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Analysis of the genomes of archaic hominins, such as Neandertals and Denisovans, has revealed
that these groups have contributed to the genetic variation of modern human populations. Yet, we
know little about how these ancient mixtures have shaped the genetic structure of human popula-
tions and about their impact on human evolution although studies have begun to investigate the
phenotypic impact of these mixtures at specific loci (Abi-Rached et al., 2011; Mendez et al., 2012,
2013; Yotova et al., 2011). To answer these questions systematically, we need a map of archaic
ancestry i.e., a map that labels whether each region of an individual genome is descended from an
archaic population. Building such a map is technically challenging because of the antiquity of these
gene flow events.

We describe a computational method that can be used to infer regions of archaic ancestry using
patterns of genetic variation in modern humans and archaic hominins. We apply this method to
data from the 1000 Genomes project (The 1000 G( nomes Project Consortium, 2012) and a recently
sequenced high-coverage Neandertal (Priifer et al., 2013) to build a map of Neandertal ancestry in
modern non-Africans. The method is more generally applicable to inferring regions derived from
other ancient admixtures such as the admixture with Denisovans that contributed genetic material
to the Melanesian populations (Reich et al., 2010; Meyer et al., 2012).

Inferring local ancestry in recently admixed populations is a well-studied problem. A number of
computational methods have been developed for this task and have been shown to accurately infer
local ancestries (Price et al., 2009; Tang et al., 2006; Sankararaman et al., Johnson et al.,
2011; Brisbin et al., 2012; f)()lm (md Xing, 2007; Smldqmst et al., 2008; Bel(()\l(l et al., 2012; Bdl(lll
et al., 2012). Al of these approaches are based on a generatlve model of the admixed genome
where the ancestral origin of each SNP (or a contiguous window ) of the genome corresponds to the
hidden states. These models specify the transition distribution between the ancestral states and the
emission distribution of alleles at the genome conditioned on the ancestral state.

While such methods can be extended to infer local ancestries in ancient admixtures, we adopt
a different perspective. Our method is based on the statistical framework of Conditional Random
Field (CRFs). CRFs allow us to directly specify the conditional probability of the output state (i.e.,
is this SNP or region derived from Neandertal) conditioned on a set of sufficient statistics computed
from the data. The benefits of this framework is that we could choose sufficient statistics that are
informative but have arbitrary dependence structure while in generative models such as HMMs, we
would need to specify the complex joint distribution of these statistics. Further, statistical theory
shows that discriminative models have lower asymptotic error than their generative counterparts,
particularly when the model is misspecified (Ng and Jordan, 2002; Liang and Jordan, 2008). A final
advantage of CRFs is that the likelihood can often be written as a convex function of the parameters
which makes parameter estimation tractable. On the other hand, the likelihood of generative models
is non-convex and parameter estimates obtained using the EM algorithm are not guaranteed to be
the maximum likelihood estimates. A recent method (Maples et al., 2013) also uses a CRF for the
problem of local ancestry inference in recently admixed populations and reports improved accuracies
over a generative method (Baran et al., 2012).

A complementary strategy for detecting archaic admixture leverages patterns of variation in
modern human genomes alone (Wall, 2000; Green et al., 2010). These methods are particularly
useful for detecting admixture in the absence of a reference archaic genome (Hammer et al.; 2011;
Lachance et al.; 2012). When a reference archaic genome is available, these methods have used
the archaic genome to assess or amplify their accuracy (Wall et al., 2013; Green et al., 2010).
An interesting direction for future work would be to compare maps bullt using these orthogonal
approaches.

10



SI1 Conditional Random Field for predicting archaic local
ancestry

Consider m haplotypes in the test admixed population (say Europeans) {z1,...,2,} where each
haplotype zs,s € {1,...,m} is a binary vector describing the allelic state at each of n SNPs,
s = (Ts1,---,%s,n). 0and 1 denote the ancestral and derived alleles respectively (the determination
of ancestral and derived allele state is explained later). Each haplotype is also associated with a
random binary vector Yy = (Ys1,...,Y, ) where Y, ; = 1 iff x, ; has Neandertal ancestry (more
precisely, the lineage ancestral to x ; passes through the Neandertal population during its history).

Our data also includes a panel of m 4 African haplotypes, hy € {0,1}",t € {1,...,m4}. From this
panel, we estimate the derived allele frequency in Africans pa = (pa,1,...,Pan),0 <pa; < 1. At
each SNP, we also observe whether Neandertal carries the derived allele py = (pn.1,---,PNn),0 <
pn,; < 1. Using the high-coverage Neandertal genome, we use the diploid genotype calls to determine
pn,; = 1, if either of the two alleles is derived and 0 otherwise.

We aim to specify the distribution of the unobserved Neandertal ancestry vector Yy given the
observed genetic data. The conditional distribution of the ancestry vector ys for haplotype s given
data and parameters is specified by a Conditional Random Field (CRF) (Lafferty et al., 2001):

n K
IOgPr(ys‘.’E,h,S,’F’,ﬁA,ﬁN,O_Z,w,A) = ZZwk}fk(ys,j7x7h7ﬁAaﬁNasaj)
j=1k=1
n—1
+ 3 9o Yo, A Ts) + gy —log Z
j=1

Here x is the m X n matrix of test haplotypes, h is the ma X n matrix of African reference
haplotypes. s is an index of the currently tested haplotype, s € {1,...,m}. fi,k € {1,...,K}
and g are real-valued “feature” functions. fj couples the unobserved ancestral state at a SNP allele
of the test haplotype (i.e., does this allele have Neandertal ancestry?) to the observed data and
is analogous to emissions probabilities of a hidden Markov model (HMM). We will refer to f; as
emission functions and describe them in detail below. g couples the ancestral states at adjacent SNPs
and is analogous to the transition probability matrix of a HMM. We will refer to g as the transition
function. @ = (ag, 1), a9 + a1 = 1 are related to the admixture proportions of the non-Neandertal
and Neandertal ancestries respectively. wy is the parameter associated with the emission function
fr- X are parameters associated with the transition function g. r; is the genetic distance between
SNPs j and j + 1 and Z is the log normalization constant so that the expression represents a valid
probability distribution.

Of these quantities, x, h, pa and py are data. 7 can be obtained from one of several fine-scale
genetic maps (Hinch et al., 2011; Kong et al., 2010; Myers et al., 2005). While & could also be
estimated from the data, it makes a minor contribution to the likelihood and we instead fix this
quantity at (0.95,0.05). The parameters to be estimated are & and X

Given the parameters © = (W, X), and the non-African haplotypes x, we would like to infer
the marginal probability that the SNP j of haplotype s is Neandertal, v, ; = Pr(ys; = 1|z,0)
for s € {1,...,m},j € {1,...,n}. As in the case of HMMs, these marginal probabilities can
be computed efficiently using the forward-backward algorithm (Lafferty et al., 2001; Sutton and
McCallum, 2011). Unlike a HMM however, the emission feature functions can have a more general
conditional independence structure.
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SI1.1 Feature functions

We describe the emission functions, fr,k € {1,..., K}. The emission functions relate the observed
features in the data to the unobserved ancestral state y, ; at SNP j of haplotype s. We consider
two classes of feature functions :

1. The first class summarizes the joint allelic configuration in Europeans, Africans and Neander-
tals at a single SNP.

fi(ap,e)(Ys.j» T, Iy Das Dy 8, 5) = Hys j = 1&xs j = a&epa j € b&py ; = c}

This class is a vector of features indexed by the numbers (a, b, ¢) which correspond to bins of
the allelic configuration. Feature fi (4. is 1 if the allelic state of the test haplotype s at SNP
Js Tsj, is a; if the allele frequency at this SNP in Africa falls in bin b; if the allele frequency
at this SNP in Neandertals is in bin ¢; and if this allele in test haplotype s has Neandertal
ancestry, i.e., ¥s; = 1. In our application, a € {0,1} corresponding to the test haplotype
carrying a derived or ancestral allele at SNP s, ¢ € {0,1} corresponding to the Neandertal
sequence carrying no or at least one derived allele at SNP s and b € {0,1,2} corresponding
to the African derived allele frequency p = 0, 0 < p < 1 or p = 1 respectively. Each of these
features functions is associated with a parameter — corresponding to an element of w. For
example, if the parameter corresponding to the configuration (a,b,c¢) = (1,0,1) is positive,
this implies that the CRF is likely to assign Neandertal ancestry to the test haplotype at a
SNP where this haplotype carries a derived allele that is absent in Africa but is carried by
Neandertal. The strength of this preference is determined by the value of this parameter.

In our application, we only used the features corresponding to the configurations (1,0, 1)
and (1,1,0) because these were found to be highly informative of Neandertal ancestry in
simulations. In other words, the parameters associated with all the other features were set
to 0. The configuration (1,0,1) corresponds to a site at which the test haplotype carries
a derived allele that is also found in the Neandertal sequence but is absent in the African
sequences. Such a site has an increased likelihood of having Neandertal ancestry relative to
a random site. The configuration (1,1,0) corresponds to sites at which the test haplotype
carries a derived allele that is observed to be polymorphic in the African samples but is absent
in the Neandertal genome. Thus, under an infinite sites model, the local genealogy at this site
consists of the lineage leading to test haplotype s coalescing with an African haplotype before
coalescing with any of the Neandertal haplotypes. As a result, the test haplotype is less likely
to carry Neandertal ancestry at this SNP.

The binning of the allele frequency spectrum as well as the choice of informative features
described here is arbitrary. It is likely that other ways of binning or other combinations of
features might improve accuracy. We have not systematically tested these design choices in
this work.

2. The second class of features compares the distance between the test haplotype and all other
haplotypes in the African population to the distance between the test haplotype and the
Neandertal sequence locally.

djr(zs,DN) < 1}
minte{l,...,mA}d ’,L(xs; bt)

f2(ys,j;x,bvﬁAaﬁstvj) = 1{

The specific function that we consider requires that the distance between the test haplotype
and the Neandertal sequence be less than the minimum distance between the test and all other
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African haplotypes. Here d; 1 (zs,b;) denotes the distance between the test haplotype s and
African haplotype ¢t computed in non-overlapping sliding windows of length L that contains
SNP j. While computing distance to Neandertal, we build a Neandertal haplotype haplotype
Z from the frequency vector gy by requiring that Z; = 1{py ; > 0} so that d; 1 (zs,pn) =
djr(zs,T). A heterozygous site contributes the same as a homozygous site in computing
distance. Thus, this distance is effectively the minimum distance of the potentially introgressed
haplotype to the one of the two Neandertal haplotypes. We clarify this in the revised Methods.
We set L =100 Kb.

A number of improvements to the feature functions can be readily incorporated. e.g., feature
function f; can be extended to use the joint frequency spectrum of other modern human populations
as well as other archaic groups such as the Denisovans. Further, the CRF is a meta-model. Any
predictor that is informative of Neandertal ancestry e.g, posterior probabilities from other haplotype
models, e.g., (Price et al., 2009), could be included as a feature function.

The transition feature function g controls the transition probability across the hidden ancestry
states. We define the transition feature function as follows:

A T, Ys,j+1 = Ys,j
o Ue i AT = Y Ysjpn 10 J J
g(ysd Ys,j+1 J) { )\ys]- Wiy + log (Tj) , Ys,j+1 7 Ys,j

These transition functions are a convex approximation to the log transition probabilities of a
standard Markov process modeling admixture between two populations with mixture proportions
(ag, 1) and time of admixture ¢. In such a model, consider the log transition probability between
states (Ys,j+1 = ¥s,; = 0). For small genetic distances, this can be approximated as:

IOg Pr(y‘97j+1|ys,j) = IOg ((1 - eXp(*tT‘j)) o + exp(imﬁj)) yYs,j+1 = Ys,j = 0
~ —(1 - Oéo)t?”j

Similarly, we can approximate:

log Pr(ys j+1lysj) =~ log(tas) + log(ry), Ysj+1 = 1, ys; =0
log Pr(ys,j+1lys.;) ~ log(tag) + log(r;), Ysjr1 =0,y =1
log Pr(ys, j4+1|ys,;) —(1 —aq)try, Ys,j+1 = L, ys; =1

Q

The ¢ feature function is obtained by replacing the parameters (ag, a1,t) by an unconstrained set
X = (Xij),1,j € {0,1}. This convex approximation makes parameter estimation efficient.

SI1.2 Parameter Estimation

To infer Neandertal ancestry using the CRF, we first need to estimate its parameters ©. To estimate
the parameters of the CRF, we need training data ,i.e., haplotypes labeled with true Neandertal
ancestries. In practice, we do not have access to training data. To get around this problem, we
estimate the parameters of the CRF on data simulated under an appropriate demographic model. For
simulated data, the ancestries of the haplotypes are known and can be used for parameter estimation.
The CRF, with parameters estimated from simulations, is then be used to make inferences on real
data.
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Assume the training data consists of L unlinked loci. Each locus [ has m haplotypes over
n;,l = 1,...,L SNPs. We denote the sequence of haplotypes at locus I by a matrix 2!. The true

ancestral states of each SNP in every haplotype, represented by another m x n; matrix o', are also
known. We then estimate © that maximizes the regularized conditional log likelihood:
L m 1
1(0) = 33" —logPr(o\s[a’,5,0) — [©)]” &)

=1 s=1

We regularize the conditional log likelihood using a L2 penalty to ensure that the optimization
problem is strongly convex and to encourage parameter shrinkage. We maximize Equation 1 us-
ing a limited-memory version of LBFGS (Byrd et al.; 1994), as implemented in the ALGLIB li-
brary (Bochkanov and Bystritsky). We set v = 10 although a broad range of values appear to work
well in practice.
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SI2 Validation of the CRF

To assess the accuracy of the CRF for inferring Neandertal ancestry, we estimate the parameters
of the CRF on simulated data and measure its precision and recall (defined below) on additional
simulated data that was not used for parameter estimation. A concern, however, is that the inferences
of the CRF might be sensitive to the demographic model used for parameter estimation. This is
problematic as the true demographic model is only vaguely known in practice. To assess the effect
of uncertainties in the demographic model, we evaluated the sensitivity of the inferences made by
the CRF when we systematically perturbed the parameters of the demographic model.

SI2.1 Simulations

We assumed a simple demographic model relating Africans, Europeans and Neandertals (see Fig-
ure S12.1). The parameters of the model were broadly constrained by the observed allele frequency
differentiation Fsr between Africans and Europeans (which we measured as the Fgr between the
HapMap YRI and CEU populations) and to the D — statistics, which measure the excess rate of
sharing of alleles, between Europeans and Africans relative to Neandertals. On the simulated data,
we measured Fspr = 0.14 and D — statistics, D(Y, E; N, C) = 0.052 (see Table SI2.1 for the set of
key parameters). We caution, however, that these statistics only loosely constrain the model. We
comment on several aspects of this model:

1. The time of split between Neandertals and modern humans was set to 13000 generations. This
is on the upper end of the estimates of the population split time of Neandertals and modern
humans (Meyer et al., 2012). We chose this estimate to obtain a match to the D-statistic for a
fixed gene flow proportion. However, we also assume that the Neandertal effective populations
was constant and equal to 10000 throughout its history. This assumption is also at odds with
observations from incomplete lineage sorting statistics from various Neandertals (Reich et al.,
2010), PSMC curves (Priifer et al., 2013), and from heterozygosity estimates (Priifer et al.,
2013), all of which indicate that Neandertals have had a reduced effective population size for
an extended period of time. Assuming a more recent population split might need to be offset
by modeling a reduced effective population size to match the D-statistic. We explore the
robustness of the CRF to the split time in Section SI2.3.

2. We model a modest bottleneck, with inbreeding coefficient 0.1, in the European population
that predates Neandertal gene flow. This bottleneck corresponds to the bottleneck associated
with the out-of-Africa event although the specific parameters associated with this bottleneck
vary Keinan et al. (2007); Gutenkunst et al. (2009); Harris and Nielsen (2013). We assume a
constant effective population size of 10000 in the European population after gene flow. Yang
et al. (2012) show that a strong bottleneck after Neandertal gene flow does not match the
observed doubly-conditioned site frequency spectrum. We again explore the robustness of the
CRF to assumptions about the time as well as the strength of the bottleneck in Section S12.3.

3. Our model also does not include any recent gene flow between Europeans and Africans. Several
studies (Wall et al., 2009; Harris and Nielsen, 2013) have suggested substantial gene flow
between the two populations. It is clear that, under such models, the power of the CRF to
infer Neandertal ancestry will be substantially reduced. A concern, however, is whether such a
demographic scenario can lead to a high false discovery rate. We explore this issue in Section SI
2.3.
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Figure SI2.1: Basic demographic model used for parameter estimation

Further, our model assumes gene flow from Neandertals into modern Europeans occurred 1900
generations ago with Neandertals contributing about 3% genetic material, consistent with previous
estimates (Green et al., 2010; Sankararaman et al.; 2012). The gene flow was set to occur after the
out-of-Africa bottleneck which is consistent with the observation in Yang et al. (2010)).

We simulated 120 European chromosomes, 118 African chromosomes and 1 Neandertal chromo-
some across 200 1Mb loci using the program msHOT (Hellenthal and Stephens, 2007). msHOT
allows us to simulate data under a model that allows recombination hotspots. We chose parameters
for the recombination model similar to the parameters described in Hellenthal et al. (2008). We
modified msHOT to allow us to annotate regions of Neandertal ancestry in each simulated haplo-
type. We used 100 loci for parameter estimation (training data) and used the remaining 100 for
assessing accuracy (test data). To ensure that our results could be extrapolated to real data, we
also attempted to preprocess the simulated data to match the characteristics of the 1000 Genomes

Ty Africa-Europe split 2500

Ty Modern human-Neandertal split 13000
Ter Neandertal gene flow 1900

« Neandertal admixture fraction 0.03

Tg Time of bottleneck in Europe (end) 2400

Np  Effective population size during European bottleneck 100

I Duration of European bottleneck 20

I Mutation rate 2.5 x 1078

Table SI2.1: Key parameters of the demographic model used for parameter estimation (see Figure SI
2.1).
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data.

SNP calling in the 1000 Genomes project has low power to detect low-frequency variants (The
1000 Genomes Project Consortium, 2012). We simulated this process in our data by retaining SNPs
based on their minor allele counts. SNPs with minor allele counts of 1,2,3,4,5,6,7,8,> 9 were
accepted with probabilities 0.25, 0.50, 0.75, 0.80, 0.90, 0.95, 0.96, 0.97, 0.98, and 0.99 respectively.
Further, we only retained positions that were polymorphic in the simulated European chromosomes.
The resulting simulated dataset has an average SNP density of 3.3 per kb. The 1000 Genomes Phase
I data, processed as described in Section SI3, has an average density of 2.4 SNPs per kb.

We used the true genetic map as input to the CRF. Although we expect current genetic maps to
be fairly accurate at large size scales, the maps are noisy at smaller scales (ITinch et al., 2011; Kong
et al., 2010; Sankararaman et al.; 2012). We also assume that the true haplotype phase is known.
We assessed the robustness of our results to these assumptions below.

SI12.2 Results

We evaluated the accuracy of the CRF to predict Neandertal ancestry at each allele in a haplotype
in the test data. To do this, we declared an allele in a haplotype to be Neandertal if the marginal
probability at the allele exceeded a threshold ¢: 0% ;(t) = 1{~', ; > t}, t € [0,1]. We then compared
these predictions to the true Neandertal ancestries. We varied ¢ over the interval [0, 1] in steps of
—L__ At each value of ¢, we compute the precision (fraction of predictions that are truly Neandertal)

1000
and the recall (fraction of truly Neandertal alleles that are predicted), defined formally as:

o 7 TP(t)
Precision(t) = TP(t) + FP(t)
Recall(t) = TPE)

TP(t)+ FN(t)
TP(t) = > iim;j(t) = 1&o',; = 1}

le{test data} s=1 j=1

FP(t) = > iil{él&j(t)zl&ols,j:o}

le{test data} s=1 j=1

FN(t) = > iil{agvj(t):o&ols,j:u

le{test data} s=1 j=1

Figure SI2.2 shows a precision-recall curve of the CRF. The CRF attains a recall of around 15%
at a precision of 99% and a recall of about 38% at a precision of 90%. At a threshold ¢ = 0.90, the
precision is 98% while the recall is 23%. For comparison, we also show the precision-recall curve
for a “random” method that outputs the probability of Neandertal ancestry as a uniform number
in [0,1]. The results in Figure SI 2.2 show that the CRF is able to predict Neandertal ancestry
with reasonable sensitivity while still being precise. There are several caveats associated with these
results. Firstly, the CRF was tested on data generated from the same demographic model that
was also used to generate training data. This assumption is unrealistic. It is challenging to assess
accuracy over a comprehensive range of demographic models. Instead, we assessed the robustness
of the CRF, i.e. whether it is likely to produce an elevated number of false positives when the true
demographic model differs from the demographic model used for parameter estimation (Section SI
2.3). Secondly, in practice, errors in the Neandertal, Chimpanzee and modern human genomes could
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also reduce the reported accuracy. While we expect the model to be robust to random, uncorrelated
errors, it is unclear how systematic or correlated errors might affect inference. Finally, we have also
assumed that the true genetic map and the true phase are known. We now assess the impact of this
assumption on the accuracy.

To assess the sensitivity of the results reported in Figure SI2.2 to errors in the genetic map and to
errors due to phasing, we paired the simulated haplotypes in the test data to form genotypes which
we then phased with Beagle using default parameters (Browning and Browning, 2007). Further,
we assumed that the genetic map is accurate at a 1Mb scale but is simply an extrapolation of the
physical map at smaller scales so that the resulting map lacks hotspots. We applied the CRF to
this perturbed data with parameters estimated on training data using the true genetic map and
the true phase. Figure SI 2.2 shows that the lack of true phase and errors in the map leads to a
decrease in accuracy, although the effect is small. At 90% precision, the recall is now 31% while
at 99% precision, the recall is about 7%. At a threshold ¢ = 0.90, the precision is 94% while the
recall is 26%. These results indicate that the CRF, although trained on data where phase and
genetic map is known, is quite robust to uncertainty in both. A possible explanation for this result
is that Neandertal haplotypes are quite distinct and hence, easier to phase than a typical modern
human haplotype particularly when the Neandertal haplotype is present in more than one copy in
the sample.

SI2.3 Robustness analysis

We were concerned that the procedure used for parameter estimation in the CRF makes it sensitive
to the demographic model assumed. To assess the robustness of the CRF to misspecification of
the demographic model, we followed a procedure similar to the one outlined in Lachance et al.
(2012). We started with the demographic model described in Section SI2.1 and perturbed each of its
parameters in turn. For each of these perturbed parameters, we varied the proportion of Neandertal
gene flow from 0.01 to 0.04. We did not attempt to match statistics of data simulated under each
of these demographic models to the empirical values. We then applied the CRF, with parameters
estimated under the original unperturbed demographic model, to each perturbed demographic model
and assessed its false discovery rate.

Under each perturbed demographic model, we simulated 100 1 Mb regions using a version of
ms which we modified to allow us to annotate regions of Neandertal ancestry (Hudson, 2002).
We did not use msHOT for these experiments due to computational considerations. We simulated
100 chromosomes each from a European and African population and one chromosome from the
Neandertals. We used a constant recombination rate of 1.3 x 10~® per bp per generation for these
simulations. We varied each of the following parameters of the demographic model :

1. the sequence mutation rate p
2. T, — the time of split of modern humans and Neandertals

T — the time of split of Africans and Europeans

- W

Tar — the time of Neandertal gene flow
5. the time T and the duration
6. lp of the bottleneck in the European population

7. ny — the effective population size in the European population since gene flow
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Figure SI 2.2: Precision-Recall curve for inferring Neandertal local ancestry using a high-coverage
archaic genome.

We also assumed a bottleneck in the Neandertals beginning 6120 generations ago and ending 6000
generations ago, in which the Neandertal effective population size is reduced to 100. Without this
bottleneck and assuming a constant effective population size of 10000 in Neandertals leads to a max-
imum D — statistics, D(Africans, Europeans; Neandertal, Chimp) = 0.0278 across all parameter
settings, which is outside the confidence interval for the D—statistic, D(Y oruba, French; Neandertal, Chimp) =
0.048 £ 0.0059 (Priifer et al., 2013). It is plausible that the Neandertal population experienced a
long-term reduction in its effective population size which we did not explicitly model here (Priifer
et al., 2013).

We also considered a demographic model proposed by Wall et al. (2009) — this model includes
recent migration between Africans and Europeans as well as recent population growth in Europe,
neither of which was part of the original demographic model used for parameter estimation.

We evaluated the false discovery rate (= 1 — Precision) when we restrict to sites at which the
CRF assigns a marginal probability > 0.9, i.e., {(s,j) : 6. ;(0.9) = 1}. Figure SI2.3 shows that for
all the demographic parameters, the false discovery rate is less than 0.1 suggesting that the model
probabilities are conservatively calibrated. In fact, in about 97% of these simulations, the false
discovery rate is less than 0.02.

We also computed another measure of accuracy. We defined Neandertal haplotypes by scanning
each individual for a run of probabilities > 0.9. We then declared a region as a false positive if it
showed no overlap with a true Neandertal haplotype. Figure SI12.4 shows that the false discovery rate
is still quite low, always well below the threshold of 0.1. 67% of the simulations have a false discovery
rate < 0.01 (estimate + 1.96x se ). When we restrict our analysis to Neandertal haplotypes that
are at least 0.02 cM long, the accuracy increases further (Figure SI2.5. 92% of the simulations have
a false discovery rate < 0.01).

19



0.05-
t1
2500
—~— 3000
—— 3500
—~— 4000
—— 4500
@
) 5000
2 .
0.00-
I I I I I I
000 001 002 003 004 005
Admixture fraction
0.05-
mu
1.8e-08
—~  1e-08
— 2.6e-08
—~— 3.4e-08
—~— 4.2e-08
x \ 50-08
g ~
0.00-
I I I I I I
000 001 002 003 004 005
Admixture fraction
0.05-
nl
14000
—~— 23000
—— 32000
—— 41000
—~— 5000
o4
) 50000
(TR
e —
.’—/’
\//
0.00-
I I I I I I
000 001 002 003 004 005

Admixture fraction

0.05- 0.05-
2
10600
—~— 11400
—— 12200
—~— 13000
—— 9000
g [
3 9800 3
(TR (TR
0.00- 0.00-
I I I I I I I
000 001 002 003 004 005 0.00
Admixture fraction
0.05- 0.05-
bstart
1000
—~— 1300
— 1600
—~— 1900
—— 2200
[ [
3 2500 3
(TR (TR
—//
0.00- 0.00-
I I I I I I I
000 001 002 003 004 005 0.00
Admixture fraction
0.05-
wall
wall
4
o
(TR
0.00-
I I I I I I
000 001 002 003 004 005

Admixture fraction

tgf
1000
—~— 1500
—— 2000
—— 2500
—— 3000
500

I I I
001 002 003
Admixture fraction

blength
100

—~— 52
—~— 68
84

I I I I
001 002 003 004
Admixture fraction

Figure SI2.3: False discovery rates ( 1 — Precision) of the CRF for different demographic models.
We varied each parameter of the basic demographic model described in Section SI2.1. For each of
these parameter settings, we varied the proportion of Neandertal gene flow from 0.01 to 0.04. We
simulated data under each of these parameter settings. We estimated the false discovery rate when
we restrict to sites with predicted probability > 0.9. We do not show error bars as the estimated

false discovery rates are quite precise (standard errors < 107%).

The false discovery rate is less

than 0.1 at this threshold across parameter settings. In about 97% of these simulations, the false

discovery rate is less than 0.02.
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Figure SI2.4: False discovery rates of the CRF for different demographic models. We varied each
parameter of the basic demographic model described in Section SI2.1. For each of these parameter
settings, we varied the proportion of Neandertal gene flow from 0.01 to 0.04. We simulated data
under each of these parameter settings. We defined Neandertal haplotypes as runs of alleles in each
individual with marginal probability of Neandertal ancestry > 0.9. We then declared a region as a
false positive if it showed no overlap with a true Neandertal haplotype. We plot the estimate of the
false discovery rate and 1.96x the standard error of this estimate (using a block jackknife with 100
blocks). The false discovery rate is always well below 0.1 and 66% of the simulations have a false
discovery rate < 0.01.
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Figure SI2.5: False discovery rates of the CRF for different demographic models. We varied each
parameter of the basic demographic model described in Section SI2.1. For each of these parameter
settings, we varied the proportion of Neandertal gene flow from 0.01 to 0.04. We simulated data
under each of these parameter settings. We defined Neandertal haplotypes as run of alleles in an
individual with marginal probability of Neandertal ancestry > 0.9 with genetic length > 0.02 cM. We
then declared a region as a false positive if it showed no overlap with a true Neandertal haplotype.
We plot the estimate of the false discovery rate and 1.96x the standard error of this estimate (using
a block jackknife with 100 blocks). The false discovery rate is always well below 0.1 and 92% of the

simulations have a false discovery rate < 0.01.
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Effective population size  Recall

2500 0.55240.009
5000 0.506+0.009
7500 0.430+0.006
10000 0.384+0.006

Table SI2.2: Power to infer Neandertal ancestry as a function of the effective population size. Recall
is computed at a precision of 90%. Standard errors were estimated by a block jackknife with 100
blocks.

Recall
Autosomes 0.384+0.006
X 0.495+0.009

Table SI2.3: Power to infer Neandertal ancestry on the X vs autosomes. Recall is computed at a
precision of 90%. Standard errors were estimated by a block jackknife with 100 blocks.

SI2.4 Power as a function of demographic and genomic features

We expect the power to infer Neandertal ancestry to depend on a number of parameters. One
parameter that is expected to affect the power is the local effective population size. For example,
the effective population size is known to vary along the genome and is reduced in regions with strong
background selection and on the X chromosome. We expect that the power to infer Neandertal
ancestry is increased in regions of reduced effective population size because the gene trees in humans
are shorter in these regions so that Neandertal introgressed regions stand out more clearly.

To test this intuition, we used the default demographic parameters used in the Section SI2.3. We
varied the effective population size across all populations from an initial value of 10, 000 to 2, 500. We
assessed the power to infer Neandertal ancestry at a precision of 90%. While the absolute estimates
of power will depend on several demographic parameters, we see a clear trend of an increase in power
when the effective population size is reduced (Table SI2.2). A caveat of this analysis when used to
interpret the effects of background selection is that background selection not only affects the mean
coalescent time for a pair of alleles but also the shape of genealogies so that changing the effective
population size does not fully capture the effects of background selection (Charlesworth et al., 1993,
1995; Williamson and Orive, 2002).

Further, to test the power of the CRF on the X chromosome, we simulated data with an effective
population set to % of the autosomal effective population size i.e., N, = 7,500. We also set the
recombination rate to % of the autosomal recombination rate (0.8667 x 10~%) and the mutation rate
to 0.87 times the autosomal mutation rate (Scally et al., 2012) (1.044 x 10~%). We see that power
is increased on chromosome X relative to the autosomes (Table SI2.3).
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SI3 Results on the 1000 Genomes data

We applied the CRF to the computationally phased haplotypes in each of the 13 populations in the
1000 Genomes project (The 1000 Genomes Project Consortium, 2012) (excluding the west African
Yoruba YRI). The parameters of the CRF were estimated on data from the demographic model
(Table SI2.1) as described in Section SI2.1.

The CRF requires reference genomes from Africans and Neandertals. For the African population,
we used 176 haplotypes from 88 YRI individuals. For the Neandertal genome, we used the genotypes
called from the recently generated high-coverage Neandertal sequence (Priifer et al., 2013). We
restricted our analysis to sites which passed the filters described in Priifer et al. (2013) and for
which GQ > 30. These filters discard sites which are identified as repeats by the Tandem Repeat
Finder (trf) or which have Phred-scaled M@ < 30, or which map to regions where the alignment is
ambiguous or which fall within the upper or lower 2.5/" percentile of the sample-specific coverage
distribution (applied within the regions of unique mappability binned according to the GC-content
of the reference genome). For the mappability filter, we used the more liberal map355q9 filter that
requires that least 50% of all 35-mers that overlap a position do not map to any other position in
the genome allowing up to one mismatch.

We further restricted our analysis to sites that are biallelic across the Neandertal and the 1000
Genomes samples. For each haplotype analyzed, we also restricted to the set of polymorphic sites
in the population containing the haplotype. The ancestral allele was determined from the 6-primate
EPO alignment and we further restricted our analysis to sites with confidently called ancestral
alleles (Paten et al., 2008). After filtering, we obtained 26,493,206 SNPs on the autosomes and
817447 SNPs on chromosome X. Genetic distances were obtained from the combined LD map (Myers
et al., 2005) lifted over to hgl9 coordinates. For the X chromosome, we obtained a sex-averaged
map by scaling the X chromosome LD-based map by %

SI3.1 Plausibility of the map of Neandertal ancestry

We applied the CRF to each of the thirteen 1000 Genomes populations, except the YRI which we
used as one of our reference populations. As a test of the robustness of the model, we also applied
the CRF to populations with substantial African ancestry i.e., LWK and ASW. In this test of
robustness, we used the same parameters for the LWK and ASW as for the non-African populations
even though we know that the non-African populations share more genetic material with Neandertals
than the African and these populations do not share the Neandertal gene flow event common to
the non-African populations (Green et al., 2010). We also present several results by combining
inferences across populations. For example, we combined results across the CEU, GBR, FIN, IBS
and TSI populations to obtain results for the European populations (denoted EUR). Analogously,
we obtained results for East Asians (ASN consisting of CHB, CHS, JPT) and Americans (AMR
consisting of CLM, MXL and PUR). For these combined analyses, we applied the CRF to each
individual with a subpopulations and then averaged the results across all individuals that belong to
a given population.

We defined Neandertal haplotypes by scanning for runs of consecutive alleles along a haplotype
with a marginal probability > 0.9. Discarding haplotypes with zero physical or genetic lengths (e.g.,
single SNPs predicted to have Neandertal ancestry), we predict tens of thousands of Neandertal
haplotypes in each of these populations SI3.1.
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SI3.1.1 Gross features of the predicted Neandertal ancestry

We analyzed several gross features of the predicted Neandertal ancestry. To do so, we estimated
the proportion of the genome that is confidently inferred to be Neandertal, tia(s), as the fraction of
sites for which the marginal probability > 0.9.

tia(s) = ——

[H(s)| n

teH(s)

" 1{y,; > 0.9
1 3 > =1 Hm,; > 0.9} @)

Here H(s) indexes the haplotypes that belong to individual s.

The above equation also holds for estimating Neandertal ancestry on the X chromosome. In the
case of the X chromosome, we average over both chromosomes for females only.

Tables SI 3.2 and SI 3.3 lists the distribution of Neandertal ancestry proportions across the
populations. The proportion of the genome that is determined to be confidently Neandertal across
Eurasian populations ranges from 0.99 to 1.54. In the Luhya (LWK), the proportion of the genome
confidently inferred to be Neandertal is 0.08%, an order of magnitude smaller than in non-Africans
as expected from a population that carries little or no Neandertal ancestry (Table SI13.2 ) (a caveat is
that some of the inferred lower Neandertal ancestry in the LWK could be due to their relatedness to
the YRI who we use to screen out modern human alleles). The proportion of the genome confidently
inferred to be Neandertal has a mean of 1.38% in East Asians and 1.15% in Europeans (Table SI
3.3), consistent with more Neandertal ancestry in East Asians than in Europeans (Meyer et al.,
2012; Wall et al., 2013).

The standard deviation in the proportion of Neandertal ancestry across individuals from the same
Eurasian population is 0.06 — 0.10%. To compute the theoretical value of this standard deviation,
we assume that the admixture occurred in a single generation (a pulse model) followed by random
mating for T' = 2000 generations with a Neandertal admixture proportion of 2%. We ignore the
effects of drift since admixture. The total genetic length is calculated to be 26.39 Morgans using
a recombination rate of 1.3 cM/Mb and a genome size of 2.03 Gb based on the number of bases
of the high-coverage Neandertal genome that pass the filters described in Priifer et al. (2013) (we
use the map35509, mappability filter to compute this number as this is the filter that we use for the
CRF). Gravel (2012, Equation 8) (ignoring the effect of drift) shows that the standard deviation
under these parameters is 0.06%. In Section SI5, we estimate the drift since Neandertal gene flow
in Europeans and East Asians to be ~ 0.10. Assuming that this drift corresponds to a constant
effective population size and ignoring the effect of drift on the lengths of ancestry switch points, the
standard deviation is 5.8% (Gravel, 2012, Equation 8).

SI3.1.2 Comparison of predictions with the Vindija Neandertal

One concern with the inferred Neandertal ancestry is that contamination and errors in the Neandertal
sequence might bias these estimates. Contamination at the read level has been estimated to be less
than 2%. The high-coverage of the Neandertal genome implies that the genotypes are likely to be
very accurate.

Nevertheless, to assess the robustness of our inferences to such effects, we estimated Neandertal
ancestries in the 1000 Genomes Project CEU population using as Neandertal reference the low-
coverage draft Neandertal genome (Green et al., 2010) instead of the high-coverage Neandertal
genome. The draft genome was generated using DNA obtained from 3 bones found in Vindija cave
in Croatia while the high-coverage genome was generated using DNA from a bone found in Denisova
cave in Siberia.
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To use the Vindija genome, we restricted our analysis to sites in the 1000 Genomes Project
data that have at least one overlapping Vindija Neandertal read that passed quality filters. Reads
were required to have mapping quality scores between 60 and 90 and base quality scores of at least
40 (Green et al., 2010). The low coverage of the Vindija genome does not allow confident calling of
genotypes. Note, however, that the features used by the CRF (see Section SI1.1) only require the
frequency of the derived allele in Neandertal. We estimate this as the fraction of reads at a site that
carry the derived allele. We use this frequency to define py.

To compare the estimates of Neandertal ancestry when we use either of the two Neandertal
genomes, we consider non-overlapping 100 Kb windows. Within each window w, we estimated

o the fraction of confidently inferred Neandertal haplotypes, ta;(w),

. ZjEw Z?:l {vs,; >t}

tar(w) = =01 € S

We set t = 0.90.

o the average Neandertal ancestry

ZjES(w) D em1 Vs
ml{j € S(w)}]|

Here S(w) refers to the set of SNPs that belong to window w.

la(w) =

We restrict our analyses to windows that contain at least 10 SNPs that pass filters. The
Spearman’s rank correlation coefficient between the Neandertal ancestries estimated using the high-
coverage and Vindija genomes at a 100Kb size scale is 0.88 using the fraction of confident Neandertal
haplotypes and 0.94 using the average Neandertal ancestry. Figure SI3.1 shows the scatterplot of
the ancestries within each 100 Kb window using Vindija or the high-coverage Altai genome. We see
that most windows have concordant ancestries.

To get another view of the concordance, we restricted attention to Neandertal haplotypes, defined
as a consecutive run of SNPs assigned marginal probability of at least 0.9. We then divided the
genome into non-overlapping 100 Kb windows. We determined that a window is introgressed if at
least one of the haplotypes within that window overlaps a Neandertal haplotype. We then estimated
the concordance of this estimate of introgression when we use either Vindija or Altai. Table SI3.7
shows that the estimates of introgression are concordant in 93% of the windows. We do see a larger
number of windows for which we detect introgression only when the Altai genome is used which
is expected given its better quality. The estimates of Neandertal ancestry are largely concordant
across the two Neandertal genomes used and are unlikely to represent contamination or errors in the
Neandertal sequence. The differences in the estimates across the Vindija and Altai genomes could
be either due to errors or differential sequence quality. On the other hand, these differences could
also reflect genuine differences in the Neandertal sequences as well as differential relatedness of the
genealogies relating the sequenced Neandertal to the introgressing Neandertal.

SI3.1.3 Empirical estimate of the accuracy

In Section SI 2.2, we validated the accuracy of the CRF using simulations. We also attempted to
obtain an estimate of the empirical accuracy of the CRF. To estimate the accuracy of the CRF on
1000 Genomes data, we make several assumptions:
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Populations Number of individuals Neandertal haplotypes Neandertal haplotypes

Populations Autosomes X chromosomes
All (> 0.02 cM) All (> 0.02 cM)

CEU 85 48355 35593 304 211

FIN 93 54238 39925 317 231

GBR 89 50683 37313 309 231

1BS 14 7100 5391 53 38

TSI 98 54521 39877 418 273

CHB 97 66419 49292 452 364

CHS 100 67734 50267 402 319

JPT 89 59956 44615 299 258

CLM 60 35337 25712 183 145

MXL 66 41076 29648 222 174

PUR 55 29949 21661 187 122

LWK 97 4223 2474 52 38

ASW 61 11526 8048 75 54

Table SI3.1: Number of confidently predicted Neandertal haplotypes in each of the 1000 Genomes
populations.

Populations Neandertal ancestry  Neandertal haplotypes Haplotype length
tiaAll (>0.02cM) Al (> 0.02 cM)

CEU 1.1740.08 569+35 419426 0.07£0.09  0.09£0.10
FIN 1.20+0.07 583+28 429420 0.07£0.08  0.09£0.09
GBR 1.154+0.08 569+38 419425 0.07£0.09  0.09£0.10
IBS 1.07+0.06 507+28 385423 0.07£0.09  0.09£0.09
TSI 1.11+0.07 556+30  407+21 0.07+0.09  0.09+0.10
CHB 1.4040.08 685+33  508+24 0.07+0.09  0.09+0.09
CHS 1.3740.08 677+36 503425 0.07£0.09  0.09£0.09
JPT 1.384+0.10 674+41 501428 0.07£0.09  0.09£0.09
CLM 1.1440.12 589+63 429447 0.07£0.08  0.09£0.09
MXL 1.2240.09 622447 449432 0.07£0.08  0.09£0.09
PUR 1.0540.12 545+64 394447 0.07+0.09  0.09+0.09
LWK 0.08+0.02 4449 26+6 0.04+0.05 0.0740.06
ASW 0.344+0.22 1894125 132488 0.06£0.08  0.09£0.09

Table SI 3.2: Summary of predicted Neandertal ancestry across the autosomes in 1000 Genomes
populations. Thresholded Neandertal ancestry refers to the fraction of positions which have a
posterior probability > 0.9 and is estimated by tia(s). The table reports the number of Neandertal
haplotypes in each population (defined in Section SI3.1) as well as the number of haplotypes that
are longer than 0.02 cM. The table also reports the mean and standard deviation of the lengths of
these haplotypes.
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Populations Neandertal ancestry Neandertal haplotypes Haplotype length

tia All (>0.02cM) Al (> 0.02 cM)
EUR 1.15£0.08 567+36 417425 0.07£0.09 0.09£0.09
ASN 1.38£0.08 67937 504426 0.0740.09  0.0940.09
AMR 1.1440.13 588£66 426448 0.0740.08  0.0940.09

Table SI3.3: Summary of predicted Neandertal ancestry across the autosomes in non-African conti-
nental populations. Thresholded Neandertal ancestry refers to the fraction of positions which have a
posterior probability > 0.9 and is estimated by tai(s). The table reports the number of Neandertal
haplotypes in each population (defined in Section SI3.1) as well as the number of haplotypes that
are longer than 0.02 cM. The table also reports the mean and standard deviation of the lengths of
these haplotypes.

Populations Neandertal ancestry Neandertal haplotypes Haplotype length
tia All (> 0.02 cM) All (> 0.02 cM)

CEU 0.21+0.17 5+3 442 0.06+0.06  0.08+0.06
FIN 0.19+0.14 4+2 342 0.06+0.06  0.08+0.06
GBR 0.20+0.15 442 342 0.06+0.06 0.08+0.07
IBS 0.23+0.18 5+3 44£2 0.06+0.05 0.07£0.05
TSI 0.25+0.20 6+3 442 0.06+0.06  0.08+0.07
CHB 0.30+0.21 6+3 5HE2 0.06+0.07 0.07+0.07
CHS 0.27+0.21 5+3 44£2 0.06+0.08 0.08+0.08
JPT 0.26+0.21 5+3 443 0.07£0.07 0.08+0.07
CLM 0.22+0.16 4+2  3#£1 0.09+0.10 0.11%0.10
MXL 0.21+0.15 5+2 442 0.08+0.07 0.09+0.08
PUR 0.20+0.15 5+2 3#£1 0.06+0.06  0.09+0.07
LWK 0.04+0.07 241 141 0.04+0.03 0.05+0.03
ASW 0.07+0.11 3+2 242 0.06+0.05 0.07£0.04

Table SI3.4: Summary of predicted Neandertal ancestry on the X chromosome in the 1000 Genomes
populations. Thresholded Neandertal ancestry refers to the fraction of positions which have a
posterior probability > 0.9 and is estimated by tia(s). The table reports the number of Neandertal
haplotypes in each population (defined in Section SI3.1) as well as the number of haplotypes that
are longer than 0.02 ¢cM. The table also reports the mean and standard deviation of the lengths of
these haplotypes.
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Populations Neandertal ancestry Neandertal haplotypes

Haplotype length

tia All (> 0.02 cM) All (> 0.02 cM)
EUR 0.21+£0.17 5+3 4+£2 0.06£0.06 0.08%+0.06
ASN 0.28+0.21 5+3 442 0.06+0.07  0.08+0.07
AMR 0.21+0.15 442 342 0.084+0.08 0.10+0.08

Table SI3.5: Summary of predicted Neandertal ancestry on the X chromosome in the 1000 Genomes
non-African populations. Thresholded Neandertal ancestry refers to the fraction of positions which
have a posterior probability > 0.9 and is estimated by tia(s).
Neandertal haplotypes in each population (defined in Section SI 3.1) as well as the number of
haplotypes that are longer than 0.02 cM. The table also reports the mean and standard deviation

of the lengths of these haplotypes.

The table reports the number of

Chromosome Neandertal ancestry
EUR ASN AMR

1 1.30+0.26  1.54+0.26 1.2840.30
2 1.2240.27 1.17+0.25 1.11£0.26
3 1.17£0.26  1.2840.25 1.17+0.27
4 1.114£0.25 1.56+0.31 1.17£0.35
5 0.73+£0.21 1.15£0.29 0.8540.29
6 1.64+0.40 2.08+0.43 1.5440.40
7 1.10+0.29 1.09£0.34 0.9940.29
8 0.95+0.27 0.66+0.19 0.83%+0.25
9 1.4440.36  2.31+0.47 1.51£0.42
10 1.35£0.35 2.244+0.45 1.50£0.45
11 1.14+0.45 1.45+£0.31 1.1540.40
12 1.8240.40 2.21+£0.44 1.714+0.48
13 1.07+0.37 1.10£0.33  0.99+0.36
14 1.65£0.52 1.554+0.45 1.56+0.57
15 1.05£0.47 1.30+0.43 1.26+0.51
16 0.76+0.27 1.13+0.39 0.85+0.39
17 0.26+0.14 0.524+0.26 0.324+0.16
18 0.93+£0.33 0.86+0.27 0.91+0.34
19 0.64+0.27 0.70£0.46 0.68+0.41
20 0.86+£0.35 0.85+0.29 0.89+0.36
21 0.70£0.40 0.35+0.25 0.56%0.36
22 0.89+0.41 1.064+0.51 0.824+0.42
X 0.21£0.17 0.2840.21 0.2140.15

Table SI3.6: Neandertal ancestry as estimated by tia(s) stratified by chromosome.
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Figure SI3.1: Comparison of the average Neandertal ancestry across the 1000 Genomes Project CEU
individuals in 100 kb windows when we use either the high-coverage Altai or the Vindija Neandertal

sequences. a) estimates the fraction of confident Neandertal alleles within each window , b) the
average Neandertal ancestry.

Altai
Vindija Not introgressed Introgressed
Not introgressed 17367 1642
Introgressed 208 6872

Table SI 3.7: Concordance of Neandertal ancestry estimates when using either the high-coverage
Altai or the Vindija Neandertal sequence.
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o We assume that the African Luhya (LWK) have no Neandertal ancestry. Under this assump-
tion, any Neandertal ancestry inferred in the LWK is a false positive. For a fixed threshold
t to call an allele as Neandertal, denote the false discovery rate as fp(t), i.e., the fraction of
alleles in LWK at which the marginal probability exceeds t.

e We assume that the false discovery rate in each non-African population tested is equal to the
false discovery rate estimated in the LWK.

e We assume that the proportion of true Neandertal ancestry in the test non-African population
is a. « has been estimated to be 0.0172 + 00012 in Europeans and 0.0189 4 0.0013 in Eastern
non-Africans (Priifer et al., 2013).

If the fraction of sites with a marginal probability of Neandertal ancestry of at least ¢ in a tested
non-African population is denoted g(t), we can then estimate

oty — 90~ b0
Precision(t) = 0
Recall(t) = M

We vary t over the interval [0, 1] in steps of ﬁ to obtain an empirical precision recall curve.

We analyzed the predicted Neandertal ancestry in Europeans and East Asians using the point
estimates of a above. To plot the empirical precision-recall curve (Figure SI3.2), we only retained
those values of ¢ which are not dominated by any other ¢, i.e., there does not exist s # t such
that Precision(s) > Precision(t) and Recall(s) > Recall(t) or Precision(s) = Precision(t) and
Recall(s) > Recall(t) or Recall(s) = Recall(t) and Precision(s) > Precision(t). Figure SI 3.2
shows that at a precision of 90%, the CRF attains a recall of 72% in Europeans and 85% in East
Asians. At a probability threshold of 0.90, the CRF attains a recall of 62% at a precision of 93% in
Europeans and a recall of 69% at a precision of 95% in East Asians. The recall estimate depends
on the estimate of the total proportion of Neandertal ancestry a. The recall is lowest if the true
Neandertal ancestry proportion is high. If we assume that the true « is 2 standard deviations above
the point estimate, the recall at 90% precision is now 63% and 75% in Europeans and East Asians
respectively, while at a threshold of 0.90, the recall is 55% and 61% in Europeans and East Asians
respectively.

The high-coverage Neandertal genome has been observed to carry large regions of homozygosity
consistent with recent inbreeding (Priifer et al., 2013). Intuitively, we expect power to be lower in
these regions because at these loci we have fewer Neandertal haplotypes making it more difficult to
find the haplotypes that are related to the test introgressing sequence.

To test this idea, we used the tracts of homozygosity (HBD) longer than 2.5 ¢cM identified in the
high-coverage Neandertal genome (Priifer et al., 2013). We divided the genome into non-overlapping
windows of length w. We computed the fraction of confidently inferred Neandertal haplotypes, ta(w)
within each window.

. Zjew Z:lzl 1{73,3' > t}
= G € Sw)] )

Here S(w) refers to the set of SNPs that belong to window w. We chose a threshold ¢ = 0.90 and
w = 1 Mb. We restrict our analyses to windows that contain at least 10 SNPs that pass filters.
We also restrict to windows that completely overlap or completely avoid an identified HBD tract.
Note that it is not strictly necessary to analyze the relationship of Neandertal ancestry to HBD in

tay(w)
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Figure SI 3.2: Precision-Recall curve for inferring Neandertal local ancestry using a high-coverage
archaic genome. Curves are shown for the CRF on simulated data for two cases : i) where the
genetic map and haplotype phase are known perfectly and ii) where the genetic map is accurate at
a 1 Mb scale but does not capture recombination hotspots and the haplotype phase is estimated.
Precision-recall curves for the CRF on European (EUR) and East Asian (ASN) populations in the
1000 Genomes dataset are also shown. These empirical curves were estimated assuming that any
Neandertal ancestry detected in the sub-Saharan African population Luhya from Kenya (LWK) by
the CRF is a false positive and that the method has the same false discovery rates in other non-
African populations and using the estimates of the fraction of Neandertal ancestry in a population.
As a baseline, we also simulated a random method, which assigns a random number uniformly
distributed in [0, 1], to predict Neandertal ancestry.
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windows. However, this windowing analysis is useful to assess statistical significance using a block
jackknife.

We find that the average proportion of the genome that is labeled as Neandertal with a con-
fidence of >0.90, tag.go(w), is 0.19% lower in large homozygous regions of the Neandertal genome
than in the rest of the genome. To assess statistical significance, we performed a block jackknife,
using 1 Mb blocks, of the difference of the ancestry estimates across the two regions. We use this
procedure to obtain a jackknife estimate of the difference as well as a jackknife estimate of the
standard error. We then use the estimator and the standard error to obtain a z-score which we
convert to a two-sided P-value. We obtain a p-value=0.044. As expected, however, we do not
see a significant difference between the Neandertal ancestry proportions in homozygous and non-
homozygous regions of the genome measured using the unbiased estimate of ratios of S-statistics as
S(S A([f;;:;;?afi?:fcng:fsvoifgzaLgp) proposed in Reich et al. (2010). (p-value=0.118). We also do
not see a significant difference in power, estimated as the ratio of the first estimate to the second
estimate, across the two regions (p-value=0.755). Repeating the analysis at w = 10 Mb, we see that
the respective P-values are 0.951, 0.588 and 0.433 respectively.

SI3.2 Variation of Neandertal ancestry along the genome

To assess variation in Neandertal ancestry along the genome, we computed the fraction of confi-
dently inferred Neandertal haplotypes, ta(w), within 100 Kb non-overlapping windows that tile each
chromosome (or genome).

Y en ST e > 1)
== U e Sy @

Here S(w) refers to the set of SNPs that belong to window w. We chose a threshold ¢ = 0.90.
We restrict our analyses to windows that contain at least 10 SNPs that pass filters. For each
set of chromosomes (autosomes or chromosome X), we then estimated the Gini coefficient of the
distribution of tag g of tiling windows (Gini, 1912). The Gini coefficient is a measure of the dispersion
of Neandertal ancestry across the chromosome (rel). The Gini coefficient estimates the dispersion of
Neandertal ancestry. Table SI3.8 shows the Gini coefficients on the autosomes and the X chromosome
in the 1000 Genomes populations as well as the fraction of confidently inferred Neandertal haplotypes.
To further analyze the estimates of this coeflicient, we rank-ordered windows in decreasing order of
the proportion of Neandertal ancestry (as measured by tag g). For each rank, we then computed the
cumulative Neandertal ancestry in windows with higher ranks as a fraction of the total Neandertal
ancestry. We then computed the minimum fraction of windows needed to capture a given fraction
f of Neandertal ancestry f = %J € {1,...,20}. If Neandertal ancestry were evenly distributed
in the genome, a fraction f of the Neandertal ancestry would be found in a fraction f of windows.
Table SI 3.9 shows this distribution for EUR and ASN and for the autosomes and chromosome X.
Table SI3.10 repeats this analysis using tag.25. We note that all the Neandertal ancestry is found
within 35 —50% of the autosomes but within 20% of chromosome X. 95% of the Neandertal ancestry
is found within 20 — 30% of the autosomes but within 10% of chromosome X.

tas(w)
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Populations Individuals Neandertal ancestry (%) Gini coefficient(%)

Autosomes X Autosomes X
CEU 85 1.17£0.08 0.214£0.17  82-94 96
FIN 93 1.20+0.07  0.194+0.14  81-94 97
GBR 89 1.15+0.08  0.204+0.15  83-94 97
IBS 14 1.07£0.06  0.234+0.18  86-96 98
TSI 98 1.11£0.07  0.254+0.20  82-94 97
CHB 97 1.40+£0.08  0.304+0.21  82-94 97
CHS 100 1.37£0.08 0.274+0.21  83-96 97
JPT 89 1.384£0.10  0.264+0.21  82-95 97
CLM 60 1.14+0.12  0.224+0.16  80-93 97
MXL 66 1.224+0.09 0.214+0.15  82-93 97
PUR 55 1.05+0.12  0.204+0.15  80-92 97
LWK 97 0.0840.02  0.04+0.07  91-97 98
ASW 61 0.34+0.22  0.07+£0.11  82-93 97

Table SI3.8: For each computationally phased genome in each population, we estimated the proba-
bility of Neandertal ancestry at each SNP and the fraction of autosomal and X-chromosome SNPs
that are confidently Neandertal (probability > 90%) in each individual. The table reports the av-
erage and standard deviation of this measure across individuals within each population. We also
report a measure of the variability (the Gini coefficient) of the fraction of confidently Neandertal al-
leles within non-overlapping 100 kb windows that tile the autosomes or chromosome X respectively.
The Gini coefficient is zero when every window has the same ancestry and nearly 100 when all the
Neandertal ancestry lies in one window but is zero elsewhere.
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Neandertal EUR ASN
ancestry(%) Autosomes Chromosome X  Autosomes Chromosome X
5 0.002 0.001 0.002 0.001
10 0.004 0.001 0.004 0.001
15 0.007 0.003 0.006 0.002
20 0.011 0.004 0.010 0.004
25 0.015 0.005 0.013 0.004
30 0.019 0.006 0.017 0.005
35 0.024 0.008 0.022 0.006
40 0.030 0.009 0.027 0.008
45 0.037 0.011 0.033 0.008
50 0.045 0.013 0.040 0.010
55 0.054 0.015 0.047 0.012
60 0.064 0.018 0.056 0.013
65 0.075 0.020 0.065 0.015
70 0.088 0.024 0.076 0.018
75 0.104 0.029 0.089 0.022
80 0.123 0.034 0.105 0.027
85 0.147 0.042 0.125 0.032
90 0.179 0.052 0.152 0.039
95 0.228 0.066 0.193 0.051
100 0.414 0.113 0.351 0.086

Table SI3.9: Fraction of 100 kb windows that contain 2%,1' e {1,

as measured by tag.90.
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Neandertal EUR ASN
ancestry(%) Autosomes Chromosome X  Autosomes Chromosome X

5 0.003 0.001 0.002 0.001
10 0.006 0.003 0.005 0.001
15 0.010 0.004 0.009 0.002
20 0.015 0.006 0.013 0.002
25 0.020 0.007 0.018 0.003
30 0.027 0.009 0.024 0.004
35 0.034 0.012 0.030 0.004
40 0.042 0.015 0.037 0.004
45 0.051 0.018 0.044 0.006
50 0.061 0.020 0.053 0.006
55 0.072 0.024 0.062 0.008
60 0.085 0.028 0.073 0.011
65 0.100 0.033 0.085 0.013
70 0.117 0.038 0.099 0.018
75 0.137 0.044 0.116 0.022
80 0.161 0.052 0.135 0.028
85 0.191 0.061 0.160 0.035
90 0.230 0.074 0.193 0.048
95 0.291 0.093 0.243 0.069
100 0.530 0.166 0.450 0.169

Table SI3.10: Fraction of 100 kb windows that contain -

5501 € {1,...,20} of the Neandertal ancestry
as measured by tag.o5.
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SI4 Tiling path of Neandertal haplotypes

One possibility offered by the map of Neandertal ancestry is that we can exploit modern human
genomes to reconstruct the genome of the introgressing Neandertal. To do so, we used the inferred
Neandertal haplotypes as defined in Section SI3.1. We chose haplotypes that are at least 0.02 cM as
inference of longer haplotypes are shown to be even more accurate in simulations (Section SI2.3). At
each SNP which is covered by at least one Neandertal haplotype, we reconstructed the Neandertal
base as the consensus allelic state across all the inferred haplotypes (see Extended Data Fig. 3a).
Applying this procedure in each of the 1000 Genomes European and East Asian populations
and merging the haplotypes, we reconstructed 4437 Neandertal contigs that cover a total length
of 1.1 Gb. The median length of the contigs is 129 Kb (see Extended Data Fig. 3b). To convert
these numbers into percentages, we determined the number of bases in the autosomes of the human
genome reference (GRCh37) (2.68 Gb). Combining this tiling path with the high coverage Neandertal
genome (Priifer et al., 2013) infers a total of 89.8% or 2.41 Gb of the euchromatic Neandertal genome
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SI5 Tests for Positive Selection on Neandertal variants

In this section, we formulate a procedure to scan for Neandertal variants that may have been
positively selected. The basic idea behind this scan is to estimate the distribution of the frequency
of Neandertal variants under a model of neutral drift. Given this distribution, we can scan for regions
of the genome at which the observed frequency of Neandertal ancestry is higher than expected under
neutrality. Our procedure has two components:

o Estimate the background distribution of neutral Neandertal alleles introgressed into a modern
human population.

o Use this distribution to estimate the tail probability that the frequency of Neandertal ancestry
in a region exceeds the observed Neandertal frequency under neutrality. The Neandertal
frequency in a region is obtained from the individual-level Neandertal ancestries that are
estimated using the CRF.

SI5.1 Summary

e To estimate the background distribution, we first estimate the Neandertal frequency spectrum
i.e., the frequency spectrum of introgressed Neandertal alleles. We fit a simple model that
relates the Neandertal frequency spectrum to the initial frequency, «, and the drift = experi-
enced by introgressing Neandertal alleles. In this model, Neandertal alleles entered the modern
human population at a frequency equal to « and then drifted neutrally till the present. We
fit this model to a subset of the spectrum that is informative of drift since gene flow (we term
this the SUBSET-estimator). The reason for looking at a subset of the spectrum is that our
procedure for estimating the Neandertal frequency spectrum also includes a contribution from
non-Neandertal alleles (we explain this in greater detail in Section SI5.2.1). By restricting our
analysis to a subset of the spectrum, we obtain more accurate estimates of drift.

e On data simulated under a range of demographic models, this estimator provides an adequate
null model in a scan for positive selection i.e., the tail probabilities estimated using the model
exceed the tail probabilities observed in simulated data. Thus, P-values estimated using this
model will be conservative.

We test the estimator under demographic models that include models of constant population
size, bottlenecks, recent population expansion as well as non-random mating of the non-African
population (this includes recent admixture from Africans, and additional gene flow from Ne-
andertals). Thus, although our model for estimating drift ignores the complexities of human
history, it is robust to model misspecification.

e We applied this procedure to the 1000 Genomes Project data. We find that the maximum
likelihood estimates of drift are consistent across subpopulations. For example, we estimate
apparent drifts of 0.07—0.08 in Europeans. These estimates are consistent whether we analyze
all European individuals in 1000 Genomes Project or we restrict to the CEU population. They
are also consistent when we analyze the Neandertal frequency spectrum estimated off genotypes
or directly from the sequencing reads. Similarly, we obtain estimates of drift in East Asians
of about 0.10 (when we analyze all East Asian individuals and only the CHB). Our analysis
of the American populations does not reveal substantially more drift than Europeans — we
estimate drift of about 0.08 when we analyze all Americans or Mexicans alone (see Table SI
5.2). This result could arise because the European component of the ancestry of American
populations is dominating the signal.

38



e Using the maximum likelihood estimates (&,7), we scanned the European and East Asian
populations in non-overlapping 100 Kb windows. We consider the average Neandertal ancestry
la in 100 Kb non-overlapping windows restricting to windows that contain at least 10 SNPs
that pass filters. Within each window w, we estimated the average Neandertal ancestry

ZjES(w) Dt Vs

m|{j € S(w)}]|
Here m, refers to the number of haplotypes, vs ; refers to the marginal probability estimated
by the CRF at SNP j in haplotype s, and S(w) refers to the set of SNPs that belong to window

w. Within each window, we estimated the P-value for the Neandertal ancestry drifting to a
more extreme value than the observed average Neandertal ancestry la in that window.

la(w) =

Applying this procedure to the European individuals in 1000 Genomes, we identified 10 regions
that are significant at FDR<0.10. Of these, 4 regions passed the Bonferroni corrected P-value
threshold of 0.05 .

In the combined East Asian data, there are 12 regions that are significant at FDR < 0.10. 3
regions passed the Bonferroni significance threshold.

e Our analysis in Section SI8 indicates that the assumption of neutrality is inappropriate. To
test for the robustness of our estimator to this violation, we divided the genome into quintiles
based on the B-statistic and estimated the background distribution in each quintile. We find
in practice that the bin of highest B-statistic has both the highest mean Neandertal ancestry
as well as the highest variance in Neandertal ancestry across loci. Therefore, we considered
two approaches to deal with the effects of non-neutrality. In one approach, we assume that
the quintile with the highest B-statistic has not been affected by purifying selection. Under
this assumption, we can use the background distribution estimated from this quintile in our
scan and be confident that the statistics are conservative. In the second approach, we assign
a P-value to a region based on the background distribution of regions of similar B-statistic.

The first approach yields 4 regions as significant in EUR at FDR < 0.1 (2 of which passed the
Bonferroni significance threshold) while no regions are significant in ASN. Using the second
approach, we see 20 and 24 regions that are significant at FDR < 0.1 in EUR and ASN
respectively with 4 regions passing the Bonferroni significance threshold in each population.

SI5.2 Estimating the Neandertal frequency spectrum

To devise a test for positive selection, we estimate the Neandertal frequency spectrum i.e, the
frequency spectrum of Neandertal alleles that have introgressed. Omne strategy to estimate the
Neandertal frequency spectrum would be to use the estimates of Neandertal ancestry from the CRF.
However, a potential pitfall with this approach is that false positives and false negatives associated
with the CRF might bias our estimate of the frequency spectrum. Instead, we estimate the frequency
spectrum of Neandertal alleles directly from related site frequency spectra.

To estimate the Neandertal frequency spectrum, we make use of the recently sequenced high-
coverage Denisova genome (Meyer et al., 2012). Neandertals and Denisovans are approximate sister
groups (Reich et al.; 2010; Meyer et al., 2012) although there is evidence that Denisovans have a
small fraction of their ancestry from an archaic population not related to Neandertals (Priifer et al.,
2013). Unlike the Neandertals, Denisovans have been shown to have not contributed substantial
ancestry to European and East Asian populations although small levels of gene flow have been
reported (Skoglund and Jakobsson, 2011; Priifer et al.; 2013). We use this differential relationship
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of Neandertals and Denisovans to estimate the Neandertal frequency spectrum. We consider two
spectra — the site frequency spectrum in a non-African population conditioned on ascertaining a
derived allele in Neandertal and an ancestral allele in Denisova, nd10, and the site frequency spectrum
conditioned on ascertaining a derived allele in Denisova and an ancestral allele in Neandertal, nd01.

We computed the ndl0 and nd01 spectra as well as their difference § in the 1000 Genomes
Project populations. Figures SI5.1 and SI5.2 show these spectra. We observe that ¢ is qualitatively
different in the African vs the non-African populations. We use § as an estimate of the spectrum
of introgressed Neandertal alleles. To understand why this is a valid interpretation, consider the
class of SNPs that are not introgressed. These SNPs were either polymorphic in the modern human
lineage at the time of introgression or were fixed derived — otherwise we would not observe the
derived alleles in the archaic genomes. In the latter case, the effect of gene flow is found in the
high-frequency end of the spectrum which we ignore. In the former case, the SNP must have been
polymorphic in the modern human-Neandertal ancestor and would have undergone significant drift
on both the modern human and the archaic lineages. As a result, the frequency of such a SNP in
non-Africans would approximately be independent of the state on the archaic (nd10 vs nd01) and
would not contribute to the difference spectrum 9.

SI5.2.1 Estimating the neutral model

Our data consists of the difference spectrum in a non-African population in which we randomly
sampled n chromosomes, 6(i) = nd10(i) — nd01(z), where ¢ € {1,...,n — 1} denotes the number of
copies of the derived allele observed. Our procedure to estimate drift since Neandertal gene flow
makes the following simplifying assumptions:

e The majority of the Neandertal alleles are evolving neutrally.

o A Neandertal allele enters the ancestral European population at a frequency «. Thus, we ignore
the distribution of allele frequencies at the time of introgression (although the allele frequency
is upper bounded by the Neandertal admixture proportion). Following introgression, these
alleles drift neutrally until the present. The dynamics of this drift are determined by a single
drift parameter which encompasses the effects of the time since gene flow and the population

sizes during this time 7 = fot %. In effect, we ignore the effect of non-random mating, e.g.,
due to later admixture events that have been shown to have occurred (Meyer et al., 2012; Wall

et al., 2013).

Assuming no linkage between sites, we can write (independently for each i) (Sawyer and Hartl,
1992)

ndl0(i) ~ Pois(u10(z)),7 € {0,...,n—1}
nd01(i) ~ Pois(po1(7)),7 € {0,...,n —1},

The distribution of 6(i) = nd10(i) — nd01(4) is given by

8(i) ~ Skellam(p1o(i), po1(3))
~ N(AG),S(i))

Here Skellam denotes the Skellam distribution which arises as the difference of two independent
Poisson random variables. We use the normal approximation to the Skellam distribution which
holds when the observed counts are large, as is the case here (Abramowitz and Stegun). Denote
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Figure SI5.1: Conditional allele frequency spectra nd10,nd0l and an estimate of the Neandertal
allele frequency spectrum, 0, in EUR, ASN and YRI computed using a) the high-coverage Neandertal
and Denisova genomes and b) the low-coverage ljizandertal and Denisova genomes.
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Figure SI5.2: Conditional allele frequency spectra nd10,nd0l and an estimate of the Neandertal
allele frequency spectrum, §, in CEU, CHB and YRI computed using a) the high-coverage Neandertal
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A7) = p1o(7) — po1(2), S(7) = p10(4) + po1(4) where pi10(2), o1 (7) are the expected number of sites
in the non-African population with derived allele count 7 under the nd10 and nd01 ascertainments
respectively. The quantity S(i) is a function of the entire demographic history of modern non-
Africans, Neandertals, and Denisovans. If this history were known, we could analytically compute
S(7). Since a detailed model of history is not known, we instead replace S(4) by its plug-in estimator
S(i) = nd10(i) + nd01(3).

o(i) ~ N(A(),5) (5)

A(7) is the quantity of interest — it is closely related to the expected counts of the introgressed
Neandertal alleles. A(i) does not represent exactly the counts of Neandertal alleles. For example,
a model in which Neandertals and Denisovans form a sister group (ignoring any recent gene flow)
does not fit the data and analyses: (Priifer et al., 2013) show that this observation is consistent
with the Denisovan genome sequence being an admixture of a group related to Neandertals with
an archaic population that split off from the ancestors of modern humans and Neandertals before
the two groups diverged. Thus, in addition to the introgressed Neandertal alleles, A(7) includes
a contribution from alleles that were segregating in the Neandertal-modern human ancestor, e.g.,
mutations that arose after the split of the archaic population that contributed genes to the Denisovan
genome but before the split of Neandertals and modern humans. We propose an estimator to deal
with the noise in A(7).

SUBSET-estimator: In this estimation approach, we restrict our attention to bins of § where
the non-Neandertal component is unlikely to make a large contribution. We restrict to derived
allele counts such that the derived allele frequency € [0.01,0.10]. This range of frequencies excludes
singletons and often doubletons — this class of SNPs has been shown to have a non-negligible error
rate and the AFS in these frequency bins might not be reliably estimated. This range also excludes
higher frequency variants where the non-Neandertal component makes a dominant contribution.
We have shown previously that this range of frequencies is enriched for Neandertal introgressed
alleles (Sankararaman et al., 2012).

We can then model A(i),i = {1,...,n — 1} as

Ai) ( ) / doa'(1— )" DK (2: 0, 7) (6)

Here K(z;y,7) is the transition density function for the neutral Wright-Fisher diffusion with no
mutations and denotes the transition density of the frequency y of an allele that starts at frequency
y and drifts for 7 units. K(.;.,.) can be computed analytically (Kimura, 1955). ¢ is a scaling factor.
From Equations 5 and 6, we can estimate the parameters (¢, a, 7) by maximizing the likelihood (see
Appendix A) where the log likelihood function has the form

Lean=—- Y L= s((j 7)) (7)

{i:0.01< L <=0.1}

SI5.2.2 Neutral simulations to assess the adequacy of our procedure

We simulated 10 Gb worth of sequence data (10000 1Mb loci) under several demographic models
that relate Europeans, Africans, Neandertal and Denisova using ms (Hudson, 2002). In these models,
the Denisova sequence was modeled as an admixture of a population related to Neandertals and an
archaic population. The archaic population split from the Neandertal-modern human ancestor 13000
generations ago and contributed 25% of the ancestry of the Denisova genome while the ancestors of

43



Neandertals and modern humans split 12000 generations ago. These parameters induce a drift of
0.05 on the population ancestral to Neandertals and modern humans since the split of the archaic
population. We simulated gene flow from Neandertal into the ancestors of Europeans. The time of
gene flow was set to 2000 generations ago. For each simulation, we estimated (&,7) as described
in Section SI5.2.1. We also computed the true average Neandertal ancestry in non-overlapping
100 Kb windows and then estimated a nominal P-value or a tail probability for each window w,
fl;m dyK (y;&,7)
fol dy K (y;&,7)
restricting to windows for which the average Neandertal ancestry lies in (0,1). A conservative
procedure should yield theoretical tail probabilities that are not smaller than the observed tail
probabilities.
We considered several classes of demographic models:

We compared the theoretical tail probabilities to the observed tail probabilities

e Simple: In these models, after a single gene flow event, the ancestral European population is
randomly mating till the present. We consider variants of these models : constant effective
population of I) 20000, IT) 10000, IIT) 5000, IV) a model of constant effective population size
10000 with a bottleneck of duration 20 generations in which the effective population size was
reduced to 100 and V) a model of constant effective population 10000 followed by exponential
growth starting 400 generations in the past so that the current population size is one million.
For each of these models, we considered admixture proportions of {0.01,0.02,0.03,0.04}.

e Dilution: In this model, the European population has a constant effective population size of
10000. The European population experiences gene flow, 1500 generations ago, from an African
population that reduces the mean Neandertal ancestry. We assumed that the proportion of
dilution is 0.5. We varied the admixture proportion so that the Neandertal ancestry in present-
day Europeans was {0.01,0.02,0.03,0.04}.

e Double: In this model, the European population experiences two discrete gene flow events
from the Neandertal at 2000 and 1500 generations respectively. The second gene flow event
produces a date that is at the lower-end of the time of last exchange of genes estimated
previously (Sankararaman et al., 2012). This model has two parameters : the proportion of
Neandertal ancestry in present-day Europeans f and the proportion of Neandertal ancestry
in present-day Europeans from the older gene flow which we set to 0.5. We vary f across
{0.01,0.02,0.03,0.04}.

Table SI5.1 shows the calibration of the probabilities estimated using the estimator detailed in
Section SI5.2.1. For each simulated dataset, we used the difference spectrum § to obtain maximum
likelihood estimates of (&, 7). We then used these estimates to construct the maximum likelihood
estimate of the Neandertal frequency spectrum K = K (;; (&,7)). We used the estimated spectrum,
K, to assign tail probability to the frequency of Neandertal ancestry over each non-overlapping
100 Kb window (for all windows with frequency of Neandertal ancestry in (0,1)). For each ¢ €
{0.05,0.01,1073,10=%}, we then assessed 0(1—1), the fraction of windows with the frequency of
Neandertal ancestry in (0,1) at which the tail probability is less than ¢. Table SI5.1 lists the

ratio r(_y = O(lt—’” A ratio < 1 implies that the procedure to estimate the neutral frequency

spectrum K is conservative and is an appropriate procedure to assess whether the Neandertal allele
in a region is at an unexpectedly high frequency.

Table SI5.1 shows that the estimated frequency spectrum K is quite conservative across the range
of models and parameter values considered. It is reassuring that even though our model makes a
number of simplifying assumptions to estimate the neutral Neandertal frequency spectrum, the
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estimated spectrum is conservative in estimating the tail probability of a region attaining frequency
above a threshold. Figures SI5.3 and SI5.4 depict the calibration curves over the entire range of
the tail probabilities.

S15.2.3 Estimate of drift in 1000 Genomes data

We estimated the Neandertal frequency spectrum in several non-African populations in the 1000
Genomes Phase I project. We estimated the spectrum from the called genotypes. We randomly
sample single alleles from each of the Neandertal and Denisova sequences to estimate the nd10 and
nd01 spectra. For each of the populations analyzed, we estimated the maximum likelihood values
of (&,7) using the SUBSET estimator respectively.

While estimating the MLE of («, 7) for the European and East Asian populations, we constrain
« to lie within [0.00,0.04] since « is upper bounded by the Neandertal admixture proportion.

We estimated drifts using genotype data in several populations.

« 85 individuals from the CEU population
e 379 individuals from the EUR population
e 97 individuals from the CHB population
e 286 individuals from the ASN population
e 101 individuals from the MXL population
e 274 individuals from the AMR population

Table SI5.2 shows the maximum likelihood estimates for each of these populations. We make
several observations.

o The MLE is consistent across populations (i.e., it is consistent whether we use CEU or EUR).
We notice that « is the same value in all analyses. This is an artifact of the procedure used
for maximizing the likelihood which uses an initial grid over which to maximize parameters
followed by a subsequent refinement. Maximizing the likelihood directly using a Nelder-Mead
Simplex algorithm yields only a slight improvement to the likelihood while the results of the
subsequent selection scan are unchanged.

o The estimated drift in East Asians is larger than in Europeans. This is consistent with previous
studies that have reported larger drift in East Asians than in Europeans since they diverged
from each other (Gutenkunst et al., 2009; Keinan et al., 2007). The estimated drift in the
American populations is slightly larger than in Europeans. The interpretation of drift in a
recently admixed population is not totally clear. For example, Mexicans consist of genetic
contributions from European, Native American and African populations Bryc et al. (2010).
The Native American populations have experienced large amounts of drift since their diver-
gence from other European populations (Reich et al., 2012). On the other hand, the African
components dilute the proportion of Neandertal ancestry and reduces the apparent genetic
drift.

e One of the worries about these estimates of drift is that the spectra used are based on genotypes
estimated from low-coverage sequencing data. A number of studies have shown that the direct
use of genotypes from low or medium coverage sequencing data leads to a substantial bias
in the estimate of the SFS (Nielsen et al.; 2011; Li, 2011). To assess the robustness of our
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Model Admixture Normalized tail probabilities
fraction 0.05 0.01 1073 107

Simple I 0.01 0.28 0.17 0.21 0.21
0.02 0.49 038 036 0.14
0.03 0.72 0.54 0.28 0.00
0.04 0.95 0.73 050 0.43
Simple I~ 0.01 0.24 0.16 0.03 0.00
0.02 0.29 0.17 0.06 0.00
0.03 0.44 033 0.14 0.00
0.04 0.58 046 0.31 0.26
Simple III  0.01 0.07 0.02 0.00 0.00
0.02 0.14 0.05 0.00 0.00
0.03 0.15 0.08 0.02 0.00
0.04 0.41 0.28 0.22 0.00
Simple IV~ 0.01 0.07 0.03 0.00 0.00
0.02 0.24 019 0.09 0.30
0.03 0.17 0.04 0.00 0.00
0.04 0.24 0.13 0.02 0.00
Simple V. 0.01 0.24 0.17 0.10 0.00
0.02 0.33 0.20 0.08 0.19
0.03 0.44 028 0.13 0.15
0.04 0.60 042 0.16 0.13
Dilution I  0.01 0.20 0.12 0.08 0.00
0.02 0.32 0.20 0.09 0.00
0.03 0.37 0.22 0.07 0.00
0.04 0.49 031 019 0.24
Double 1 0.01 0.34 0.27 0.22 0.31
0.02 0.45 038 0.24 0.19
0.03 0.60 047 0.39 0.29
0.04 0.75 0.62 0.50 0.38

Table SI5.1: Calibration of the tail probabilities of the frequency of Neandertal ancestry as estimated
by the SUBSET estimator described in Section SI5.2.1. The estimated tail probabilities are compared
to the tail probabilities observed under various demographic models. We used the procedure in
Section SI5.2.1 to assign tail probabilities to the frequency of Neandertal ancestry observed in non-
overlapping 100 Kb windows. We computed the empirical tail probabilities at several cutoffs on
the expected tail probabilities (0.05,0.01,1072,10~%). The empirical tail probability is estimated to
be the fraction of 100 Kb windows (conditioned on windows with Neandertal ancestry frequency in
(0,1)) which are assigned estimated tail probabilities below the cutoff. We report the ratio of the
empirical to the expected tail probabilities. A well-calibrated procedure should produce a ratio close
to 1. A ratio less than 1 denotes that the procedure is conservative.
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Figure SI5.3: Assessment of the calibration of the probabilities estimated using the SUBSET estima-
tor from the model described in Section SI5.2.1. The calibration was assessed using simulations. X
and Y axes correspond to the observed and the expected tail probabilities, transformed by — log;.
Each dot denotes the observed tail probability corresponding to an expected tail probability. A
perfectly calibrated probability would lie along the diagonal line shown. Points that lie below the
diagonal correspond to observed probabilities that are less than the expected probabilities from the
model. Hence, these correspond to conservative estimates. We assessed calibration on the set of
Simple models with varying admixture proportions f € {0.01,0.02,0.03,0.04}. We see that the
model probabilities are conservative.
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Figure SI5.4: Assessment of the calibration of the probabilities estimated using the SUBSET estima-
tor from the model described in Section SI5.2.1. The calibration was assessed using simulations. X
and Y axes correspond to the observed and the expected tail probabilities, transformed by — log;.
Each dot denotes the observed tail probability corresponding to an expected tail probability. A
perfectly calibrated probability would lie along the diagonal line shown. Points that lie below the
diagonal correspond to observed probabilities that are less than the expected probabilities from the
model. Hence, these correspond to conservative estimates. We assessed calibration on the set of
Dilution and Double models with varying admixture proportions f € {0.01,0.02,0.03,0.04}. We see
that the model probabilities are mostly conservative except for the Double I model with f = 0.04.

drift estimates to the procedure used to estimate the Neandertal spectrum, we re-estimated
the SFS in the CEU population directly from sequence reads. To do so, we used samtools (i
et al., 2009) to compute genotype likelihoods. We then used bcftools to estimate the SFS
using the EM-AFS method (Li, 2011). We ran 5 iterations of the EM. Table SI5.2 shows that
the estimates of drift when we estimate the SFS directly from the reads are very similar to
the estimates obtained from genotypes. Thus, genotype calling on low-coverage data does not
appear to seriously bias our estimates of drift.

SI5.2.4 Selection scan

We use the maximum likelihood estimates (&, 7) to screen for positive selection on Neandertal alleles.
To reduce the impact of false positives on this screen, we consider the average Neandertal ancestry
la in 100 Kb non-overlapping windows restricting to windows that contain at least 10 SNPs that
pass filters. As an estimate of the frequency of Neandertal ancestry, we chose to use the average
the marginal probability, la, rather than the fraction of confidently called Neandertal alleles, i.e.,
alleles with marginal probability above a threshold of 0.90 , tag.9o. When we compared either of
these statistics to the true frequency of Neandertal ancestry on simulated data (simulated under
the model described in Section SI2.1), we see that both statistics tend to underestimate the true
Neandertal ancestry at regions with elevated Neandertal ancestry. The magnitude of underestima-
tion is substantially more severe for the statistic that uses only the confidently called alleles, tag.90
(Figure SI5.5).

fli(w) dyK (y;a,7)

We then estimate a nominal P-value for each window w as the .
J, dvK (yia?)

. Sometimes, for
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a given (&, 7,la(w)), the nominal P-value is estimated to be zero; in these cases, we set the nominal
P-value to 10~9 because our algorithm to estimate K estimates K over a grid of size 1000 where the
probability mass on each point in the grid is estimated to 6 digits of precision. We report windows
that are significant at a False Discovery Rate < 0.10 using the Benjamini-Hochberg procedure to
estimate the False Discovery Rate (Benjamini and Hochberg, 1995). We also report windows that
attain a P-value less than 0.05 after Bonferroni correction (where the number of tests is taken to
be the number of windows tested). We then merged consecutive windows that exceed the FDR
significance threshold to identify putatively positively selected regions.

Applying this procedure to the European individuals in 1000 Genomes, we identified 10 regions
that are significant at FDR of 0.10 using the SUBSET estimator. Table SI 5.3 list the regions that
are significant at a FDR < 0.1. There are 4 that are significant at a Bonferroni-corrected P-value
threshold of 0.05.

In the combined East Asian data, there are 12 that are significant at a FDR of 0.10. Table SI
5.4 list the regions that are significant at a FDR < 0.1 using the SUBSET. 3 regions passed the
Bonferroni significance threshold.

We built a dendrogram summarizing the relationships of the haplotypes at one of the putatively
positively selected regions - BNC2. See Figure SI5.6.

To further analyze these regions, we chose the regions that were identified by the SUBSET esti-
mator at a FDR < 0.10 in EUR and ASN i.e., we chose 10 regions in EUR and 12 in ASN. Two of the
regions (9:96,900,000-91,100,000 and 9:97,300,000-97,400,000) are identified in both Europeans and
East Asians. We intersected these regions with regions identified using the CMS statistic (Grossman
et al., 2010) on the 1000 Genomes Pilot data (cms). The CMS statistic combines several signals of
selection to obtain greater power at detecting and localizing selective sweeps. We chose the regions
that were identified by the CMS statistic in the CEU and the CHB+JPT populations. The regions
were lifted over from hgl8 to hgl9 coordinates using the UCSC liftover tool (Hinrichs et al., 2006).
We identified 2 regions that overlapped the CMS statistic. Both regions were found in EUR and
had amongst the highest Neandertal frequencies (9:16.7-16.9 and 19:33.5-33.7). The non-overlap of
all but two of the putatively positively selected loci with the CMS statistic suggest that using the
variation in Neandertal ancestry could be sensitive to selective sweeps that are not easily detected
by other statistics (Grossman et al., 2010). One possibility is that the distinctiveness of Neandertal
ancestry allows us to detect signals of selection that are quite old (tens of thousands of years old)
that are not easily detected by other signals. We also observe that none of these regions contain
Neandertal alleles that have swept to fixation. Indeed, the frequencies of Neandertal ancestry in the
putatively positively regions are in the range of 30 —60%. This observation might be consistent with
frequency-dependent selection on the introgressed Neandertal allele.
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Figure SI5.5: Comparison of estimates of the Neandertal ancestry to true Neandertal ancestry in
simulations. We simulated 100 1Mb loci under the demographic model and parameters described
in Section ST 2.1. We compared the estimates and true Neandertal ancestries. Panel (a) shows
the estimates obtain from la while panel (b) shows the estimates from tag.go. tag.go substantially
underestimates the true Neandertal ancestry.

Data Population SUBSET estimator
& 7

1000 Genomes CEU 0.005  0.077

genotypes EUR 0.005  0.073
CHB 0.005  0.106
ASN 0.005  0.106
MXL 0.005  0.080
AMR 0.005  0.083

1000 Genomes CEU 0.0003  0.083

reads

Table SI5.2: Estimates of the model parameters (a,7) on various populations sequenced in the 1000
Genomes Phase I data. We estimated these parameters using the SUBSET estimator. All, except
one, of the estimates were computed from genotypes. To assess the effect of using genotypes, we also
estimated these parameters using an AFS estimated directly from the reads for the CEU population.
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Coordinates Frequency Pvalue Genes

la tagg  —logip(pval)
1:39.4-39.5 0.334 0.223 4.367 NDUFS5
1:57.2-57.3 0.303 0.180 3.892 Clorf168
1:170.3-170.4 0.309 0.297 3.983
2:154.9-155.0 0.301 0.288 3.862 GALNT13
2:160.0-160.2 0.341 0.268 4.477 TANC1
2:238.8-239.0 0.457 0.418 6.457 SCLY
3:20.5-20.6 0.307 0.273  3.953
4:28.3-28.4 0.326 0.308 4.243
6:52.1-52.2 0.446 0.353 6.252 IL17F
6:66.4-66.7 0.368 0.355 4.909
8:13.7-13.9 0.371 0.329 4.958
8:14.0-14.2 0.350 0.290 4.619 SGCZ
9:16.7-16.9 0.637 0.545 9.000 BNC2
9:96.9-97.1 0.330 0.285 4.305 FAM22F
9:97.3-97.4 0.329 0.283 4.290 FBP2
12:52.9-53.0 0.367 0.250 4.892 KRT5,KRT71,KRT74,KRT72
12:113.4-113.5 0.314 0.201 4.059 0OAS2
12:133.4-133.5 0.316 0.258 4.089 CHFR
14:44.8-44.9 0.305 0.266 3.922
15:84.7-84.9 0.325 0.236 4.228 LOC100505679
15:85.8-86.1 0.398 0.367 5.406 AKAP13
16:78.0-78.1 0.354 0.330 4.683 CLEC3A
18:60.1-60.2 0.301 0.257 3.862 ZCCHC2
19:33.5-33.8 0.640 0.539 9.000 LRP3,SLC7A10,CEBPA ,RHPN2

Table SI5.3: Regions of putative positive selection in Europeans when we use the SUBSET estimator.
We list all regions that are significant with FDR < 0.1.
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Coordinates Frequency Pvalue Genes

la tagg  —logip(pval)
1:208.5-208.6 0.417 0.298 3.894
1:212.5-212.6 0.420 0.379 3.928 PPP2R5A
1:232.5-232.7 0.513 0.384 5.069 SIPA1L2
3:50.2-50.4 0.592 0.583 6.175 GNAT1,SLC38A3,GNAI2,SEMA3B

C30rf45,IFRD2,NAT6,HYAL1
HYAL2,RASSF1,NPRL2,CYB561D2
TMEM115,TUSC2,ZMYND10,SEMA3F

3:191.2-191.3  0.433 0.348 4.080

4:38.0-38.1 0474 0.422 4.574 TBC1D1

4:38.2-38.8 0.514 0.418 5.082 TLR10

4:167.1-167.2  0.436 0.403 4.115

4:167.3-167.4  0.418 0.410 3.905

8:103.6-103.7  0.423 0.353 3.963 KLF10

9:90.7-90.8 0.419 0.291 3.917 FAM75C2

9:96.9-97.1 0.452 0.373 4.305 FAM22F

9:97.3-97.4 0.464 0.420 4.451 FBP2

9:112.8-113.2  0.571 0.456 5.865 AKAP2,C90rf152, TXN, TXNDCS8
10:7.0-7.1 0.434 0.310 4.092

11:99.1-99.2 0.479 0.453 4.635

11:120.1-120.2  0.520 0.252 5.161 TMEM136

12:52.7-52.8 0.432 0.356 4.068 KRT86,KRT83,KRT85 KRT84
13:108.4-108.5  0.447 0.297 4.246 FAMI155A

14:58.3-58.4 0.426 0.393 3.998 SLC35F4

20:62.1-62.4 0.620 0.492 6.626 PPDPF,PTKG6,C200rf195,PRIC285

TNFRSF6B,ARFRP1,ZGPAT,LIME1
KCNQ2,SRMS,GMEB2,STMN3
RTEL1,RTEL1-TNFRSF6B,SLC2A4RG, EEF1A2

92:20.7-20.9  0.446 0.396 4.234 USP41,ZNF74,SCARF2,KLHL22

Table SI5.4: Regions of putative positive selection in East Asians when we use the SUBSET esti-
mator. We list all regions that are significant with FDR < 0.1.

SI5.2.5 Robustness of signals of selection to assumption of neutrality

The procedure to scan for positive selection uses a model of drift that assumes that Neandertal
introgressed variants are primarily neutral. The model assumes that these variants entered the
modern human population at the same frequency and all experienced the same drift.

This model can be violated in several ways. Our analysis in Section SI8 indicates that Neandertal
alleles near functionally important regions (as measured by a low value of the B-statistic (McVicker
et al., 2009)) are likely to have been subject to strong purifying selection. Under this scenario,
we might expect that the model of neutral evolution of Neandertal introgressed alleles would be
particularly inappropriate for regions of low B-statistic where the effects of purifying selection are
stronger; however, this model might still be appropriate in regions of high B-statistic where the
introgressed Neandertal alleles are more likely to be evolving neutrally. One way to deal with this
issue is to estimate the neutral model by restricting our analysis to the regions of the genome with
high B-statistic.
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B-statistic EUR ASN

(quintile) & 7 & 7
2.55e-04 0.072 3.09e-04 0.097
3.21e-04 0.075 1.00e-02 0.087

1
2
3 5.00e-03  0.065 5.00e-03 0.103
4
)

5.00e-03  0.075 4.29e-04 0.104
5.00e-03 0.084 2.49e-02 0.114

Table SI5.5: Estimates of the model parameters («,7) on the EUR and ASN populations in quintiles
of B-statistic (1-low,5-high). We estimated these parameters using the SUBSET estimator.

Coordinates Frequency Pvalue Genes
la tagg  —logio(pval)
2:238.9-239.0 0.457 0.418 5.337 SCLY
6:52.1-52.2 0.446 0.353 5.178 IL17F
9:16.7-16.8 0.637 0.545 9.000 BNC2
19:33.5-33.7 0.640 0.539 9.000 LRP3,RHPN2,GPATCH1,WDRS88

Table SI5.6: Regions of putative positive selection in Europeans when we fit the SUBSET estimator
to the regions of the genome in the highest quintile of B-statistic. We list all regions that are
significant with FDR < 0.1.

Alternately, even in the absence of purifying selection on Neandertal alleles, Neandertal alle-
les in a low B-statistic region are subject to larger drift due to the effects of background selec-
tion (Charlesworth et al., 1995). To deal with this issue, we could estimate a neutral model within
bins of B-statistic. We then assign a P-value to a region using the model selected based on the
B-statistic for the region.

To assess the impact of this issue, we partitioned the autosomes into quintiles of B-statistics.
Each SNP in the 1000 Genomes dataset was assigned to one of the quintiles. We then applied the
SUBSET estimator to estimate parameters for each of the B-statistic quintiles. Table SI 5.5 shows
that estimates of the drift 7 decreases in regions of low B consistent with the action of purifying
selection.

To deal with the effect of purifying selection, we used the estimates in the quintile of highest
B-statistic to again scan for non-overlapping 100 Kb windows that are significant at FDR < 0.10.
Using this estimator, 4 regions in EUR are significant at F DR < 0.1 while no regions are significant
in ASN (Table SI5.6).

As a second approach, we assigned a B-statistic to each non-overlapping 100 Kb window corre-
sponding to the average B-statistic within the window. Each window was then assigned to a quintile
based on the distribution of B-statistics. We then assigned a P-value to each window based on the
estimates for the corresponding quintile (Table SI5.5). Q-values and Bonferroni-corrected P-values
were obtained from the P-values across all quintiles. Using this procedure, we see 20 and 24 regions
that are significant at FDR < 0.1 in EUR and ASN respectively (Table SI5.7 and SI5.8).

These analyses show that an assessment of positive selection on Neandertal alleles is sensitive to
assumptions about the neutral evolution of Neandertal alleles. Given the observation of purifying
selection on Neandertal alleles in regions that are proximal to functional elements, it is clear that
the background model of neutral evolution is inappropriate (at least in regions of the genome with
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Coordinates Frequency Pvalue Genes

la tagg  —logip(pval)
1:39.4-39.5 0.334 0.223 4.316 NDUFS5
1:216.8-216.9 0.289 0.252 3.977 ESRRG
2:154.9-155.0  0.301 0.288 4.164 GALNT13
2:160.0-160.2  0.341 0.268 4.637 TANC1
2:238.8-239.0  0.457 0.418 6.991 SCLY
6:52.1-52.2 0.446 0.353 9.000 IL17F
6:66.4-66.5 0.368 0.355 4.567
8:13.8-13.9 0.371 0.329 4.147
9:16.7-16.9 0.637 0.545 9.000 BNC2
9:96.9-97.1 0.330 0.285 4.628 FAM22F
9:97.3-97.4 0.329 0.283 4.240 FBP2
12:52.9-53.0 0.367 0.250 4.829 KRT5,KRT71,KRT74,KRT72
12:113.4-113.5 0.314 0.201 4.370 0OAS2
12:133.4-133.5 0.316 0.258 4.240 CHFR
14:44.8-44.9 0.305 0.266 4.228
15:84.7-84.9 0.325 0.236 4.179 LOC100505679
15:85.8-86.1 0.398 0.367 5.384 AKAP13
16:78.0-78.1 0.354 0.330 5.022 CLEC3A
18:60.1-60.2 0.301 0.257 4.164 ZCCHC2
19:33.5-33.7 0.640 0.539 9.000 LRP3,RHPN2,GPATCH1,WDRS88

Table SI5.7: Regions of putative positive selection in Europeans when we fit the SUBSET estimator
stratified by quintile of B-statistic. We list all regions that are significant with FDR < 0.1.

low B). As a result, the formal P-values assigned under such a model are unlikely to be meaningful.
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Coordinates Frequency Pvalue Genes

la tagg  —logip(pval)

1:210.3-210.5 0.410 0.364 4.288 SYT14

1:212.4-212.6 0.420 0.379 4.416 PPP2R5A

1:232.5-232.7 0.513 0.384 5.029 SIPA1L2

2:68.3-68.4 0.371 0.255 3.804 WDR92

3:50.2-50.4 0.592 0.583 9.000 GNAT1,SLC38A3,GNAI2,SEMA3B
C3orf45,IFRD2,NAT6,HYALL1
HYAL2,RASSF1,NPRL2,CYB561D2
TMEM115,TUSC2,ZMYND10,SEMA3F

4:38.0-38.1 0.474 0.422 4.545 TBC1D1

4:38.3-38.9 0.514 0.418 5.372 TLR10,TLR1,FAM114A1,KLF3

5:148.8-148.9 0.375 0.228 3.852 CSNKI1A1

8:103.6-103.7 0.423 0.353 3.950 KLF10

9:96.9-97.1 0.452 0.373 4.284 FAM22F

9:97.2-97.4 0.464 0.420 4.997 HIATL1

9:112.8-113.2 0.571 0.456 6.443 AKAP2,C90rf152, TXN,TXNDCS8

9:129.5-129.6 0.371 0.228 3.804 ZBTB43

10:69.3-69.4 0.413 0.369 4.326 CTNNA3

10:69.5-69.6 0.410 0.335 4.231 DNAJC12

11:99.1-99.2 0.479 0.453 4.803

11:120.1-120.2 0.520 0.252 5.793 TMEM136

12:52.7-52.8 0.432 0.356 4.517 KRT86,KRT83,KRT85,KRT&4

14:58.3-58.4 0.426 0.393 3.984 SLC35F4

15:79.0-79.1 0.389 0.259 4.025 ADAMTST7

16:89.7-89.8 0.387 0.311  4.000 CHMP1A,C160rf55,CDK10,SPATA2L
C160rf7, DPEP1,ZNF276,LOC100128881

18:55.1-55.2 0.400 0.318 4.106 ONECUT2

20:62.1-62.4 0.620 0.492 9.000 PPDPF,PTK6,C200rf195,PRIC285
TNFRSF6B,ARFRP1,ZGPAT,LIME1
KCNQ2,SRMS,GMEB2,STMN3
RTEL1,RTEL1-TNFRSF6B,SLC2A4RG,EEF1A2

22:20.7-20.9 0.446 0.396 4.611 USP41,ZNF74,SCARF2,KLHL22

Table SI5.8: Regions of putative positive selection in East Asians when we fit the SUBSET estimator
stratified by quintile of B-statistic. We list all regions that are significant with FDR < 0.1.
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Figure SI 5.6: Dendrogram of 1000 Genomes haplotypes at the BNC2 region (chr9:16720122-
16769662). We constructed a hierarchical average-linkage clustering of the haplotypes from the
1000 Genomes populations and archaic genomes (Altai and Vindija Neandertals and the Denisova
genome). For the archaic genomes, we sampled a single allele at each SNP to form a haplotype.
For the modern human genomes, we used computationally phased haplotypes. To aid visualization,
we collapsed all internal nodes of the dendrogram at a height < 0.055 into a single leaf node. The
red-colored edge of the dendrogram leads to the clade that contains both the Neandertal haplo-
types. Below each leaf, we also list the distribution of all haplotypes across populations (EUR, ASN,
AMR and AFR) that map to a clade. The Neandertal clade contains haplotypes that are present at
high-frequency in EUR and ASN, is absent in ASN and is present in low-frequency in AFR.
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SI 6 Functional implications of variants introgressed from

Neandertals

A functional analysis of the genomic regions that are either significantly enriched for or significantly
depleted of Neandertal ancestry in present-day human populations outside of Africa may provide some

insights into phenotypes that have been important in recent human history.

SI 6.1 Correlation of Neandertal ancestry estimates across populations

We classified CCDS genes (Pruitt, Harrow et al. 2009) as of either high or low Neandertal ancestry based
on the marginal probabilities of Neandertal ancestry inferred by the Conditional Random Field for each
site within the gene. Specifically, the CRF estimates the probability of Neandertal ancestry at each SNP
in an individual haplotype. We interpolate these probabilities to all bases in the genome using linear
interpolation based on the physical distance.

We then define the two sets as follows:

*  Genes with low Neandertal ancestry. A gene where all sites across all individuals are assigned a
marginal probability of Neandertal ancestry <=10% is defined to have low Neandertal ancestry.
Such genes are likely to be devoid of Neandertal ancestry in the sample analyzed. We use a cutoff
of 10% to reduce false positives i.e., genes that have some Neandertal ancestry but are predicted
to be low in Neandertal ancestry because the power to infer Neandertal ancestry is reduced in the
region containing the gene. In addition, genes may falsely appear to be low in Neandertal
ancestry due to low SNP density. To handle this, we exclude genes that contain fewer than 100
SNPs within a 100kb window centered at its midpoint.

*  Genes with high Neandertal ancestry. To identify these genes, we computed an average
introgression score for each of these genes as the average of the marginal probability across all
individuals at all bases within the gene. Genes ranked in the top 5% of genes with evidence of
Neandertal introgression were declared to have high Neandertal ancestry.

Using the averaged introgression scores for each CCDS gene, we tested the correlation of the values per
gene between East Asians and Europeans. We found a strong correlation ( 0 =0.71, p<2.2e-16), indicating
that the frequency of introgressed alleles is similar between populations. In order to further investigate
whether the high correlation between populations is driven by genes that are low or high in Neandertal
ancestry, we assessed the overlap between the two populations for genes low in Neandertal ancestry.
Testing 18017 genes, we find that 8475 genes have low Neandertal ancestry in Europeans and 9300 have
low Neandertal ancestry in East Asians. A total of 6641 genes overlap between sets, significantly more
than expected (p<2.2e-16, binomial test, two-sided). When considering genes with high Neandertal
ancestry in Europeans (862 genes) and East Asians (862 genes), we find an equally strong overlap
between populations (279 genes, p<2.2e-16, Fisher’s exact test). We note that a significant correlation
might be caused by the correlated variation in power in Europeans and East Asians. However, SI 10
shows that the correlation in Neandertal ancestry proportions increases at larger distance scales where

power is expected to be more homogeneous, suggesting that power alone does not explain the correlation.



SI 6.2 Analysis of regions of low Neandertal ancestry

We assessed whether particular functional categories are over-represented among the genes determined to
have either high or low Neandertal ancestry in present-day European and East Asian populations. For
this we tested for enrichment in Gene Ontology (Ashburner, Ball et al. 2000) categories using the
hypergeometric test implemented in the FUNC package (Prufer, Muetzel et al. 2007) and for enrichment
in KEGG pathways (Kanehisa and Goto 2000) using the hypergeometric test implemented in GOStats
(Falcon and Gentleman 2007) . For GO enrichment the FWER is calculated based on 1000 permutations
and categories that are significant (FWER <0.05) in either population are reported. For the KEGG
enrichment analysis no multiple testing correction has been applied. Categories reported are those with a
raw p-value of <0.05 in either population.

For all functional enrichment tests, the correlation between the enrichment scores in categories found in
FEuropeans and East Asians was calculated using Spearman correlation. For the regions that have low
Neandertal ancestry, we find a consistently high and significant positive correlation between populations (
P=0.44, p-value<2.2e-16 for GO and P=0.78, p-value<2.2e-16 for KEGQG).

ST 6.2.1 Functional enrichment in regions of low Neandertal ancestry

The functional enrichment test identifies 33 Gene Ontology categories. These contain genes that carry out
a number of basic cellular functions including genes involved in the cell cycle and RNA processing, as well
genes that encode basic cellular structures such as the ribosomal proteins (Table SI 6.1). The 34 KEGG
pathways that are identified (Table SI 6.2) indicate enrichment in a number of metabolic-related
categories including starch and sucrose metabolism, specifically the amylases (AMY1, AMY2). It is known
that amylase expansion has been important in modern human dietary adaptation. (Priifer, Racimo et al.
2013) have shown that alpha-amylase has just 2 copies in Neandertals, though the family is expanded in
modern humans. Olfactory transduction pathway genes are also highly enriched among the regions that

are low in Neandertal ancestry.

GO_domain GO_id GO_term EUROPEAN EAST
ASIAN

molecular_function | GO:0003676 | nucleic acid binding 0.018 0.032
biological process | GO:0006396 | RNA processing 0.004 0.049
cellular_component | GO:0030529 | ribonucleoprotein complex <0.001 0.027
cellular_component | GO:0044422 | organelle part <0.001 0.037
cellular_component | GO:0044446 | intracellular organelle part <0.001 0.025
biological process | GO:0016071 | mRNA metabolic process <0.001 0.014
cellular component | GO:0031981 | nuclear lumen 0.039 0.017
cellular_component | GO:0032991 | macromolecular complex <0.001 0.21
cellular_component | GO:0043226 | Organelle <0.001 1
cellular_component | GO:0043227 | membrane-bounded organelle 0.015 1
cellular component | GO:0043229 | intracellular organelle <0.001 1




cellular_component | GO:0043231 | intracellular membrane-bounded organelle 0.041 1
cellular_component | GO:0044428 | nuclear part 0.005 0.022
molecular function | GO:0003723 | RNA binding 0.036 0.26
molecular function | GO:0004984 | olfactory receptor activity 1 <0.001
biological process | GO:0000956 | nuclear-transcribed mRNA catabolic process 0.011 1
biological process | GO:0006401 [ RNA catabolic process 0.021 1
biological process | GO:0006402 | mRNA catabolic process 0.021 1
biological process | GO:0007049 | Cell cycle 0.63 0.002
biological process | G0O:0022402 | Cell cycle process 0.64 0.003
biological process | G0O:0022403 | Cell cycle phase 0.98 0.015
biological process | GO:0031424 | keratinization 0.029 1
cellular_component | GO:0005622 | intracellular 0.028 1
cellular_component | GO:0005634 | nucleus 0.041 0.23
cellular_component | GO:0005740 | mitochondrial envelope 0.049 0.056
cellular_component | GO:0005743 | mitochondrial inner membrane 0.016 0.12
cellular_component | GO:0022626 | cytosolic ribosome 0.041 1
cellular_component | GO:0031966 | mitochondrial membrane 0.064 0.035
cellular_component | GO:0043228 | Non-membrane-bounded organelle 0.005 0.97
cellular_ component | GO:0043232 | intracellular non-membrane-bounded organelle | 0.005 0.97
cellular_component | GO:0044424 | intracellular part 0.015 1
cellular_ component | GO:0044429 | mitochondrial part 0.006 0.77
cellular_component | GO:0044445 | cytosolic part 0.003 0.99

Table SI 6.1: Gene Ontology functional enrichment categories for genes with low Neandertal

ancestry. Columns EUR and ASN give the multiple testing corrected p-values in Europeans and East

Asians, respectively.

KEGGID | Term EUROPEAN | EAST
ASIAN
3010 Ribosome 0.0014 0.031
4740 Olfactory transduction 0.008 4.40E-
09
3008 Ribosome biogenesis in eukaryotes 0.017 0.019
650 Butanoate metabolism 0.018 0.034
3018 RNA degradation 0.023 0.0071
5012 Parkinson's disease 0.0077 0.066
4142 Lysosome 0.0091 0.15
3013 RNA transport 0.013 0.022
603 Glycosphingolipid biosynthesis - globo series 0.021 0.058
4350 TGF-beta signaling pathway 0.024 0.25
40 Pentose and glucuronate interconversions 0.044 0.055




640 Propanoate metabolism 0.061 0.009
270 Cysteine and methionine metabolism 0.14 0.00092
500 Starch and sucrose metabolism 0.15 0.037
140 Steroid hormone biosynthesis 0.23 0.038
72 Synthesis and degradation of ketone bodies 0.01 0.3
4621 NOD-like receptor signaling pathway 0.015 0.64
330 Arginine and proline metabolism 0.016 0.061
4110 Cell cycle 0.022 0.38
760 Nicotinate and nicotinamide metabolism 0.027 0.088
533 Glycosaminoglycan biosynthesis - keratan sulfate 0.041 0.41
61 Fatty acid biosynthesis 0.046 0.29
3015 mRNA surveillance pathway 0.048 0.34
1100 Metabolic pathways 0.11 0.0027
830 Retinol metabolism 0.19 0.0055
982 Drug metabolism - cytochrome P450 0.19 0.0023
310 Lysine degradation 0.23 0.038
350 Tyrosine metabolism 0.25 0.0027
3050 Proteasome 0.44 0.0036
4916 Melanogenesis 0.73 0.013
71 Fatty acid metabolism 0.77 0.011
4340 Hedgehog signaling pathway 0.8 0.0092

Table SI 6.2: KEGG functional enrichment categories for genes with low Neandertal

ancestry. Columns EUR and ASN give the raw p-values in Europeans and East Asians, respectively.

SI 6.2.2 Enrichment for testis-expressed genes in regions with low Neandertal ancestry
A prediction of the Dobzhansky-Muller hypothesis is that incompatibilities that cause hybrid sterility will
be enriched in testis expressed genes (Orr and Turelli 2001). We therefore tested whether there is

evidence that regions with low Neandertal ancestry are enriched for genes expressed in testis.

We analyzed the expression of tissue-specific genes in regions of high and low Neandertal ancestry using
the Ilumina BodyMap 2.0 data,(Derrien et al Gen. Res. 2012) which provides expression information for
16 tissues including testis. We analysed whether testis-specific genes are more often in devoid regions than
all other genes.

We developed a tissue-specificity metric that defines for each tissue those genes that are significantly
more highly expressed in that tissue than they are in any of the other 15 BodyMap tissues using the
DESeq package (Anders and Huber, 2010) and a p-value cut-off of 0.05.

When testing for expression enrichment in the regions devoid of Neandertal ancestry, a major concern is

that genes with similar function and/or expression distribution are spatially clustered. Since regions
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devoid of Neandertal ancestry tend to be large, an overlap between these regions and genes with a specific
expression pattern can therefore arise by chance.

To correct for this we circularized the chromosomes and randomly rotated the gene annotations.

We test three different sets of chromosomes: the whole genome (autosomes+X chromosome), X
chromosome only, and autosomes only. For each test set we generated 1000 random samples by choosing
random rotations for each chromosome in a set. For the X chromosome (where there are fewer than 1000
genes) we used all possible rotations. We tested how often tissue-specific genes overlap regions devoid of
Neandertal ancestry by chance by comparing Fisher-exact p-values for the random samples to the real
data. The values reported in Table SI 6.3 give the fraction of random tests that have as low or lower p-

values than the real data.

Testis is the only tissue for which there is a significant enrichment in devoid regions when considering
genes genome-wide (Table ST 6.3). In Europeans 46.7% of non testis-specific genes are in devoid regions,
which is significantly less (p=8.1e-5) than the 52.5% of testis-specific genes that are located in regions of
low Neandertal ancestry. In East Asians 51.3% of non testis-specific genes are in devoid regions which is
significantly less (p=0.001) than the 56.1% of testis-specific genes that are located in regions of low
Neandertal ancestry. For the comparison of testis-specific to all other genes on the autosomes and X-
chromosome separately we see the same trend, although some comparisons using only European or East
Asian populations do not reach significance.

The same analysis for regions in the top 5% of Neandertal ancestry shows no enrichment for tissue-

specific expression.
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EUROPEAN EAST ASIAN

TISSUE genome-wide chrX autosomes | genome-wide chrX autosomes
Adipose 0.9322 0.9989 0.8138 0.9919 1 0.9458
Adrenal 0.5011 NA 0.5011 0.4244 NA 0.4244
Blood 0.9934 0.9836 0.9876 0.941 0.7295 0.9356
Brain 1 0.9979 1 1 1 1
Breast 0.9825 0.6258 0.9871 0.9974 0.9409 0.9962
Colon 0.6365 0.7735 0.6266 0.9358 0.9748 0.8851
Heart 0.9925 0.7075 0.9927 0.8035 0.5702 0.8147
Kidney 0.9996 0.1541 0.9998 0.9958 0.0801 0.9983
Liver 0.9949 0.9919 0.9865 0.9974 0.8567 0.9972
Lung 0.9552 0.6421 0.9585 0.9894 0.871 0.9863
Lymph 0.8797 0.6159 0.8989 0.9881 0.5147 0.9913
Ovary 0.8396 0.9501 0.8105 0.6181 0912 0.5777
Prostate 0.9953 0.7865 0.9957 0.9987 0.7292 0.9989
skeletal muscle 0.9478 0.703 0.9457 0.8312 0.1037 0.8832
Testes 0.0095 0.1277 0.016 0.018 0.0389 0.0549
Thyroid 0.8585 0.6167 0.8795 0.8726 0.936 0.8562

Table SI 6.3: Enrichment of tissue-specific genes in Neandertal devoid regions. We compare
tissue-specific genes (defined as those that are significantly more highly expressed in the specified tissue
than in any of the 15 other tissues) to all other expressed genes in that tissue. NA means that there were
no tissue-specific genes for this tissue on the X-chromosome. Of the sixteen tissues tested, only testis-

specific genes are significantly enriched in the Neandertal devoid regions.

SI 6.3 Regions of high Neandertal ancestry

For genes within the top 5% of introgression scores in either population, we find a slightly weaker

correlation between populations ( 0=0.21,p-value<2.2e-16 and 0=0.22,p-value=0.09 for GO and KEGG,
respectively) compared to categories enriched in genes with low Neandertal ancestry. However, there is no
substantial difference between populations for either categories of genes that are enriched or categories of

genes that are depleted for introgression.

For the genes with the top 5% of introgression scores, we examined in further detail the categories that
are shared by both Europeans and East Asians. As before, we reported multiple-testing-corrected p-values
for the GO categories, and raw p-values for the KEGG pathways. There are two KEGG pathways: long-
term depression, and galactose metabolism, (Table SI 6.5a) that are significantly enriched in both
European and East Asian populations as well as in an introgression map using the combined populations.

We note that the sets of genes responsible for the enrichment in Europeans and East Asians are largely
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non-overlapping which may suggest that different sets of genes were recruited independently for the same

phenotype.

Only one GO cellular component (keratin filament) is enriched for Neandertal introgression in all
populations suggesting that introgressed Neandertal alleles may have been used by modern humans to
adapt their skin and hair morphology to non-African environments to which Neandertals were pre-
adapted (Table SI 6.4a). Interestingly, among the genes driving the significance for this category we find
four genes that have an unusually high frequency of introgression in East Asians (Supplementary material
ST 6) (KRT83, KRT84, KRT85, KRT86) and three completely different genes with high frequency in
Europeans (KRT5, KRT71, KRT74). The set of keratins that have risen to high frequency in East Asians
are all members of the hair keratin group, while those at high frequency in Europeans are epithelial

keratins or without annotated function.

We show correlation between Neandertal ancestry and the B-statistic, with Neandertal ancestry
decreasing in regions of functional importance (SI 8 and SI 9). Functional categories may therefore also
not be randomly distributed with regard to B-statistic. We therefore developed a method to control for
the influence of the B-statistic on Neandertal ancestry, and then carried out the GO and KEGG

enrichment analyses using these B-statistic corrected ancestries.

All 17, 249 CCDS genes (genes on the X chromosome and genes without an assigned B-statistic were
removed) were assigned a B-statistic (averaged across all nucleotides) and a random number between 0
and 1. Genes were sorted by B-statistic and by random number and assigned to 20 equal-sized bins based
on B-statistic. Within each bin genes were then resorted by Neandertal ancestry and then by the

random number, thus assigning genes a bin-corrected percentile of Neandertal ancestry.

Genes with the top 5% of Neandertal ancestry were then used to carry out the enrichment tests. We also
tested genes with the top 5% of Neandertal ancestry without carrying out the B-statistic correction.

We tested for enrichment in Gene Ontology (Ashburner, Ball et al. 2000) categories using the
hypergeometric test implemented in the FUNC package (Prufer, Muetzel et al. 2007) and for enrichment
in KEGG pathways (Kanehisa and Goto 2000) using the hypergeometric test implemented in GOStats
(Falcon and Gentleman 2007) .

We find that the categories galactose metabolism and keratin filament are significant in East Asians, and
the combined population maps while the categories long-term depression is significant only in the
combined population set (Table SI 6.4b and Table SI 6.5b). Thus, systematic differences in purifying

selection across different gene categories cannot explain these results..

We explored whether enriched categories are unusual in their recombination rate or B-statistic, which

might produce an artifactual signal of enrichment. To do this, we
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i labeled all genes according to their average recombination rate determined from the African-
American recombination map (Hinch et al. Nature. 2011)
ii. labeled genes according to their average B-statistic (which reflects the strength of background
selection) (McVicker et al. PLoS Genetics. 2009)
We find that the Family-Wise Error Rate (FWER) in the GO enrichment analysis is only weakly
correlated with average recombination rate (Spearman correlation coefficient in Europeans p:—0.007,p—
value=3.1e-15 and in East Asians p:—0.005, p-value=3.2e-09) or B-statistic per category (in Europeans
p:0.004, p-value=8.3¢e-09,and in East Asians p:0.00Q p-value=2.5¢-05).

Thus, the enrichment signal is unlikely to be driven by either unusual recombination rates or background

selection.

Non B-corrected

GO_domain GO_term GO_id FWER(<0.05)
EUROPEAN
Cellular_component | keratin filament GO:0045095 <0.001
biological process collagen catabolic process G0:0030574 0.007
regulation of cytokine production involved in
biological process inflammatory response GO:1900015 0.035
EAST ASIAN
biological process cellular response to zinc ion GO0:0071294 <0.001
Cellular_component | keratin filament G0O:0045095 <0.001
biological process cellular response to cadmium ion GO:0071276 0.003
biological process cellular response to metal ion GO0:0071248 0.009
biological process negative regulation of biological process GO0:0048519 0.014
transforming growth factor beta receptor
biological process signaling pathway G0:0007179 0.017
molecular_function | cadmium ion binding G0:0046870 0.027
biological process response to zinc ion G0:0010043 0.035
regulation of transforming growth factor beta
biological process receptor signaling pathway GO:0017015 0.04
biological process negative regulation of growth G0:0045926 0.04
COMBINED
biological process negative regulation of biological process G0:0048519 <0.001
biological process cellular response to zinc ion GO0:0071294 <0.001
Cellular component | keratin filament G0:0045095 <0.001
biological process cellular response to cadmium ion GO0:0071276 0.002
biological process | negative regulation of cellular process GO0:0048523 0.03
biological process | regulation of cytokine production involved in | GO:1900015 0.03
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inflammatory response

biological process cellular response to metal ion G0:0071248 0.038

biological process cellular response to inorganic substance GO:0071241 0.046

Table SI 6.4a: Gene Ontology Functional Enrichment for the genes in the top 5% of
Neandertal ancestry not corrected for B-statistic. Multiple testing corrected p-values are given for
enrichment in Europeans, East Asians and a combined European and East Asian population. Categories

identified as significantly enriched in all populations are in bold.

B-corrected

GO _domain GO _term GO_id FWER(<0.05)

EUROPEAN

Cellular_component | nucleosome G0:0000786 0.001
regulation of cytokine production involved in

biological process inflammatory response GO:1900015 0.035

Cellular_component | protein-DNA complex G0:0032993 0.048

EAST ASIAN

biological process cellular response to zinc ion G0:0071294 <0.001

Cellular_component | keratin filament G0:0045095 <0.001

biological process cellular response to cadmium ion G0:0071276 0.004

biological process cellular response to metal ion GO:0071248 0.015

molecular_function | cadmium ion binding G0:0046870 0.023

COMBINED

biological process cellular response to zinc ion GO:0071294 <0.001

Cellular_component | keratin filament G0O:0045095 <0.001

biological process cellular response to cadmium ion GO0:0071276 0.003

molecular_function | zinc ion binding G0:0008270 0.034
regulation of cytokine production involved in

biological process inflammatory response GO:1900015 0.037

Table SI 6.4b: Gene Ontology Functional Enrichment for the genes in the top 5% of
Neandertal ancestry corrected for B-statistic. Multiple testing corrected p-values are given for
enrichment in Europeans, East Asians and a combined European and East Asian population. Categories

identified as significantly enriched in all populations are in bold.

Non B-corrected

KEGGID Term Raw P-value

EUROPEAN




524 | Butirosin and neomycin biosynthesis 0.00068
51 | Fructose and mannose metabolism 0.0021
4974 | Protein digestion and absorption 0.012
4730 | Long-term depression 0.015
52 | Galactose metabolism 0.022
591 | Linoleic acid metabolism 0.025
5323 | Rheumatoid arthritis 0.028
130 | Ubiquinone and other terpenoid-quinone biosynthesis 0.032
4270 | Vascular smooth muscle contraction 0.036
3030 | DNA replication 0.043
4720 | Long-term potentiation 0.05
EAST ASIAN
604 | Glycosphingolipid biosynthesis - ganglio series 0.0027
4114 | Oocyte meiosis 0.0033
4960 | Aldosterone-regulated sodium reabsorption 0.0048
5410 | Hypertrophic cardiomyopathy (HCM) 0.0054
4662 | B cell receptor signaling pathway 0.0071
5414 | Dilated cardiomyopathy 0.008
5412 | Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.0084
4140 | Regulation of autophagy 0.0093
5214 | Glioma 0.014
4622 | RIG-I-like receptor signaling pathway 0.02
52 | Galactose metabolism 0.021
4260 | Cardiac muscle contraction 0.023
4660 | T cell receptor signaling pathway 0.023
4110 | Cell cycle 0.025
450 | Selenocompound metabolism 0.026
4975 | Fat digestion and absorption 0.028
4664 | Fc epsilon RI signaling pathway 0.03
592 | alpha-Linolenic acid metabolism 0.031
4974 | Protein digestion and absorption 0.032
4972 | Pancreatic secretion 0.037
5160 | Hepatitis C 0.038
4630 | Jak-STAT signaling pathway 0.038
565 | Ether lipid metabolism 0.041
4912 | GnRH signaling pathway 0.042
5222 | Small cell lung cancer 0.044
4730 | Long-term depression 0.044
4010 | MAPK signaling pathway 0.045
COMBINED

4730 | Long-term depression 2.00E-04
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524 | Butirosin and neomycin biosynthesis 0.00064
4912 | GnRH signaling pathway 0.0016
590 | Arachidonic acid metabolism 0.0016
52 | Galactose metabolism 0.0036
591 | Linoleic acid metabolism 0.0042
592 | alpha-Linolenic acid metabolism 0.0043
4270 | Vascular smooth muscle contraction 0.0044
4960 | Aldosterone-regulated sodium reabsorption 0.0046
4662 | B cell receptor signaling pathway 0.0067
4722 | Neurotrophin signaling pathway 0.008
565 | Ether lipid metabolism 0.0089
4664 | Fc epsilon RI signaling pathway 0.0094
51 | Fructose and mannose metabolism 0.01
4010 | MAPK signaling pathway 0.011
4972 | Pancreatic secretion 0.013
5214 | Glioma 0.014
4720 | Long-term potentiation 0.015
604 | Glycosphingolipid biosynthesis - ganglio series 0.021
4660 | T cell receptor signaling pathway 0.022
4370 | VEGEF signaling pathway 0.023
4114 | Oocyte meiosis 0.024
5412 | Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.025
4971 | Gastric acid secretion 0.027
4975 | Fat digestion and absorption 0.027
564 | Glycerophospholipid metabolism 0.029
4910 | Insulin signaling pathway 0.036
4914 | Progesterone-mediated oocyte maturation 0.042
5410 | Hypertrophic cardiomyopathy (HCM) 0.044
4115 | p53 signaling pathway 0.049

Table SI 6.5a: KEGG pathway enrichment categories for the genes in the top 5% of
Neandertal ancestry not corrected for B-statistic. The raw p-values are given for Europeans, East
Asians and a combination of Europeans and East Asians. Categories identified as significant in all

populations are in bold.
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B-corrected

KEGGID Term Raw P-value
EUROPEAN

5322 Systemic lupus erythematosus 2.90E-20
4974 Protein digestion and absorption 0.013
524 Butirosin and neomycin biosynthesis 0.024
51 Fructose and mannose metabolism 0.025
10 Glycolysis / Gluconeogenesis 0.03
130 Ubiquinone and other terpenoid-quinone biosynthesis 0.047
EAST ASIAN

604 Glycosphingolipid biosynthesis - ganglio series 0.0035
450 Selenocompound metabolism 0.0045
4960 Aldosterone-regulated sodium reabsorption 0.0069
5160 Hepatitis C 0.011
4630 Jak-STAT signaling pathway 0.012
4660 T cell receptor signaling pathway 0.014
4664 Fc epsilon RI signaling pathway 0.015
4114 Oocyte meiosis 0.015
4150 mTOR signaling pathway 0.017
52 Galactose metabolism 0.026
4622 RIG-I-like receptor signaling pathway 0.028
5215 Prostate cancer 0.028
4662 B cell receptor signaling pathway 0.032
4975 Fat digestion and absorption 0.037
5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.037
592 alpha-Linolenic acid metabolism 0.037
4110 Cell cycle 0.038
COMBINED

5322 Systemic lupus erythematosus 4.50E-05
4730 Long-term depression 0.002
52 Galactose metabolism 0.0057
4960 Aldosterone-regulated sodium reabsorption 0.0079
5410 Hypertrophic cardiomyopathy (HCM) 0.01
590 Arachidonic acid metabolism 0.012
3030 DNA replication 0.014
5414 Dilated cardiomyopathy 0.015
5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.015
4664 Fc epsilon RI signaling pathway 0.017
524 Butirosin and neomycin biosynthesis 0.019
4320 Dorso-ventral axis formation 0.022
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604 Glycosphingolipid biosynthesis - ganglio series 0.029
4912 GnRH signaling pathway 0.029
591 Linoleic acid metabolism 0.033
450 Selenocompound metabolism 0.034
4662 B cell receptor signaling pathway 0.037
130 Ubiquinone and other terpenoid-quinone biosynthesis 0.037
592 alpha-Linolenic acid metabolism 0.04

Table SI 6.5b: KEGG pathway enrichment categories for the genes in the top 5% of
Neandertal ancestry corrected for B-statistic. The raw p-values are given for Europeans, East
Asians and a combination of Europeans and East Asians. Categories identified as significant in all

populations are in bold.
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SI7 Neandertal derived alleles segregating in modern hu-
mans and their association to phenotype

In this section, we attempt to identify alleles segregating in modern humans that were introduced
through Neandertal gene flow and to associate these alleles with phenotypes that have been studied
in GWAS. A priori, we expect GWAS to have low power to detect association with variants that
are Neandertal derived since the allele frequencies of these variants tend to be quite low < 10%.
Further, the causal variant may often not be included on genotyping arrays. Despite the low power,
we expect that this analysis might give us a first look at the phenotypic impact of Neandertal gene
flow.

Firstly, we identified whether an allele segregating in a target population likely owes its origin to
the Neandertal gene flow.

o We identified sets of alleles that are confidently labeled as Neandertal, A/, by scanning for alleles
with marginal probability of Neandertal ancestry > 0.90. We also identified sets of alleles
that are confidently labeled as non-Neandertal, MH, by scanning for alleles with marginal
probability < 0.1).

e For each SNP called in the 1000 Genomes Project dataset that pass our filters, we required
that none of the derived alleles at this SNP falls on one of the alleles in the set MH and all
of the alleles in N carry the derived allele. This procedure allows for some false negatives in
the predictions of the CRF.

e We also required that the derived allele is absent in the panel of 176 YRI.

We ran this procedure on the combined calls from the European and East Asian populations. This
procedure yielded a total of 97365 SNPs that are likely to be Neandertal-derived.

To associate these Neandertal-derived alleles to phenotype, we downloaded the variants listed in
the NHGRI GWAS catalog (Hindorfl et al., 2009) (we used a downloaded version that had its latest
entry dated to 04/05/2013). We only retained entries for which the reported association is a SNP,
the SNP has been assigned a rsid and for which the nominal P-value is < 5 x 1078. This procedure
resulted in 5022 entries of genomewide significant associations.

We then intersected the Neandertal-derived SNPs with the SNPs in the filtered NHGRI GWAS
catalog (we did not expand this set to include other SNPs that might be in high LD to the SNPs
in our set). 6 of the Neandertal-derived SNPs were present in the GWAS catalog (Extended Data
Table 2).

In addition to the GWAS catalog, we reexamined four non-synonymous SNPs that were found
to tag the risk haplotype for type 2 diabetes in a recent GWAS in Latinos (The SIGMA Type 2
Diabetes Consortium). Analyses of the geographic distribution, divergence and the genetic length of
this haplotype as well as comparison to the high-coverage Neandertal genome (Priifer et al., 2013)
suggested that this haplotype is introgressed from Neandertals. We were interested to see if any of the
four SNPs on the risk haplotype were predicted to be Neandertal-derived according to our criteria.
Three of the four SNPs (at positions 6945087,6945483 and 6946330 on chromosome 17) were found to
be Neandertal-derived according to our criteria. The fourth (6946287 on chromosome 17) is present
at appreciable frequencies in sub-Saharan Africans and is not predicted to be Neandertal-derived.

Some notes on the Neandertal derived alleles listed in Extended Data Table 2 are as follows.

1. 1812531711 has been shown to be associated with primary biliary cirrhosis (Mells et al, 2011).
It has also been shown to be associated with systemic lupus erythematosus (SLE) both in cases
for which the anti-dsDNA autobodies were observed and those that were not (Chung et al.,
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2011). The catalog also lists a meta-analysis of GWAS in European populations that found
evidence of association between this SNP and SLE (Table 2, (Lee et al., 2012)). According
to the catalog, the predictor allele in this study is A. However, the reported odds ratio would
then be inconsistent with the odds ratio computed using Chung et al. (2011) which uses G
as the predictor allele. We think that the latter is correct based on the allele frequencies and
reported odds ratios i.e., allele G increases the risk for SLE at this SNP.

. 183025343 : Derived allele is negatively associated with smoking cessation (Furberg et al.,
2010).

. 187076156 :Derived allele is risk-decreasing in Ashkenazi Jews (Kenny et al., 2012).
. 1512571093 : Derived allele is associated with decreased disk area (Macgregor et al., 2010).
. 151834481 : Derived allele is associated with decreased plasma IL-18 (He et al., 2010).

. 1811175593 : Derived allele is risk-increasing (Barrett et al., 2008).
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SI8 Analysis of genomic regions deficient in Neandertal an-
cestry

Extended Data Fig.2 suggests that there exist several large regions of the genome that have little
Neandertal ancestry.

SI8.1 Identification of regions deficient in Neandertal ancestry

To assess the existence of regions deficient in Neandertal ancestry in a robust manner, we measured
the fraction of Neandertal ancestry ta;(w) that exceeds a threshold ¢ averaged across all SNPs and
individuals within non-overlapping windows that tile the genome:

2m1 2 Hosy > 1

m|{j € w}|

tay(w) = (8)
Here t € [0,1] is a threshold. A SNP in an individual is declared to be Neandertal derived if the
marginal probability assigned by the CRF to the SNP exceeds this threshold. For most analyses,
we have chosen ¢ = 0.9. While this choice resulted in Neandertal ancestry calls that have low false
discovery rates, the recall is reduced at this threshold. To assess whether a window is deficient in
Neandertal ancestry however, a high recall is desirable. Hence, we choose ¢t = 0.25. Our analysis
of the empirical precision and recall show that, at this threshold, both the precision and recall are
high (> 80%). Further, we assess deficiency of Neandertal ancestry in large windows (w = 10 Mb)
— this averages the effect of drift later in gene flow and makes the observations less likely to be an
artifact of reduced power.

We excluded all windows that overlap (over any part of their length) the centromeres or the
telomeres. We further restricted our analysis to windows in which the number of SNPs that pass
filters is at least 1000. We also discarded windows for which the genetic length of the window was
less than 1.96 standard deviations from the mean — a reduced Neandertal ancestry in these windows
is expected to be more variable due to the smaller number of recombined Neandertal haplotypes.

In this set of 227 filtered windows, the average number of SNPs is 99,036 with a standard
deviation of 14,030 and a range of 12,190 to 150,453. We measured the distribution of tag.o5 in
this set. The mean and standard deviation of tag s measured in EUR are 1.79% and 1.45%. We
observe that four windows have a tag o5 less than 0.1% with one window having tag.o5 = 0. In ASN,
the mean and standard deviation of tagos are 2.25% and 2.27% with fourteen windows < 0.1%
with one window having tags5 = 0. Amongst windows with tago5 < 0.1%, there is one window,
7 : 110,000 — 000 — 120,000,000 that has tagss; = 0 and is common to EUR and ASN. We also
examined chromosome X for 10 Mb windows with tag o5 < 0.1%. We detected five and three windows
in Europeans and East Asians respectively.

To assess if regions deficient in Neandertal ancestry might be artifacts caused by reduced power
to detect Neandertal ancestry, we computed Spearman’s correlation coefficient p between Neandertal
ancestry as measured by tag.o5 and the genetic length of 10 Mb windows. If the regions deficient in
Neandertal ancestry are artifacts of reduced power, we would expect the proportion of Neandertal
ancestry in them to be negatively correlated with recombination rate as Neandertal haplotypes
would be longer and thus easier to detect in regions of low recombination rate, but we instead see a
significant trend in the positive direction (p = 0.221 in EUR; P = 4.4 x 1073 and p = 0.226 in ASN;
P=192x1073).

There are two possible explanations for these large regions with relatively little Neandertal an-
cestry:
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Population la tag.os tap.o

P —logio(pval) p —logio(pval) p —logio(pval)
(s¢) (s0) (s¢)

Autosomes EUR 0.32 86.310 0.131 14.064 0.0394 1.822
(0.0162) (0.0169) (0.0162)

Autosomes ASN 0.305 67.411 0.0963 5.698 0.0209 0.533
(0.0175) (0.0202) (0.0198)

X EUR 0.276 3.358 0.21 3.150 0.15 3.124
(0.0809) (0.0639) (0.0466)

X ASN 0.176 1.062 0.111 0.574 0.107 0.617
(0.105) (0.105) (0.0972)

Table SI8.1: Relationship between Neandertal ancestry and B-statistic. p refers to Spearman’s
correlation coefficient.

e Regions that have drifted to low frequencies early on since gene flow.

e Rapid selection against the introgressing Neandertal haplotype.

SI8.2 Correlation of Neandertal ancestry with B-statistics is consistent
with the action of selection on Neandertal alleles

We analyzed if the proportion of Neandertal ancestry in a genomic region is correlated to the B-
statistic, a measure of the strength of background selection (McVicker et al., 2009). B-statistic
is reduced in the vicinity of genes and other functional elements. We analyzed the relationship
between Neandertal ancestry and the B-statistic at different size scales, on the X chromosome and
the autosomes and in Europeans and East Asians.

B-statistics were lifted over to hgl9 coordinates. We then annotated each of the SNPs that we
analyzed with the B-statistic of the genomic region in which the SNP falls. In our first analysis, we
partitioned SNPs into quintiles based on their B-statistic annotation. At each SNP, we considered
several estimates of the Neandertal ancestry : la which computes the average over the marginal
probability of Neandertal ancestry assigned to each individual haplotype, tag.9 which computes the
average fraction of alleles across individuals that attain a marginal probability of > 0.90 and tag.25(w)
that computes the analogous statistic for a threshold of 0.25. Figures SI 8.1 and SI 8.2 plot the
relationship between Neandertal ancestry and B-statistic quintile. We observe a trend of the median
Neandertal ancestry increasing with the quintile 7.e., the median Neandertal ancestry is higher in
regions of high B. This relation is strongest for the la statistic relative to either of the thresholded
statistics. A likely reason for this difference is that power to detect Neandertal ancestry is lower
in regions of high B (Section SI2.4). Using a constant threshold across the genome is expected to
reduce this signal.

We estimated Spearman’s correlation coefficient p between Neandertal ancestry and B-statistic
(Table SI8.1). We performed a block jackknife in 10 Mb windows to estimate the standard error of
p. We see a statistically significant correlation between B-statistic and different summaries of the
Neandertal ancestry (except in the case of East Asians and the tag g0 statistic which is likely to be
due to its decreased power).

We decided to interrogate the relation between Neandertal ancestry and B at several size scales
as such an analysis can potentially provide insights into the strength of selection. We partitioned
the genome into non-overlapping windows of size w. Within each window w, we estimated the
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Figure SI8.1: Neandertal ancestry vs quintile of B-statistic in EUR on the a) autosomes and the b)
X-chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
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Figure SI8.2: Neandertal ancestry vs quintile of B-statistic in ASN on the a) autosomes and the b)
X-chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
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Neandertal ancestry. We considered several estimates of the Neandertal ancestry : la(w) which
computes the average over the marginal probability of Neandertal ancestry assigned to each SNP on
each individual haplotype within window w, tag.g(w) which computes the average fraction of alleles
across individuals and SNPs within window w that attain a marginal probability of > 0.90 and
tag.os(w) that computes the analogous statistic for a threshold of 0.25. We further restricted our
analysis to windows in which the number of SNPs that pass filters is at least 10 (at such windows, our
estimate of the proportion of Neandertal ancestry is likely to be noisy). We did not explicitly remove
windows that overlap the centromeres or telomeres as this would impact the analysis at at large size
scale disproportionately. Analogous to the way we estimated Neandertal ancestry, we computed the
average value of the B-statistic over each window w by averaging the B-statistic assigned to each
SNP within the window.

Figures SI&.3, SI8.5, SI8.7 and SI8.10 plot the relationship between Neandertal ancestry and
B-statistics for varying window sizes. We estimated Spearman’s correlation coefficient p between
Neandertal ancestry and B-statistic (Table SI8.2 and SI8.3). We performed a block bootstrap to
resample the windows. We used 1000 bootstrap replicates to estimate the standard error of p and
to construct a Z-score which we then use to assign a P-value to the two-sided hypothesis that p is
Z€ro.

We make several observations from Tables SI8.2 and SI8.3:

e At a 100 Kb size scale, Neandertal ancestry is positively correlated with B-statistic. This
relationship holds on the autosomes and the X chromosome, in Europeans and East Asians, and
holds for all the summaries of Neandertal ancestry considered (the correlation being stronger
on the autosomes than the X and in Europeans than in East Asians). The relationship is
statistically significant in all cases.

e At a 10Mb size scale, we see the same qualitative relationship as at a 100 Kb size scale although
the strengths of the correlation are reduced due to a smaller number of windows at this scale.
The relationship is stronger in Europeans than in East Asians and is not statistically significant
in East Asians though consistent with the signal at a 100 Kb scale.

e At a0.1 cM size scale, we see a similar trend on the autosomes. An exception is that Neandertal
ancestry as measured by tag.gg is negatively correlated with B-statistic on the autosomes. This
effect reverses for the tag o5 and the la statistics. One possible contributor to this effect is that
the power to identify Neandertal haplotypes is reduced in regions of high B-statistic, as genetic
diversity is higher. Thus the correlation of tag.gp is expected to be an underestimate of the
true slope.

SI8.3 Variation of Neandertal ancestry at 10 Mb size scales is consistent
with drift early after introgression

To understand the contribution of demographic effects to the variation in Neandertal ancestry, we
use the idea that if drift is responsible for the observed pattern, the entire distribution of Neandertal
ancestry should be affected. Selection that is localized to a small number of regions of the genome,
on the other hand, while producing an excess of low-frequency regions, should have little effect on
the bulk of the distribution. To test this, we measured the coefficient of variation of tag o5 at a 10
Mb scale. We measure a cv of 0.808 +0.044 in EUR and 1.010 £0.056 in ASN (standard errors were
obtained using a block jackknife where a block consists of a 10 Mb window). We also measured the
cv in constant 10 cM windows. We observed a cv of 0.838 £0.034 in EUR and 1.060+0.048 in ASN,
consistent with the findings from physical distance-based windows. Figure SI8.11 shows the cv of
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Figure SI 8.3: Neandertal ancestry vs B-statistic in EUR on the a) autosomes and the b) X-
chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(0.1 cM) while the bottom row plots windows that are of constant physical size (100 Kb).
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Figure SI8.4: Neandertal ancestry vs quintile of B-statistic in EUR on the a) autosomes and the b)
X-chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(0.1 ¢cM) while the bottom row plots windows that are of constant physical size (100 Kb).
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Figure SI 8.5: Neandertal ancestry vs B-statistic in ASN on the a) autosomes and the b) X-
chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(0.1 cM) while the bottom row plots windows that are of constant physical size (100 Kb).
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Figure SI8.6: Neandertal ancestry vs quintile of B-statistic in ASN on the a) autosomes and the b)
X-chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(0.1 ¢cM) while the bottom row plots windows that are of constant physical size (100 Kb).
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Figure SI 8.7: Neandertal ancestry vs B-statistic in EUR on the a) autosomes and the b) X-
chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(10 ¢cM) while the bottom row plots windows that are of constant physical size (10 Mb).

81



Autosomes.

Average Threshold (0.90) Threshold (0.25)
T s s | : .
- 8 ] E| - L EJ gl — L L L -
DM (ol @u4sSE (99952 (5210403 S (91 (1499 (@99952) (95210003 0% Bl (4090 (99952 (@5210403]
[——— st (qunte) sttt (unie)
BN g £ '
ol Game) @usss (@952 @%216403 looEl  (ama (s (@99552) (s520003] oom  (ma (s @995 (s520003]
o-stasse (quinte) sttt (quinte) ——
(a)
x
Average Threshold (0.90) ‘Threshold (0.25)
" g
] prmm— g prmm— . pr—
21 H
: H -
; g <7
H : . H
2 assey  (asan (832549 (4916403 s (s (els (G240 (5491003 2 (assen (e3sw (22040 (4916403
a-stn o - o
B g
B §
4 e 2 8| — —

(0235 (a5 (5638 (832.949] (940,10403]

B-stisic (quinie)

(0235 (assen (63832 (032949) (049.10+03)

B-stasic (quintle)

(b)

82

(0235 (assen (360832 (32949] (049.1e+03)

B-statstic (qrntie)

Figure SI8.8: Neandertal ancestry vs quintile of B-statistic in EUR on the a) autosomes and the b)
X-chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(10 cM) while the bottom row plots windows that are of constant physical size (10 Mb).
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Figure SI 8.9: Neandertal ancestry vs B-statistic in ASN on the a) autosomes and the b) X-
chromosome . In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(10 ¢cM) while the bottom row plots windows that are of constant physical size (10 Mb).
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Figure SI8.10: Neandertal ancestry vs quintile of B-statistic in ASN on the a) autosomes and the b)
In each panel a) and b), each column plots a different summary of the Neandertal
ancestry within a window. The leftmost plots la, the middle plots tag.¢9 and the rightmost tag.o5.
The top row in each panel plots this relationship for windows that are of constant genetic length
(10 cM) while the bottom row plots windows that are of constant physical size (10 Mb).




Population la tag.os tag.g

P —logio(pval) p —logio(pval) p —logio(pval)
(se) (se) (se)

Autosomes EUR 0.327 727.812 0.167 170.332 0.0979 53.218
(0.00566) (0.006) (0.00633)

Autosomes ASN 0.313 630.638 0.129 105.429 0.0703 29.354
(0.00582) (0.0059) (0.00617)

X EUR 0.314 37.387 0.238 24.680 0.201 18.569
(0.0243) (0.0228) (0.0224)

X ASN 0.2 13.740 0.138 7.064 0.108 4.239
(0.026) (0.0258) (0.0269)

Autosomes EUR 0.303 553.922 0.111 67.123 -0.029 5.243
(0.00601) (0.00637) (0.00638)

Autosomes ASN 0.279 439.239 0.0575 18.162 -0.0523 15.271
(0.00621) (0.00647) (0.00646)

X EUR 0.219 14.564 0.148 7.711 0.0827 2.621
(0.0277) (0.0263) (0.0272)

X ASN 0.177 9.548 0.0946 3.387 0.0632 1.575
(0.028) (0.0268) (0.0285)

Table SI8.2: Relationship between Neandertal ancestry and B-statistic at a 100 Kb and at a 0.1 cM
size scale. p refers to Spearman’s correlation coefficient.

Population la tag 25 tag.g

P —logio(pval) p —logio(pval) p —logio(pval)
(s¢) (s¢) (s¢)

Autosomes EUR 0.239 4.328 0.137 1.651 0.0841 0.755
(0.0588) (0.0599) (0.0621)

Autosomes ASN 0.147 2.002 0.0863 0.891 0.0506 0.406
(0.0569) (0.0568) (0.0592)

X EUR 0.741 5.801 0.768 8.646 0.685 6.452
(0.154) (0.128) (0.134)

X ASN 0.193 0.327 0.227 0.361 0.207 0.287
(0.268) (0.291) (0.318)

Autosomes EUR 0.333 11.399 0.143 2.241 0.0411 0.356
(0.048) (0.0519) (0.0534)

Autosomes ASN 0.193 3.880 0.00735 0.051 -0.0525 0.498
(0.0504) (0.053) (0.0526)

X EUR 0.674 3.771 0.266 0.502 0.259 0.445
(0.179) (0.264) (0.282)

X ASN -0.0808 0.099 -0.161 0.194 -0.127 0.142
(0.312) (0.344) (0.356)

Table SI8.3: Relationship between Neandertal ancestry and B-statistic at a 10 Mb and at a 10 cM
size scale. p refers to Spearman’s correlation coefficient.
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tag.o5 in CEU and CHB at varying physical and genetic lengths. Figure SI8.13 shows the the cv of
the tag.gg statistic which is also qualitatively similar to the behavior of the tag. o5 statistic.

To see if the cv might be explained by a demographic model, we simulated data under several
demographic models. We used a procedure similar to the one described in Section SI2.3. For each
simulated dataset, we ran the CRF with model parameters as estimated in Section SI2.1. We then
estimated the cv of the tag o5 statistic in 10 ¢cM windows.

Since there is considerable uncertainty in the demographic model relating modern humans and
Neandertals, we started with a reasonable demographic model and perturbed each parameter of
the model in turn. We simulated 100 European haplotypes, 100 African haplotypes as well as a
single Neandertal haplotype. We simulated 300 1 Mb regions using a version of ms (Hudson, 2002).
However, since we are interested in the Neandertal ancestry at a 10 cM size scale, we set the mutation
rate and recombination rates to 10 times their genomewide average i.e, p = 1.2x 1077, r = 1.3x 10"
per bp per generation. Using these parameters, a 10 cM window has a physical length of 769 kb. In
each set of simulations, we varied each parameter of the demographic model in turn over a grid of
size 6 that includes the endpoints (as described in Section SI2.3).

1. T1 — the time of split of Africans and Europeans. Default of 2500 generations. Varied from
2500 to 5000.

2. T, — the time of split of modern humans and Neandertals. Default of 12000 generations. Varied
from 9000 to 13000.

3. Tgr — the time of Neandertal gene flow. Default of 2000 generations. Varied from 500 to 3000.

4. N; — the effective population size (assumed constant) in Europeans since gene flow. Default
of 10000. Varied from 5000 to 50000.

We set the admixture proportion to 0.02 which is consistent with the most recent estimates from
formal methods (Priifer et al., 2013). We also assumed a bottleneck in the Neandertals beginning
6120 generations ago and ending 6000 generations ago, in which the Neandertal effective population
size is reduced to 100 as was done in Section SI1.

In these simulations, the drift since Neandertal gene flow ranges from 0.025 to 0.2. These settings
span the estimates of drift since Neandertal gene flow in European and East Asian populations. One
common feature of all these models is that Neandertal gene flow occurred into a large population.
We ran the CRF on each simulated dataset with parameters estimated on the demographic model
described in Table SI2.1 in Section SI2.1. We find that the maximum coefficient of variation at a
10 cM size scale across models is 0.54 £ 0.02.

We introduced a bottleneck of strength 0.10 (the bottleneck duration was fixed to 20 generations
and the effective population size was fixed to 100) at various times both before and after the gene
flow event (ranging from 1020 to 2520 generations in a grid of size 6). For bottlenecks that occurred
before the gene flow, the coefficient of variation is 0.52 4+ 0.024. For bottlenecks that occurred after
the first 300 generations, the coefficient of variation is 0.75 4+ 0.024. However, a bottleneck that
starts 80 generations after the time of gene flow produces a coefficient of variation of 1.03 + 0.05
while a bottleneck that start 180 generations after gene flow has a cv of 0.86. These results are
consistent with a model in which there is increased drift early on in the history of non-African
populations since Neandertal gene flow. One such model requires Neandertal gene flow into a
relatively small population (in terms of the effective population size). However, it is also plausible
that the Neandertal gene flow was into a large population which had a reduced effective population
size soon after. This analysis also does not distinguish if all or some of this drift could have been
shared between the European and East Asian populations. For example, we find only 1 window
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Figure SI 8.11: Coefficient of variation of Neandertal ancestry as estimated by tag.os in CEU and
CHB in windows of a) constant genetic size and b) constant physical size.
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Figure SI8.13: Coefficient of variation of Neandertal ancestry as estimated by tag.25 on simulated
data. The proportion of Neandertal gene flow was set to 0.02. The x-axis denotes a single parameter
of the demographic model that was varied while keeping all other parameters fixed (see Section SI
8.3). We plot the point estimate and 1.96x the standard errors. Solid red (blue) lines are the 95%
CIs of the coefficient of variation in EUR (ASN) at a 10 Mb size scale. Dashed red (blue) lines
denote the 95% Cls at a 10 ¢cM size scale in EUR (ASN).

overlapping between Europeans and East Asians at a frequency < 0.1% (a caveat however is that it
is not clear that we ought to be using a common threshold for both populations given their differing
means and variances).

In introducing a bottleneck, our analysis has been conservative in assuming that the total drift on
the non-African population is at least 0.10. If we further constrain this quantity based on estimates
of say 0.07 in Europeans, this might constrain the drift to occur even earlier in the history of gene
flow.
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SI9 Unbiased statistics support enhanced Neandertal ances-
try in gene-poor regions

SI9.1 Motivation

In Figure 3 of the main text, we show that the proportion of the genome that is inferred by our
method to be of Neandertal ancestry is lower in gene-dense regions in both Europeans and East
Asians.

In the main text, we interpret this signal as evidence that Neandertal ancestry has been removed
from gene-dense regions (as measured by a low value of the B-statistic) via the action of natural
selection. However, an alternative interpretation of these patterns is that these observations do not
reflect true biology, but instead are artifacts of the fact that our local ancestry inference method
has varying sensitivity to detecting true segments of Neandertal ancestry depending on underlying
genomic features.

As a first way of exploring this alternative possibility, in Section SI2.4, we report simulations
that show that in regions of the genome with a low time since the most recent common ancestor
(typical for regions with low B-statistics), we expect to have increased power to detect Neandertal
ancestry. This makes our observation of a reduced rate of Neandertal ancestry in these regions all
the more surprising as if our signal was a result of varying power, the local Neandertal ancestry in
low B-statistic regions ought to be increased, not reduced as we observe.

As a second way of exploring the possibility that our signal might be an artifact of variation
in the power of our method across the genome, in this note we estimate Neandertal ancestry as
a function of B-statistic using an ancestry estimation statistic that is not biased by features that
vary spatially across the genome such as mutation rate, recombination rate, and average time since
the most recent common ancestor. While this statistic gives noisier estimates than local ancestry
inference, the fact that it is unbiased allows us to carry out formal tests.

S19.2 Method

We analyzed data from 27 deeply sequenced genomes: 25 genomes from present-day humans and
the high coverage Altai Neandertal and Denisova genomes. In each deeply sequenced sample, we
restricted to nucleotides that passed the stronger of the two sets of filters described in SI 5 of Priifer
et al. (2013) (Map35_100%), and further required a genotype quality scores of GQ>45 at each
analyzed site. We finally required that we could determine the ancestral allele based on comparison
to chimpanzee and at least one of two great ape genomes (gorilla or orangutan).

To increase power for our analysis, we analyzed the following pools of present-day humans,
restricting to nucleotides that had a genotype in at least one sample in the specified pool.

“European” n=4 2 French, 2 Sardinian

“Eastern” n=7 2 Han, 2 Dai, 2 Karitiana, 1 Mixe

“Non-African” n=11 2 French, 2 Sardinian, 2 Han, 2 Dai, 2 Karitiana, 1 Mixe
“African” n=6 2 Dinka, 2 Yoruba, 2 Mbuti

We divided the genome into quintiles of B-statistic, each containing an approximately equal
amount of data. In each quintile, we computed the following unbiased estimator of Neandertal
ancestry first presented in SI 8 of Reich et al. (2010) :

PN

A S(Non — African, African, Denisova, Chimpanzee)

~

S(Neandertal, African, Denisova, Chimpanzee)
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This statistic measures the excess rate of matching of a non-African sample to Denisova using
Africans as a baseline, compared with what is seen for a 100% Neandertal (Altai). This estimate
is unbiased regardless of the mutation rate, recombination rate, and average time since the most
recent common ancestor, as these are expected to affect the numerator and denominator equally.

We computed Neandertal ancestry estimate for each quintile as a fraction of the average:

; Ryuinti
Y:zuintile = Aq%
Rwhole genome

We obtained a standard error using a Block Jackknife by dividing the genome into 100 equally

sized contiguous chunks and studying the variation across chunks (KKunsch, 1989).

S19.3 Results

Pooling data from Europeans and Eastern non-Africans and using both transition and transversion
polymorphisms to reduce the standard errors, we find that the proportion of Neandertal ancestry
is 1.537 £ 0.152 times larger in the quintile of the genome with the highest B-statistic (B=0.94-1)
than in the bottom four quintiles (B=0-0.94) (Extended Data Table 4).

The observed excess is statistically significant at Z=3.82 (nominally P=6.6 x 10~° by a one-sided
test). To be conservative, we applied a penalty for multiple hypothesis testing (since we visually
inspected the data and chose the boundary between bins that maximized the differentiation). We
specifically assumed that we tested 10 hypotheses (notionally testing 5 different hypotheses and
performing a 2-sided test in each). The value we report in Extended Data Table 4 is thus a P-value
with Bonferroni correction for 10 hypotheses tested of P=0.00066.

We also carried out the same analyses in subsets of the data: transversions only (P=0.013),
Europeans and transversions only (P=0.0090), and Eastern non-Africans and transversions only
(P=0.049). We obtain qualitatively consistent results.
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SI10 Wavelet decomposition of the correlation of Neandertal
ancestry across populations

We use wavelet analysis (Percival and Walden, 2005) to assess the correlation between Neandertal
ancestry in Europeans and East Asians at different size scales. Intuitively, Neandertal ancestry along
the genome can be written as a linear combination of basis functions (constructed by translating
and dilating a scaling and wavelet function) that capture the variation of Neandertal ancestry along
the genome at different size scales.

To perform wavelet analysis, we consider the tag o5 statistic measured in 10 Kb windows (using
1 Kb windows or using the taggo statistic gave similar results). We considered each of the 22
chromosomes individually. The wavelet transform that we apply require the length of the series to
be a power of two; hence, we pad the series for each chromosome on the left and the right so that
the length is equal to its nearest power of two. Further, there are some windows which have no
SNPs and hence a tag o5 statistic of zero. We use a linear interpolation scheme to predict the tag .25
statistic at these windows.

We applied a discrete wavelet transform using Daubechies least-assymetric wavelets with ten
vanishing moments (Daubechies, 1988) using the R wavethresh package (wav). This transform
decomposes the variation in Neandertal ancestry into size scales of 2% x 10 Kb, k = 0,...,11, the
maximum of which corresponds to a size scale that is smaller than the smallest of chromosomes. At
each scale k, we computed the Spearman correlation of the detail coefficients for Europeans and East
Asians across all chromosomes. To estimate standard errors on the correlation, we used a weighted
block jackknife with each chromosome treated as a block and weights set to the number of windows
on the chromosome (Busing et al., 1999).

Figure SI110.1 shows how the correlation in Neandertal ancestry between EUR and ASN at size
scales ranging from 10 to 2'! x 10 Kb. We see significant correlation across all size scales with
increasing correlation at a 10 — 20 Mb scale.

We considered the fact that some of the correlation in Neandertal ancestry proportion that we
observe between EUR and ASN is likely to be due to the fact that the sensitivity of our method to
detecting Neandertal ancestry is correlated to local genome sequence features that are shared which
are in turn shared between EUR and ASN. While this is a real effect, it cannot explain the fact that
the correlation grows stronger at larger distance scales, as this effect would in fact predict a decrease
in correlation at larger distance scales. Specifically, at larger distance scales we would expect power
to detect Neandertal ancestry would not vary much across the genome since we are averaging over
diverse sequence features so any correlation that is due to the sensitivity of the method would be
expected to decrease.
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Figure SI10.1: Correlation of Neandertal ancestry across EUR and ASN at different size scales.
Neandertal ancestry was estimated by tag. o5 in windows of 10Kb.
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SI11 Evidence for Neandertal introgression at loci previ-
ously identified to be introgressed

To evaluate the power of the CRF on empirical data, we assessed the predicted Neandertal ancestry
at loci that have been previously identified to be introgressed (Abi-Rached et al., 2011; Mendez
et al., 2012, 2013; Yotova et al., 2011).

We considered all SNPs called by the 1000 Genomes project within each locus. For each locus,
we computed two statistics — the first, ta, that only counts alleles at which the predicted Neander-
tal ancestry excess a threshold of 0.90 while the second, la, estimates averages the probability of
Neandertal ancestry.

To compute ta, at each SNP j within the locus of interest, we counted the fraction of individuals
that fall on a Neandertal haplotype (which in turn is defined as a run of SNPs assigned marginal
probability of at least 0.90). We interpolate this statistic linearly between SNPs and compute the
average value of this function over the locus. A non-zero value indicates that at least one of the
samples shows strong evidence of introgression at this locus. For our second statistic la, at each SNP
4 within the locus, we compute the average of the probability of the Neandertal ancestry across all

m
Vs.j

haplotypes, la(j) = ~==—=. We compute the average value of this function over the locus after
linear interpolation.
Locus Coordinates EUR ASN
ta la ta la
%)  (0) (%) (%)
HLA class I  6:29,691,240-31,324,934 043 157 043 1.57
STAT?2 12:56,737,172-56,750,354 6.60 7.23 390 491
OAS 12:113,344,844-113,448,288 26.45 30.63 26.45 30.63
SLC16A11  17:6,944,997-6,946,903 1.70 540 800 13.93
DMD X:31,139,949-33,229,428 0.76 484 036 4.77

Table SI'11.1: Neandertal ancestry predicted by CRF at loci previously found to be introgressed.

Table SI11.1 estimates ta and la in European and East Asian populations for five loci that have
been reported to contain Neandertal introgression in previous studies. We see from Table ST 11.1
that all the loci show evidence for introgression according to the predictions of the CRF (ta > 0).

We do observe some differences that might reflect the limitations of the CRF. Abi-Rached et al.
(2011) estimate the contribution of archaic ancestry at HLA-A to be > 50% in Europeans and > 70%
in Asians. The CRF predicts Neandertal ancestry at this locus to be about 1.5% which is close to
the background. One reason for this difference could be due to the action of balancing selection at
this locus. As a result, alleles are likely to be shared between African, non-Africans and Neandertals
even if introgression occurred. Thus, the CRF might be expected to have a high false negative rate
at such loci. Mendez et al. (2012) show, using diagnostic SNPs that tag the introgressed haplotype,
that the introgressed haplotype at STAT2 has a frequency in Eurasian populations ranging from
2 —9%. Mendez et al. (2012) also show that there are two variants of the introgressed haplotype
— a long and a short variant. They provide evidence for positive selection on the long variant in
Melanesians. Mendez et al. (2013) show that the average allele frequency of 4 diagnostic SNPs that
tag the introgressed Neandertal haplotype in the European HGDP populations is about 30%. We
observe similar frequencies at this locus in European and East Asian populations. At both these
loci, there is evidence of introgression from Denisovans as well (Mendez et al., 2013, 2012). Similar
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maps of Denisovan introgression would be useful in characterizing these events on a genomewide
scale.
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A Maximum likelihood estimate of the drift since Neander-
tal gene flow

We consider the problem of computing the parameters that maximize the log likelihood L(c, «, 7)
defined in 7 where « € [oy, ], 7 € [71,7y]. £ is not convex. To maximize £, we use a grid-search
followed by a refinement approach.

To maximize £, we consider a grid of width (e, Tinc) over the interval Z = [y, o] X [11, To]. At
each point (o, 7) in the grid, we compute the profile log likelihood £,(c, 7) = maxz.L(c,a, 7). For
fixed («, 7), L is strongly convex in ¢. The profile log likelihood can be computed analytically for
each («, 7). If the maximum of the profile log likelihood is attained at (aq,71), we consider a new
interval Z; = [oq!, o, t] x [}, 7). Here apt = max(ay — ine, 1), .t = min(aq + dine, a)],mit =
max(Ty — Tine,s T1)yTu' = Min(T1 + Tine, Tw). We maximize £, over Z; using a Nelder-Mead Simplex
algorithm (Nelder and Mead, 1965; Galassi et al) to obtain the MLE (&, 7). We set tin. = 0.01, fine =
0.005, , = 0.01, 7, = 0.30. We set ay, a,, based on prior knowledge. In simulations, we set o =
0.01, o, = 0.04. For application to empirical data, we set bounds on «; = 0.00, a,,, = 0.04.
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