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1 A statistical model for BS-Seq data

Methylation/non-methylation counts for a single CpG position will always be
prone to unavoidable errors from bisul�te conversion, DNA ampli�cation and
sequencing. Thus, statements about methylation states at individual CpG posi-
tions are inherently uncertain. It is therefore necessary to pool evidence about
methylation across multiple successive CpG positions (regions). The BEAT
package uses Bayesian, Beta-Binomial mixture modeling of the methylation rate
in a given region. Its input are the region-based counts of methylated respec-
tively unmethylated cytosines. It outputs a posterior probability distribution
of the methylation rate in each region. On this basis, we de�ne an objective
criterion for the detection of epimutation events when comparing two samples.

1.1 The likelihood function (a mixture of Binomials)

For multi-cell samples, we assume that all counts at a single CpG position
were obtained from pairwise di�erent bisul�te converted DNA template strands
and represent independent observations. This certainly holds in good approx-
imation, because the number of available DNA template strands typically su-
persedes the read coverage at this position by far. For single cell samples,
we encounter the opposite situation: There are at most two template DNA
strands available, and for many CpG positions this number is reduced further
through DNA degradation. Multiple reads covering one CpG position are there-
fore highly dependent. We combine multiple counts at one position to one single
(non-)methylation call. For di�erent CpG position, these calls are then inde-
pendent observations. First, �x one region, i.e. some set of CpG positions. The
number of counts at a given position is the number of reads mapping to that
position. Let n denote the total number of counts at all CpG positions in the
given region, and let k (respectively n − k) of them indicate methylation (re-
spectively non-methylation). Let r be the (unknown) methylation rate at the
given position. Then, assuming independence of the single counts as mentioned
above, the actual number j of counts originating from methylated CpGs in this
region follows a binomial distribution,

P (j | n, r) = Bin(j;n, r) (1)
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Let the false positive rate p+ be the global rate of false methylation counts,
which is identical to the non-conversion rate of non-methylated cytosines. Con-
versely, let the false negative rate p− be the global rate of false non-methylation
counts, which is identical to the inappropriate conversion rate of methylated
cytosines. One can �nd an upper bound for p+ by considering all methylation
counts at non-CpG positions as false positives (resulting from non-conversion of
presumably unmethylated cytosines). In the literature, false negative rates were
not described, an estimate of p− = 0.01 is reported in[1]. We chose a conser-
vative value of p− = 0.2, which takes into account potential errors originating
from mapping artifacts or sequencing errors.

Due to failed or inapproriate conversion, the number k of counts indicat-
ing methylation di�ers from the actual number j of counts originating from
methylated CpGs. Given the true number of methylation counts j, the the
observed methylation counts k are the sum of the number m of correctly iden-
ti�ed methylations and the number k−m if incorrectly identi�ed methylations
(false positives). Hence, the probability distribution of k is a convolution of two
binomial distributions,

P (k | j, n; p+, p−) =

k∑
m=0

P (m | j, 1− p−) · P (k −m | n− j, p+)

=
k∑

m=0

Bin(m; j, 1− p−)︸ ︷︷ ︸
=:C1

m,j

·Bin(k −m;n− j, p+)︸ ︷︷ ︸
=:C2

n−j,k−m

(2)

In (2), we use the convention that Bin(m; j, p) = 0 whenever m > j. Thus,
given n reads, k methylation counts, the likelihood function for r is a mixture
of Bionomial distributions,

P (k | n, r; p+, p−) =

n∑
j=0

P (k, j | n, r, p+, p−)

=
n∑

j=0

P (k | j, n, r, p+, p−) · P (j | n, r, p+, p−)

=
n∑

j=0

P (k | j, n, p+, p−) · P (j | n, r)

(1,2)
=

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) (3)

1.2 The prior (a Beta mixture distribution)

In our Bayesian approach, we furthermore need to specify a prior for r to cal-
culate the posterior distribution of r. Recall the beta distribution(s), which is
a 2-parameter family of continuous probability distributions de�ned the unit
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interval [0, 1],

Beta(r;α, β) ∝ rα−1(1− r)β−1 , for α, β > 0, r ∈ (0, 1) ,

We assume that a fraction of λm postions are essentially methylated, i.e., and
that their rate r follows a Beta(r;α = rm ·wm, βm = (1−rm) ·wm) distribution,
having an expectation value for r of αm

αm+βm
= rm. Here, we set rm = 0.7.

The additional parameter wm weights the strength of the prior relative to the
strength of the likelihood. Since (the con�dence into/ the knowledge about) our
prior distribution of methylation rates is rather weak, we want our procedure
to be strongly data-driven, therefore we choose a low wm, wm = 0.5. A fraction
of λu = 1− λm is essentially unmethylated, and their rate is assumed to follow
a Beta(r;αu = ru · wu, βu = (1 − ru) · wu) distribution, having an expectation
value for r of αu

αu+βu
= ru, where we set ru = 0.2 and wu = 0.5. Thus, the prior

distribution π(r) is a 2-Beta mixture distribution,

π(r;αm, βm, αu, βu, λm) =
∑

s∈{m,u}

λsBeta(r;αs, βs) (4)

The pragmatic reason for choosing a Beta mixture as a prior distribution
is the fact that the Beta distribution is the conjugate prior of the Binomial
distribution[2], such that for some normalizing constant Dα,β

j,n ,

Bin(j;n, r) ·Beta(r;α, β) = Dα,β
j,n ·Beta(r; ; j + α, n− j + β) (5)

1.3 The posterior distribution (a Beta mixture distribu-
tion)

By virtue of Equation (5), we can write down the posterior distribution of r ana-
lytically (Equation 6). This has the advantage that we can answer all questions
on the posterior distribution of r e�ciently and up to an arbitrary precision.
E�ciency is an issue, because we need to calculate posterior distributions for
all regions, which can easily amount to millions.

P (r | k, n; p+, p−;αm, βm, αu, βu, λm) (6)

= N−1 · P (k | n, r; p+, p−) · π(r;αm, βm, αu, βu)

(3,4)
= N−1 ·

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·Bin(j;n, r) ·

∑
s∈{m,u}

λsBeta(r;αs, βs)

(5)
= N−1 ·

n∑
j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·

 ∑
s∈{m,u}

λsD
αs,βs

j,n Beta(r; j + αs, n− j + βs)
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In the above equation, N is a normalization constant,

N =
n∑

j=0

k∑
m=0

C1
m,jC

2
n−j,k−m ·

∑
s

λsD
αs,βs

j,n (7)

The ingredients for the construction of the posterior distribution are visual-
ized in Figure (1).

For each region under consideration, we obtain an individual posterior dis-
tribution P (r | k, n, p+, p−). With this posterior at hand, a point estimate of
the methylation rate is given by the expectation value r̂ of r,

r̂ =

ˆ 1

0

r · P (r | k, n, p+, p−) dr (8)

Figure 1: Plot of the likelihood functions for three di�erent observations (k, n)
(left), the Beta mixture prior distribution (middle) and the corresponding three
posteriors (right). The number n of counts is �xed to 8, of which k = 2 (blue),
k = 5 (grey) and k = 7 (red) are methylation counts. In this example we set
p+ = 0.4 and p− = 0.2. The prior is de�ned in Equation (4).

1.4 Epimutation calling

It is customary to provide a Bayesian measure of uncertainty of this estimate
r̂, a so-called credible interval. A credible interval is an interval which contains
the estimate (r̂) and in which a prescribed probability mass of the posterior
is located. One can construct a 90% credible interval [m,M ] as the shortest
interval containing r̂ such that P (r ∈ [n,M ] | k, n, p+, p−) = 0.9. Moreover, we
call a region highly methylated if

P (r > 0.7 | k, n, p+, p−) > c (9)

for some stringency level c which we set to 0.75 here. The false negative methy-
lation calling rates were set to p− = 0.1 for all samples, and the false positive
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calling rates were determined by p+ = 1−CH methylation rate for each sample
separately. A region is said to show increased methylation if

P (r > 0.5 | k, n, p+, p−) > c (10)

Analogously, a region is called sparsely methylated if

P (r < 0.3 | k, n, p+, p−) > c (11)

and a region with decreased methylation satis�es

P (r < 0.5 | k, n, p+, p−) > c (12)

By de�nition, any highly methylated region has increased methylation, and
every sparsely methylated region shows decreased methylation. For c > 0.5,
high and sparse methylation calls are mutually exclusive. Regions that are
neither highly nor sparsely methylated are called ambiguous. For each pair
(k, n), Figure (2) shows the estimated methylation rate, and the corresponding
methylation calls. Note that according to our model, (strict) high methylation
calls can only be made if n ≥ 5. The size of the regions has to be chosen
appropriately, to contain enough reads that guarantee a su�cient detection
power for epimutation events. The region size largely depends on the coverage
in the samples, and typically lies in the range of d = 100 to d = 10, 000.

We de�ne a demethylating epimutation event (i.e., a epidemethylation) in a
given region, by requiring the reference sample to be highly methylated, and the
other sample to display decreased methylation. Vice versa, an epimethylation
event is called if the given region is sparsely methylated in the reference and
displays increased methylation in the second sample.
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Figure 2: Illustration of the the results of our statistical modeling applied to
regions of size d = 1000 in the Liver sample. In each plot, n (on the x-axis)
denotes the total number of counts mapping to that region, of which k (on the
y-axis) are counts indicating methylation. Left: Using the Liver-speci�c esti-
mates of the false positive rate p+ = 0.2 and the false negative rate p− = 0.1
and the methylation prior in Equation (4), we obtain for each admissible pair
(k, n) a methylation rate estimates r̂. Colors correspond to methylation rate,
ranging from deep blue (zero methylation) to deep red (full methylation). Mid-
dle: The red respectively blue area de�nes the pairs (k, n) which satisfy our
criteria for high respectively sparse methylation. Right: The red respectively
blue area de�nes the pairs (k, n) which satisfy our criteria for increased respec-
tively decreased methylation. Note that strict methylation calls are only made
when at least n = 5 counts were observed.
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