the total test accuracy of 81.72% is achieved. The experimental

Performance

Performance

Zakeri et al

Fusing S and SW2 kernels

s0f

asf

40|

01 (L9 (2.8 (3.7 (4.6 (55 (6.4 (7.3) (8.2 (1.9 (10)

Pairs Weight of Kernels

Fusing SW2 and PSp0 kernel

0l
01 (L9 (2.8 (37 (4.6 (55 (6.4 (1.3 (82 (19 1O
Pairs Weight of Kernels

Performance

Performance

Fusing S and PS2 kernels

70

651

60

551

50

st

40

01 (1,9 (2.8 (3.7 (4.6 (55 (64 (7.3 (8.2 (1.9 1,0
Pairs Weight of Kernels
Fusing PS2 and PSpO0 kernels

75

70

65

60

55

s0f

st

40

35

30l
01 (L9 (2.8 (37 (4.8 (55 (6.4 (7.3 (82 (19 (L0
Pairs Weight of Kernels

Performance

Performance

Fusing FunD-cdd kemels and Geo_old kemels

%

(1,.9)

(2.8 (3.7 (46 (55 (64 (7.3 (8.2 (19 (10
Pairs Weight of Kernels

Fusing PS2 and SW2 kernels

58

56
©0.1)

(1.9)

(2.8) (3.7 (4.6 (55 (64 (7.3 (8.2 (1.9 (@10
Pairs Weight of Kernels

Fig. 2. The performance of convex linear combination of two different kernels using 201 different pairs weights of kernels (blue line). The relative performa-
nces of fused kernels through weighted Log-Euclidean mean (red line). The relative performances of fused kernels using weighted geometric mean (magenta

line).

results on the SCOP PDB-40D benchmark dataset demonstrate that the geometric-based averaging of kernel matrices can effectively improve

the accuracy of the state-of-the-art kernel fusion model.

Data fusion using kernel-based kNN

In contrast with the conventional k nearest-neighbor (kNN) approach, which uses a norm distance between training and test samples in the

original space, the distance for kernel-based kNN is computed in the feature space. It has been shown that the Euclidean distance in the

kernel feature space ¢(z) can be defined by inner products between mapped samples as in the following formula:

¢(2) = ¢()II* = K(z,2) + K(y,y) — 2K (z,y).

©)

Furthermore, for integrating kernel matrices using kernel-based kNN the combined kernel is used to determine the Euclidean distance

between training and test samples in the feature space. Supplemental Table 4 lists the results (on the SCOP PDB-40D benchmark dataset)

Supplemental Data

Table 4. The performace of data fusion kernel-based kNN using different combined
kernel matrices on the SCOP PDB-40D benchmark dataset

k Arithmetic Mean Harmonic Mean LogE-KF AGH-KF Karcher-KF
k=1 49.68 46.48 53.26 81.46 82.77
k=2 49.87 46.47 53.26 81.46 82.77
k=3 44.65 4491 48.56 81.46 81.2
k=4 42.82 42.82 43.60 80.94 81.2
k=5 4047 39.43 38.38 81.98 80.42
k=6 38.90 39.67 36.55 79.11 79.37
k=7 37.34 39.95 35.25 78.33 78.59
k=8 36.29 39.67 34.20 78.33 78.51
k=9 3577 40.73 32.38 77.81 78.51
k=10 34.73 39.43 33.68 78.07 76.76

Table 5. Performance with Individual and integrated string kernels. ROC, ROC50 and median RFP (mRFP)
scores over 54 families

Method ROC ROC50 mRFP description

LA-eig 0.908 0.591 0.0654 string kernel, beta=infinity [Saigo et al., 2004]

LA-eig 0.908 0.597 0.0679 string kernel, beta=0.8 [Saigo et al., 2004]

LA-eig 0.925 0.649 0.0541 string kernel, beta=0.5 [Saigo et al., 2004]

LA-eig 0.923 0.661 0.0637 string kernel, beta=0.2 [Saigo et al., 2004]

Mismatch(5:1) 0.872 0.400 0.0837 string kernel, [Saigo et al., 2004]

AGH-KF 0.937 0.687 0.0441 combining all above string kernels except Mismatch kernel
LogE-KF 0916 0.54 0.0661 combining all above string kernels except Mismatch kernel
AGH-KF 0.938 0.695 0.0442 combining all above string kernels

LogE-KF 0.933 0.691 0.0491 combining all above string kernels

from the kernel-based equivalent of kNN for different values of k using different combined kernel matrices. These matrices are obtained by
taking various types of means of the twenty six kernel matrices based on various protein features listed in Supplemental Table 2. According

to Table 2 and Supplemental Table 4, the performance of SVM exceeds the results of kernel-based kKNN.

Remote homology detection using geometric kernel data fusion

We investigate the performance of our geometric kernel fusion approach on the protein remote homology detection problem as it was
illustrated in [Liao and Noble, 2003, Saigo et al., 2004] by fusing multiple kernels. Supplemental Table 5 reports the results of the combined
kernels obtained by taking geometric and Log-Euclediean means of the various string kernel matrices. It also lists the performance of the
SVM classification method based on different string kernels used in our proposed kernel fusion frameworks. Experimental results on the
famous Nobel dataset[Liao and Noble, 2003] demonstrate that our geometric fusion approach can effectively improve the accuracy of the

state-of-the-art string kernels for this problem.

REFERENCES

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3), 27:1-27:27.

Chou, K.-C. (2001). Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Structure, Function, and Bioinformatics, 43(3), 246-255.

Zakeri et al

Chou, K.-C. and Shen, H.-B. (2007). Recent progress in protein subcellular location prediction. Analytical Biochemistry, 370(1), 1 — 16.

Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J. (2002). On kernel-target alignment. In Advances in Neural Information Processing Systems 14, pages 367-373. MIT
Press.

De Bie, T., Tranchevent, L.-C., van Oeffelen, L. M. M., and Moreau, Y. (2007). Kernel-based data fusion for gene prioritization. Bioinformatics, 23(13),1125-i132.

Liao, L. and Noble, W. S. (2003). Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships.
Journal of Computional Biology, 10(2), 857-868.

Qiu, S. and Lane, T. (2009). A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 6(2), 190-199.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). Interproscan: protein domains identifier. Nucleic Acids Research, 33(suppl 2),
W116-W120.

Saigo, H., Vert, J.-P., Ueda, N., and Akutsu, T. (2004). Protein homology detection using string alignment kernels. Bioinformatics, 20(11), 1682-1689.

Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V., and Altschul, S. F. (2001). Improving the accuracy of psi-blast protein database
searches with composition-based statistics and other refinements. Nucleic Acids Research, 29(14), 2994-3005.

Shen, H.-B. and Chou, K.-C. (2009). Predicting protein fold pattern with functional domain and sequential evolution information. Journal of Theoretical Biology, 256(3), 441 — 446.

Zakeri, P., Moshiri, B., and Sadeghi, M. (2011). Prediction of protein submitochondria locations based on data fusion of various features of sequences. Journal of Theoretical

Biology, 269(1), 208 — 216.

10

