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A Data simulation procedure

A.1 Differentially expressed features

We simulate data for the null (no genes are differentially expressed) and the alternative (∼ 1% of the

genes are differentially expressed) scenario. For each simulated data set, we sample the index of the genes

to be differentially expressed from a uniform distribution. The sign of the differential expression is chosen

randomly for each feature based on the sign of a N(0, 1) variable.

A.2 Features affected by batch effect

While the simulated validation data sets are not affected by batch effect, we introduce this artifact in

most training sets. In these cases, we select about half of the features to be affected by batch effect. For

each simulated data set, we sample the index of the affected genes from a uniform distribution. The sign

of the batch effect is chosen randomly for each feature based on the sign of a N(0, 1) variable.

Note that the sampling of the features affected by differential expression and by batch effect are done

independently. Hence, a gene can be both, differentially expressed and affected by batch effect.
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A.3 Strength of the confounding between the effect of the outcome variable

and the batch effect

We simulate the samples to belong to one of two groups (outcome variable): g1 or g2. Each sample was

processed in one of the two batches: b1 or b2. The strength of the confounding between the group and

the batch depends on how the samples are partitioned into the batches:

• no confounding means that half of the g1 samples are in b1 and the other half in b2; same for g2

• intermediate confounding means that 75% g1 samples are in b1 and 25% in b2; vice versa for g2

• strong confounding means that 95% g1 samples are in b1 and 5% in b2; vice versa for g2

• full confounding means that all g1 samples are in b1 and all g2 samples in b2

A.4 Outline of the data simulation procedure

The outline below summarizes the strategy followed to simulate the 10 replicate data sets for a given

setting (e.g., null data affected by batch effect featuring intermediate confounding between the effect of

the outcome variable and the batch effect). For details, please refer to the file S2 Rcode bias-cv.html

containing the documented R code used to simulate the data sets.

1. Select the set of indices for the features to be differentially expressed and/or affected by batch effect

(see A.1).

2. Set the sign for the direction of the differential expression and/or batch effect for each feature (see

A.2).

3. For each replicate:

• Sample 680 samples (80 for the training and 600 for the validation data set) without replace-

ment from the original data frame.

• Split samples into categories according to the choice made for the strength of the confounding

(see A.3):

– g1b1: samples from group one (g1) in batch one (b1) in the training set. The number

of assignments to this group depends on the choice for confounding. In a balanced case

without confounding, 20 samples are assigned to this category.
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– Analogous procedure for g2b1, g1b2 and g2b2.

• Validation sets are balanced and not affected by batch effect. We assign half of the validation

samples to g1v and the other half to g2v.

• Set the mean for each category to the same value by subtracting the group mean (by feature)

and adding the overall mean (by feature).

• Add group effect (g1 vs g2, DE) and batch effect (b1 vs b2, BE) to each sample group as

appropriate. The effect sizes are defined as follow:

– effect size of DE: min.effect + Exp(n, exp.rate)

– because not all samples are affected in the same way by the DE, we add some noise to DE

(log-normal distribution)

– effect size of BE: min.effect + Exp(n, exp.rate)

The values of the constants are provided in Table 1 below.

• Add some noise (N(0, 2)) to all samples/features.

The R code used for the data simulation is provided in the file S2 Rcode bias-cv.html. A summary of

the settings and values of the constants is listed in Table 1. An overview of all generated data sets is

provided in Figure 1.

Table 1. Summary of possible parameter settings to generate the simulated data sets. DE
stands for differential expression (of some features). BE stands for batch effect (affecting some of the
features).

TRAINING VALIDATION
# samples 80 600
balance balanced balanced
DE no/yes no/yes
% DE genes 1 1
BE no/yes no
% BE genes 50 0
DE-BE confounding no/inter/strong/full no
min.effect 5 5
exp.rate 1.5 1.5
replicates 10 10
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Figure 1. Overview of simulated data sets. Training sets were generated according to 9 different
settings. For each setting, we simulated ten replicates. For external validation, we used simulated
validation sets with balanced data and without batch effect.

A.5 Further settings for the data preparation

The study is performed on the first 10, 000 features in each data set. Since the simulated effects are

uniformly distributed on the original features, taking a subset will not alter the basic properties of the

respective data set. The reduced number of features allows to save computation time, which was found

to be better invested in processing several replicates for each data set.
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B Selected hyperparameters and number of features

In this section we examine further the optimal classifiers built under different circumstances. In Table 2

we show the fraction of instances in which each of the possible hyperparameter values is selected as

the optimal one, for each of the four classifiers. For the random forest, no hyperparameter tuning

was performed. The tabulated hyperparameters are those selected in the cross-validation employed to

build the final classifier, from the whole data set. Interestingly, all classifiers tend to select the optimal

hyperparameter that leads to relatively robust methods (large k, small C, large λ), which are less prone

to overfitting. One reason for this is likely that in the event of equal classification accuracy in the cross-

validation, we select the hyperparameter leading to the least flexible model to avoid overfitting to the

training data.

Table 2. The optimal hyperparameter chosen for each of the classifiers.

rfCMA svmCMA knnCMA plrCMA
nTrees fraction C fraction k fraction λ fraction

500 1 10−5 0.294 2 0 10−4 0.0109
0.001 0.419 5 0 0.001 0.00625
0.1 0.224 8 0 0.01 0.0328
1 0.0469 11 0 0.1 0.0844
10 0.0156 15 1 1 0.141

10 0.725

In Figure 2 we show the distribution of the optimal number of features selected by the two different

variable selection approaches, summarized across all classifiers and confounding levels. With the Wilcoxon

test, more variables were generally selected in data sets where there were truly differentially expressed

genes than in the absence of such. For the lasso, the lack of differentially expressed genes led to a wider

distribution of optimal feature subset sizes.

Figures 3 to 6 show similar figures, stratified further by the classifier. Similarly, Figures 7 to 10 show

the results stratified by the degree of batch effect confounding.
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Figure 2. The distribution of the number of selected variables with each of the two variable selection
methods (the lasso and the Wilcoxon test), in data sets with or without genes being truly differentially
expressed between the two groups.
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Figure 3. The distribution of the number of selected variables to include in the random forest
classifier, for each of the two variable selection methods in data sets with or without genes being truly
differentially expressed.
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Figure 4. The distribution of the number of selected variables to include in the SVM classifier, for
each of the two variable selection methods in data sets with or without genes being truly differentially
expressed.
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Figure 5. The distribution of the number of selected variables to include in the PLR classifier, for each
of the two variable selection methods in data sets with or without genes being truly differentially
expressed.
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Figure 6. The distribution of the number of selected variables to include in the kNN classifier, for each
of the two variable selection methods in data sets with or without genes being truly differentially
expressed.
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Figure 7. The distribution of the number of selected variables for each of the two variable selection
methods in data sets with or without genes being truly differentially expressed, and without
confounding with the batch effect.
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Figure 8. The distribution of the number of selected variables for each of the two variable selection
methods in data sets with or without genes being truly differentially expressed, with intermediate
confounding with the batch effect.
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Figure 9. The distribution of the number of selected variables for each of the two variable selection
methods in data sets with or without genes being truly differentially expressed, with almost full
confounding with the batch effect.
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Figure 10. The distribution of the number of selected variables for each of the two variable selection
methods in data sets with or without genes being truly differentially expressed, with full confounding
with the batch effect.
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C Other performance measures

In the main manuscript, we present the classification performance in terms of the misclassification rate.

This usually works well if the groups are of equal size. Here, we present results with other performance

measures.

C.1 Average of sensitivity and specificity

Instead of considering the overall classification performance, it is common to instead consider the class-

specific performances of the classifier, and record the fraction of correctly classified samples in each

class separately. In two-class classification problems, these class-specific performance measures are often

referred to as the sensitivity (the fraction of correctly classified samples in the “positive” group) and

the specificity (the fraction of correctly classified samples in the “negative” group). The average of the

sensitivity and the specificity provides an alternative to the overall misclassification rate as a performance

measure.

Figure 11 shows the average sensitivity and specificity for the null data set, before and after batch

effect removal, respectively (compare to Figures 3(a) and 4(a) in the manuscript).

Figure 12 shows the average sensitivity and specificity for the alternative data set, before and after

batch effect removal, respectively (compare to Figures 5(a) and 6(a) in the manuscript).

C.2 Area under the ROC curve

Some classification rules return a continuous score, which is used as the basis for the class label assignment.

In the simplest two-class case, all samples with scores below a certain cutoff are assigned one label, and

all samples with scores above the cutoff are assigned the other label. If the classifier returns a continuous

score, we can evaluate its performance by means of a ROC curve, which depicts 1-specificity versus

sensitivity obtained as the cutoff level varies throughout its range. The area under the ROC curve (often

abbreviated AUC) provides a summary measure of the classifier’s performance.

Figure 13 shows the AUC for the null data set, before and after batch effect removal, respectively

(compare to Figures 3(a) and 4(a) in the manuscript).

Figure 14 shows the AUC for the alternative data set, before and after batch effect removal, respec-

tively (compare to Figures 5(a) and 6(a) in the manuscript).
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Figure 11. Evaluation of classifiers built on data without truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding with
the class labels. (a) Estimated predictive performance from the outer cross-validation (internal) and
obtained by applying the constructed classifier to an external test set (external), before the batch effect
removal. (b) Estimated predictive performance from the outer cross-validation (internal) and obtained
by applying the constructed classifier to an external test set (external), after the batch effect removal.
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Figure 12. Evaluation of classifiers built on data containing truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding with
the class labels. (a) Estimated predictive performance from the outer cross-validation (internal) and
obtained by applying the constructed classifier to an external test set (external), before the batch effect
removal. (b) Estimated predictive performance from the outer cross-validation (internal) and obtained
by applying the constructed classifier to an external test set (external), after the batch effect removal.
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Figure 13. Evaluation of classifiers built on data without truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding with
the class labels. (a) Estimated predictive performance from the outer cross-validation (internal) and
obtained by applying the constructed classifier to an external test set (external), before the batch effect
removal. (b) Estimated predictive performance from the outer cross-validation (internal) and obtained
by applying the constructed classifier to an external test set (external), after the batch effect removal.
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Figure 14. Evaluation of classifiers built on data containing truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding with
the class labels. (a) Estimated predictive performance from the outer cross-validation (internal) and
obtained by applying the constructed classifier to an external test set (external), before the batch effect
removal. (b) Estimated predictive performance from the outer cross-validation (internal) and obtained
by applying the constructed classifier to an external test set (external), after the batch effect removal.
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D Different classifiers

In the main paper, all results were merged across the four classifiers that were used. Here, we break up

the results for the different classifiers and show that they indeed perform very similarly on these data

sets (Figures 15-16).
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Figure 15. Evaluation of classifiers built on data without truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding
with the class labels, colored by the classifier. (a) Estimated predictive performance from the
outer cross-validation (internal) and obtained by applying the constructed classifier to an external test
set (external), before the batch effect removal. (b) Estimated predictive performance from the outer
cross-validation (internal) and obtained by applying the constructed classifier to an external test set
(external), after the batch effect removal. Overall, the different classifiers performed similarly on these
data sets.
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Figure 16. Evaluation of classifiers built on data containing truly differentially expressed
genes between the classes, as well as a batch effect with various degree of confounding
with the class labels, colored by the classifier. (a) Estimated predictive performance from the
outer cross-validation (internal) and obtained by applying the constructed classifier to an external test
set (external), before the batch effect removal. (b) Estimated predictive performance from the outer
cross-validation (internal) and obtained by applying the constructed classifier to an external test set
(external), after the batch effect removal. Overall, the different classifiers performed similarly on these
data sets.
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