Supporting Information for:

An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation *via* the second excited state

Yun-Nan Guo^{1, 3}, Liviu Ungur⁴, Garrett E. Granroth⁵, Annie K. Powell⁶, Chunji Wu², Stephen E. Nagler⁵, Jinkui Tang^{1,*}, Liviu F. Chibotaru^{4,*} & Dongmei Cui^{2,*}

¹ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. Fax: (+)86–431–85262878; E-mail: tang@ciac.ac.cn; ² State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China; ³ School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China; ⁴ Division of Quantum and Physical Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; ⁵ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ⁶ Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany and Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggensteinn-Leopoldshafen, 76344 Karlsruhe, Germany

Contents

- 1 Computational details (Fig. S1-S2, Tables S1-S4).
- 2 Electronic and magnetic properties of individual Dy centers (Fig. S3-S8, Tables S5-S12).
- 3 Inelastic neutron scattering measurements (Fig. S8).
- 4 Alternating current (ac) magnetic susceptibility measurements (Fig. S9-S10).

5 References.

1 Computational details

The ab initio calculations of DyNCN have been done with Molcas 7.8 package.¹ In these calculations, the relativistic effects are taken into account in two steps, both based on the Douglas-Kroll Hamiltonian.² In the first step, scalar relativistic effects are already taken into account in the basis set generation. Further, spin-free eigenstates are obtained in the Complete Active Space Self Consistent Field (CASSCF) method.³ The active space of the CASSCF included the 9 electrons spanning seven 4f orbitals of the Dy³⁺ ion, unless otherwise specified. The spin-orbit coupling is considered in the next step (RASSI),⁴ which uses spin-free eigenstates as input, and in their basis computes the matrix elements of the magnetic moment. In the last step, the SINGLE_ANISO module computes all magnetic properties and parameters of the magnetic moment. This method has been successfully applied for the elucidation of the local electronic and magnetic properties of other lanthanide complexes.⁵

Two structural models for the mononuclear Dy fragments have been employed: fragment **A** (small), **B** (larger) and **C** (entire molecule). Structure of the structural model **A** and **B** are shown in Figures S1 and S2 respectively.

Fig. S1 Structure of the fragment A of the molecule.

Fig. S2 Structure of the fragment **B** of the molecule.

Three basis set approximations have been employed: 1 - small, 2 - larger, and 3 - even larger. Table S1 shows the contractions of the employed basis sets for all elements. All in all we have the following computational models: A1, A2, B1, B2, C1, C2 and C3;

T 11 C1	a:	C (1 1	11 .	, .	1	· ,· ,	1 1 0
Table ST	Contractions of	it the empl	oved basis	s sets in com	nutational a	annroximations	and Z
ruoie Dr.	Contractions o	i une empi	oyeu ousi.	sets in com	ipututionui t	approximations i	L unu Z.

The second se	The second secon	
Basis 1	Basis 2	Basis 3
Dy.ANO-RCC7s6p4d3f1g.	Dy.ANO-RCC8s7p5d4f2g1h.	Dy.ANO-RCC9s8p5d4f3g2h.
Cl.ANO-RCC4s3p.	Cl.ANO-RCC5s4p2d.	Cl.ANO-RCC6s5p3d2f1g.
O.ANO-RCC3s2p.	O.ANO-RCC4s3p2d.	O.ANO-RCC5s4p3d2f1g.
N.ANO-RCC3s2p.	N.ANO-RCC4s3p2d.	N.ANO-RCC5s4p3d2f1g.
C.ANO-RCC3s2p. (all)	C.ANO-RCC4s3p2d. (closest)	C.ANO-RCC5s4p3d2f1g. (closest)
H.ANO-RCC2s.	C.ANO-RCC3s2p. (distant)	C.ANO-RCC4s3p2d. (medium)
	H.ANO-RCC2s.	C.ANO-RCC3s2p. (distant)
		H.ANO-RCC2s.

Active space of the CASSCF method included 9 electrons in 7 orbitals (4*f* orbitals of Dy^{3+} ion). We have mixed 21 sextets, 128 quartet and 130 doublet states by spin-orbit coupling. On the basis of the resulting spin-orbital multiplets SINGLE_ANISO program computed local magnetic properties (g-tensors, magnetic axes, local magnetic susceptibility, etc.)

Table S2. Cartesian atomic coordinates of the structural model A (in Angstrom).

Atom	X	Y	Z
Dy1	0.00000000	0.00000000	0.07483997
Cl2	0.12799602	-2.59167289	0.15403593
Cl3	-0.12799602	2.59167289	0.15403593
04	-1.49433608	0.03051414	2.01415102
05	1.49433608	-0.03051414	2.01415102
N6	-2.43535991	-0.07028578	-1.01467016
N7	2.43535991	0.07028578	-1.01467016
C8	-2.43096661	-0.06761297	-2.29813968
С9	-1.18700315	-0.04373029	-3.06181500
C10	0.00000000	0.00000000	-2.31843365
C11	-1.19090729	-0.03923611	-4.45622958
C12	0.00000000	0.00000000	-5.14869925
C13	2.43096661	0.06761297	-2.29813968
C14	1.18700315	0.04373029	-3.06181500
C15	1.19090729	0.03923611	-4.45622958
H16	-3.24172096	-0.08087504	-2.75457711
H17	-1.99819548	-0.06151598	-4.91853599
H18	0.00000000	0.00000000	-6.07826182
H19	3.24172096	0.08087504	-2.75457711
H20	1.99819548	0.06151598	-4.91853599
H21	-3.33567767	-0.05887911	-0.57958646
H22	3.33567767	0.05887911	-0.57958646
H23	-2.02895769	0.74083792	2.37639384
H24	-1.55819788	-0.72295302	2.60559748
H25	1.55819788	0.72295302	2.60559748
H26	2.02895769	-0.74083792	2.37639384

Table S3. Cartesian atomic coordinates of the structural model B (in Angstrom).

Atom	X	Y	Ζ
Dy1	0.00000000	0.00000000	0.07483997
Cl2	0.12799602	-2.59167289	0.15403593
Cl3	-0.12799602	2.59167289	0.15403593
04	-1.49433608	0.03051414	2.01415102
05	1.49433608	-0.03051414	2.01415102
N6	-2.43535991	-0.07028578	-1.01467016
N7	2.43535991	0.07028578	-1.01467016
C8	-4.29501058	-1.26128941	0.05461671
С9	-2.43096661	-0.06761297	-2.29813968
C10	-6.21907737	-0.03392313	0.84473783
C11	-5.53739361	-1.22038381	0.67192093
C12	-4.41005248	1.16587624	-0.22263986
C13	-3.73937669	-0.05376440	-0.38449660
C14	-5.65114197	1.14066303	0.40371533
C15	-2.30447839	1.10690786	2.56307802
C16	-1.59141548	-1.11486761	2.91323730
C17	-1.18700315	-0.04373029	-3.06181500
C18	0.00000000	0.00000000	-2.31843365
C19	-1.19090729	-0.03923611	-4.45622958
C20	0.00000000	0.00000000	-5.14869925

C21	4.29501058	1.26128941	0.05461671
C22	2.43096661	0.06761297	-2.29813968
C23	6.21907737	0.03392313	0.84473783
C24	5.53739361	1.22038381	0.67192093
C25	4.41005248	-1.16587624	-0.22263986
C26	3.73937669	0.05376440	-0.38449660
C27	5.65114197	-1.14066303	0.40371533
C28	1.18700315	0.04373029	-3.06181500
C29	1.19090729	0.03923611	-4.45622958
C30	2.30447839	-1.10690786	2.56307802
C31	1.59141548	1.11486761	2.91323730
H32	-3.24172096	-0.08087504	-2.75457711
H33	-7.05278172	-0.02622923	1.25584971
H34	-5.91992792	-2.01241461	0.97548187
H35	-6.11177422	1.93855830	0.52823683
H36	-2.80552726	1.55172598	1.86311302
H37	-1.74658841	1.76128373	3.01223225
H38	-0.70838188	-1.42719360	3.16291670
H39	-2.06912507	-1.84308213	2.48671049
H40	-1.99819548	-0.06151598	-4.91853599
H41	0.00000000	0.00000000	-6.07826182
H42	3.24172096	0.08087504	-2.75457711
H43	7.05278172	0.02622923	1.25584971
H44	5.91992792	2.01241461	0.97548187
H45	6.11177422	-1.93855830	0.52823683
H46	1.99819548	0.06151598	-4.91853599
H47	2.80552726	-1.55172598	1.86311302
H48	1.74658841	-1.76128373	3.01223225
H49	0.70838188	1.42719360	3.16291670
H50	2.06912507	1.84308213	2.48671049
H51	-4.00433890	2.09463687	-0.56571446
H52	-3.81137740	-2.20305406	-0.10055514
H53	3.81137740	2.20305406	-0.10055514
H54	4.00433890	-2.09463687	-0.56571446
H55	-2.96480471	0.63144184	3.25791701
H56	-2.12481130	-0.76804949	3.77353149
H57	2.96480471	-0.63144184	3.25791701
H58	2.12481130	0.76804949	3.77353149

Table S4. Cartesian atomic coordinates of the structural model C -- the entire molecule (in Angstrom).

Atom	X	Y	Z
Dy1	0.00000000	0.00000000	0.07483997
Cl2	0.12799602	-2.59167289	0.15403593
Cl3	-0.12799602	2.59167289	0.15403593
04	-1.49433608	0.03051414	2.01415102
05	1.49433608	-0.03051414	2.01415102
N6	-2.43535991	-0.07028578	-1.01467016
N7	2.43535991	0.07028578	-1.01467016
C8	-4.29501058	-1.26128941	0.05461671
C9	-2.43096661	-0.06761297	-2.29813968
C10	-3.61511330	-2.58523337	-0.16352573
C11	-6.21907737	-0.03392313	0.84473783
C12	-5.53739361	-1.22038381	0.67192093
C13	-4.03151334	-3.25398846	-1.44190408
C14	-4.41005248	1.16587624	-0.22263986
C15	-3.73937669	-0.05376440	-0.38449660
C16	-3.83841851	2.47446230	-0.70601805
C17	-5.65114197	1.14066303	0.40371533
C18	-4.36563696	2.88418842	-2.08303780
C19	-2.30447839	1.10690786	2.56307802
C20	-1.59141548	-1.11486761	2.91323730
C21	-3.23295974	0.43835760	3.54008746
C22	-2.34045132	-0.62783867	4.12132923
C23	-1.18700315	-0.04373029	-3.06181500
C24	0.00000000	0.00000000	-2.31843365
C25	-1.19090729	-0.03923611	-4.45622958
C26	0.00000000	0.00000000	-5.14869925
C27	4.29501058	1.26128941	0.05461671
C28	2.43096661	0.06761297	-2.29813968
C29	3.61511330	2.58523337	-0.16352573
C30	6.21907737	0.03392313	0.84473783
C31	5.53739361	1.22038381	0.67192093
C32	4.03151334	3.25398846	-1.44190408
C33	4.41005248	-1.16587624	-0.22263986
C34	3.73937669	0.05376440	-0.38449660

C35	3.83841851	-2.47446230	-0.70601805
C36	5.65114197	-1.14066303	0.40371533
C37	4.36563696	-2.88418842	-2.08303780
C38	1.18700315	0.04373029	-3.06181500
C39	1.19090729	0.03923611	-4.45622958
C40	2.30447839	-1.10690786	2.56307802
C41	1.59141548	1.11486761	2.91323730
C42	3.23295974	-0.43835760	3.54008746
C43	2 34045132	0.62783867	4 12132923
H44	-3.24172096	-0.08087504	-2.75457711
H45	-2.65422315	-2.44952586	-0.17710218
H46	-3 82050548	-3 17262876	0 58084558
H47	-7.05278172	-0.02622923	1 25584971
H48	-5 91992792	-2.01241461	0 97548187
H40 H49	-4 98589461	-3 36617408	-1 44890444
H50	-3 60908190	-4 11359499	-1 50618009
H51	-3 76829847	-2 71071054	-2 18818458
H52	-2 87097285	2./10/1094	-0.74710096
H53	-4 05558435	3 17101052	-0.06615713
H54	-6 11177422	1 93855830	0.52823683
H55	-4 11660906	2 21941777	-2 73004050
H56	-3 98683576	3 73004115	-2 33179796
H57	-5 32273982	2 95685398	-2 05036947
H58	-2 80552726	1 55172598	1 86311302
H50	-1 74658841	1 76128373	3 01223225
H60	-0 70838188	-1 42719360	3 16291670
H61	-2.06912507	-1 84308213	2 48671049
H62	-4 00246367	0.05370134	3 09284242
H63	-3 53698953	1.05831578	4 22209195
H64	-1 73742108	-0.26012373	4 78622174
H65	-2 86064261	-1 34055641	4 52459223
H66	-1 99819548	-0.06151598	-4 91853599
H67	0.00000000	0.00000000	-6.07826182
H68	3.24172096	0.08087504	-2.75457711
H69	2 65422315	2 44952586	-0.17710218
H70	3.82050548	3.17262876	0.58084558
H71	7.05278172	0.02622923	1.25584971
H72	5.91992792	2.01241461	0.97548187
H73	4.98589461	3.36617408	-1.44890444
H74	3.60908190	4.11359499	-1.50618009
H75	3.76829847	2.71071054	-2.18818458
H76	2.87097285	-2.40061294	-0.74710096
H77	4.05558435	-3.17101052	-0.06615713
H78	6.11177422	-1.93855830	0.52823683
H79	4.11660906	-2.21941777	-2.73004050
H80	3.98683576	-3.73004115	-2.33179796
H81	5.32273982	-2.95685398	-2.05036947
H82	1.99819548	0.06151598	-4.91853599
H83	2.80552726	-1.55172598	1.86311302
H84	1.74658841	-1.76128373	3.01223225
H85	0.70838188	1.42719360	3.16291670
H86	2.06912507	1.84308213	2.48671049
H87	4.00246367	-0.05370134	3.09284242
H88	3.53698953	-1.05831578	4.22209195
H89	1.73742108	0.26012373	4.78622174
H90	2.86064261	1.34055641	4.52459223

2 Electronic and magnetic properties of individual Dy centers

<u> </u>						
A1	A2	B1	B2	C1	C2	C3
0.000	0.000	0.000	0.000	0.000	0.000	0.000
143.600	44.004	169.284	152.165	173.422	157.205	160.251
283.435	126.845	342.071	178.238	350.935	221.422	216.679
326.412	226.299	444.122	298.166	457.187	312.608	316.002
359.021	279.699	464.155	371.700	497.952	397.193	399.101
433.162	356.902	528.949	445.090	548.205	462.642	467.423
468.077	400.951	585.554	505.520	609.094	518.103	525.846
512.690	436.098	628.383	539.766	657.864	561.729	571.403
3611.383	3589.726	3626.119	3605.682	3629.033	3609.451	3611.387
3757.832	3668.796	3802.422	3752.328	3809.952	3766.014	3767.415
3828.252	3709.364	3893.524	3790.244	3904.834	3818.538	3818.717
3874.298	3749.716	3960.161	3830.131	3976.530	3852.617	3854.376
3908.999	3800.465	4013.893	3884.744	4035.535	3905.056	3908.683
3940.513	3858.332	4055.591	3953.250	4079.347	3972.171	3977.805
3978.237	3928.255	4098.081	4028.663	4128.000	4043.388	4051.570

Table S5. Energies of the lowest Kramers doublets (cm⁻¹). (roots corresponding to the 6 H, 6 F and 6 P ionic multiplets were optimized *together* in a single state-average CASSCF calculation; <u>method</u>

Table S6. Energies of the lowest Kramers doublets (cm⁻¹). (roots corresponding to the ⁶H, ⁶F and ⁶P ionic multiplets were optimized *separately* in three different CASSCF calculations; <u>method 2</u>)

A1	A2	A2 B1		C1	C2	C3
0.000	0.000	0.000	0.000	0.000	0.000	0.000
154.921	59.269	184.185	166.097	189.082	172.300	176.025
308.508	135.599	373.517	216.210	383.749	266.583	262.595
372.970	243.103	491.334	326.555	505.677	344.067	348.429
395.360	304.860	527.667	412.586	564.645	442.294	445.506
471.266	394.807	581.309	498.503	604.761	520.285	526.797
512.274	452.830	644.284	573.093	670.414	587.106	597.470
560.421	486.339	692.225	607.687	725.904	632.845	645.697
3619.224	3595.507	3636.334	3614.472	3639.735	3619.049	3621.242
3779.335	3686.362	3829.859	3777.500	3838.472	3793.124	3795.172
3857.800	3727.391	3931.675	3825.958	3944.640	3857.739	3859.063
3910.739	3774.599	4007.712	3869.822	4026.215	3897.483	3900.148
3952.137	3833.413	4070.142	3933.188	4094.127	3957.825	3962.878
3986.623	3901.896	4117.637	4012.819	4144.687	4035.239	4042.998
4028.978	3984.506	4165.514	4101.186	4199.749	4118.458	4129.523
	•••	•••	•••	•••	•••	

Table S7. Energies (cm^{-1}) and g tensors of the lowest Kramers doublets (KD) (*method 1*).

KD		A1		A2		B1		B2		C1		C2		_ C3	
		E	g	E	g	E	g	E	g	E	g	E	g	E	g
1	g _X g _Y g _Z	0.000	0.0110 0.0186 19.7006	0.000	0.0027 0.0232 19.7908	0.000	0.0066 0.0108 19.7124	0.000	0.0011 0.0032 19.8005	0.000	0.0069 0.0111 19.7051	0.000	0.0016 0.0034 19.7893	0.000	0.0016 0.0035 19.7869

2	g _X g _Y g _Z	143.600	0.1866 0.2550 16.7450	44.004	0.0008 0.0130 19.8253	169.284	0.1128 0.1460 16.8063	152.165	0.1179 0.4091 16.8443	173.422	0.1162 0.1515 16.7852	157.205	0.0026 0.0332 17.0289	160.251	0.0064 0.0583 17.0102
3	g _X g _Y g _Z	283.435	2.4192 3.8642 12.1846	126.845	0.2858 0.3192 16.9593	342.071	1.4375 2.0825 13.2580	178.238	0.0854 0.3255 19.2958	350.935	1.4687 2.1617 13.1859	221.422	0.2157 0.2773 19.5973	216.679	0.1711 0.2670 19.5914
4	g _X g _Y g _Z	326.412	0.1955 0.4470 19.2568	226.299	9.2981 8.2202 4.3589	444.122	5.7547 6.5631 7.4275	298.166	2.7778 3.2095 12.7155	457.187	5.7535 6.0982 7.9628	312.608	1.9635 2.2290 13.1812	316.002	2.1349 2.3052 13.1412
5	g _X g _Y g _Z	359.021	9.1850 6.2810 3.0625	279.699	1.8922 2.6270 9.5480	464.155	0.1106 0.4679 18.3404	371.700	8.3936 7.5527 3.9321	497.952	0.1618 0.4531 18.8972	397.193	8.3293 7.2071 5.3714	399.101	8.4013 7.3276 5.1198
6	g _X g _Y g _Z	433.162	0.7499 2.6993 11.4785	356.902	2.2510 2.7421 14.0593	528.949	0.9971 1.8170 11.6430	445.090	0.7931 1.6862 14.1355	548.205	0.9250 1.6852 11.8754	462.642	0.3015 0.7924 14.4359	467.423	0.0586 0.9964 14.3222
7	g _X g _Y g _Z	468.077	1.1582 2.0754 17.3457	400.951	0.0212 0.2793 19.3168	585.554	1.1789 1.3381 17.4645	505.520	0.3853 0.7648 19.3723	609.094	1.1339 1.2925 16.9870	518.103	0.3900 0.8495 19.2337	525.846	0.4573 0.7984 19.3234
8	g _X g _Y g _Z	512.690	0.2736 0.5845 18.3891	436.098	0.2124 0.3880 18.4214	628.383	0.0853 0.1606 18.8871	539.766	0.2601 0.5962 18.8265	657.864	0.0083 0.1064 18.9738	561.729	0.2303 0.6035 18.9091	571.403	0.1844 0.4624 19.0735

Table S8. Energies (cm⁻¹) and g tensors of the lowest Kramers doublets (KD) (<u>method 2</u>).

L		A	1	A2		B1		B	B2		C1		C2		C3	
		E	g	\mathbf{E} g		E	\boldsymbol{g}	E	g	E	g	E	g	E	\boldsymbol{g}	
1	g _X g _Y g _Z	0.000	0.0085 0.0140 19.7207	0.000	0.0035 0.0146 19.8209	0.000	0.0050 0.0079 19.7321	0.000	0.0008 0.0021 19.8216	0.000	0.0052 0.0082 19.7255	<mark>0.000</mark>	0.0010 0.0021 19.8113	<mark>0.000</mark>	0.0010 0.0021 19.8101	
2	g _X g _Y g _Z	154.921	0.1469 0.1957 16.8010	59.269	0.0285 0.0345 19.8135	184.185	0.0883 0.1124 16.8452	166.097	0.0705 0.1697 17.0243	189.082	0.0916 0.1175 16.8239	<mark>172.300</mark>	0.0030 0.0220 17.0680	<mark>176.025</mark>	0.0087 0.0346 17.0586	
3	g _X g _Y g _Z	308.508	1.9425 2.9584 12.7828	135.599	0.3428 0.4139 16.9041	373.517	1.1524 1.5976 13.5191	216.210	0.1971 0.3917 19.4391	383.749	1.1898 1.6770 13.4469	<mark>266.583</mark>	0.4716 0.5064 19.4033	<mark>262.595</mark>	0.4261 0.4374 19.4439	
4	g _X g _Y g _Z	372.970	0.6275 1.0567 18.7071	243.103	8.7862 8.5153 4.5239	491.334	7.3010 6.7837 5.6723	326.555	2.9079 3.0258 12.5908	505.677	5.6090 6.6107 7.6501	<mark>344.067</mark>	1.7498 2.4932 12.8537	<mark>348.429</mark>	1.9619 2.5423 12.8581	
5	g _X g _Y g _Z	395.360	3.6619 5.8769 9.8221	304.860	1.1972 2.5716 9.8550	527.667	0.3801 0.9307 18.6080	412.586	8.4348 7.2532 4.3054	564.645	0.3286 0.9465 17.9682	<mark>442.294</mark>	8.0066 7.1333 5.6743	<mark>445.506</mark>	8.0980 7.2355 5.4345	
6	g _X g _Y g _Z	471.266	1.2680 2.1834 11.4567	394.807	1.9168 2.4444 13.8583	581.309	0.3400 2.3310 11.9459	498.503	0.4067 1.2896 13.9630	604.761	0.3369 1.9522 12.8677	<mark>520.285</mark>	0.4246 0.7080 14.1059	<mark>526.797</mark>	0.4681 0.6001 14.0454	
7	g _X g _Y g _Z	512.274	1.2264 1.9901 17.3740	452.830	0.1886 0.3076 19.6369	644.284	1.1129 1.1364 17.3164	573.093	0.5387 0.6054 19.4832	670.414	1.0393 1.1414 16.7753	<mark>587.106</mark>	0.5236 0.6956 19.4339	<mark>597.470</mark>	0.5562 0.6565 19.4099	

8	g _X g _Y	560.421	0.1596 0.4503	486.339	0.1597 0.2736	692.225	0.0225 0.1576	607.687	0.0859 0.2948	725.904	0.1100 0.1505	<mark>632.845</mark>	0.0871 0.3386	<mark>645.697</mark>	0.0587 0.2346	
	gz		18.6717		18.8922		18.9929		19.2913		19.0174		<mark>19.2604</mark>		<u>19.3829</u>	L

<u>Method 2</u> (the multiplet-specific root optimization at the CASSCF level) is more accurate for the low-lying levels than <u>Method 1</u> (single-state average CASSCF calculation including all roots from different ionic multiplets) because the orbitals are better optimized when only roots of similar energy are taken into account. A state-average CASSCF calculation including roots which have very different energies is less accurate because for all the roots one single set of orbitals is optimized. This is reflected in the later stage (RASSI) when spin-orbit coupling is included. The best results correspond to C2 and C3 in Tables S6 and S8 and almost do not differ from each other.

Table S9. Angles between the main magnetic axes of the lowest Kramers doublet obtained in different computational approximations (degrees)

	A1	A2	B1	B2	C1	C2	C3
A1	5.467E-06	7.826E-05	4.398E-05	6.864E-05	3.740E-05	7.897E-05	4.017E-05
A2	7.826E-05	8.538E-07	5.925E-05	7.232E-05	7.743E-05	7.862E-05	6.713E-05
B1	4.398E-05	5.925E-05	8.365E-06	2.789E-05	2.160E-05	3.800E-05	1.213E-05
B2	6.864E-05	7.232E-05	2.789E-05	7.143E-06	3.589E-05	1.228E-05	2.996E-05
C1	3.740E-05	7.743E-05	2.160E-05	3.589E-05	9.993E-06	4.515E-05	1.451E-05
C2	7.897E-05	7.862E-05	3.800E-05	1.228E-05	4.515E-05	5.051E-06	3.997E-05
C3	4.017E-05	6.713E-05	1.213E-05	2.996E-05	1.451E-05	3.997E-05	8.873E-06

Table S10. Angle between the main magnetic axes of the lowest Kramers doublet and the Dy-C bond (degrees).

	A1	A2	B1	B2	C1	C2	C3
angle	5.313E-05	6.064E-05	1.145E-05	1.811E-05	2.563E-05	2.807E-05	1.620E-05

Table S11. Angle between the main magnetic axes of the lowest and first excited Kramers doublets (degrees).

	Al	A2	BI	B 2	CI	C2	C3
angle	1.943E-04	90.000 ^a	2.197E-05	2.756E-05	3.445E-05	3.371E-05	4.106E-05

^a. Only the A2 model predicts a non-collinear arrangement of the main magnetic axes in the ground and first excited doublets. We can see from the above tables that the approximation A2 gives predictions which differ strongly from all other approximations and, therefore, cannot be trusted. The approximations corresponding to highest accuracy, C2 and C3, give very close results.

Table S12. Comparison of the results predicted by various active spaces of the CASSCF method. All calculations were similar to the A1 model shown above. The calculations involved a state-average orbital optimization for all spin sextet (⁶H, ⁶F and ⁶P). CAS(n,m) represents an active space of n electrons spanning m orbitals.

KD		CAS(9,7)		CAS(CAS(11,9)		15,11)	CAS(15,13)		
		E	g	E	g	E	g			
1	g _X g _Y g _Z	0.000	0.0111 0.0188 19.8036	0.000	0.0087 0.0143 19.8264	0.000	0.0094 0.0156 19.8201	0.000	0.0082 0.0135 19.8312	
2	g _X g _Y g _Z	142.599	0.1847 0.2490 16.8322	150.070	0.1506 0.2002 16.8842	147.322	0.1606 0.2141 16.8719	152.542	0.1489 0.1994 16.8829	
3	g _X g _Y g _Z	285.332	2.4029 3.8316 12.2785	298.706	2.0655 3.0492 12.7827	294.003	2.1908 3.3047 12.6226	301.220	2.0194 3.0310 12.7977	
4	g _X g _Y g _Z	329.343	0.1939 0.4423 19.3622	346.647	0.3288 0.6738 19.2335	339.412	0.2816 0.6086 19.2609	354.868	0.4075 0.7572 19.1610	
5	$\begin{array}{c} g_X \\ g_Y \\ g_Z \end{array}$	362.812	9.3287 6.3287 3.0364	382.117	3.7903 6.0877 9.6003	375.057	3.4892 6.1777 9.5774	384.930	3.8011 6.0501 9.6324	
6	g _X g _Y g _Z	439.033	0.8618 2.8775 11.3640	454.931	1.0840 2.3389 11.7858	448.789	0.9821 2.5997 11.6301	458.444	1.1217 2.2374 11.7311	
7	g _X g _Y g _Z	474.408	1.2140 2.2602 17.2676	493.241	1.1518 2.0520 17.5670	485.836	1.1857 2.1673 17.4427	497.919	1.1658 1.9806 17.5957	
8	g _X g _Y g _Z	520.129	0.3163 0.6447 18.4036	538.879	0.2554 0.6554 18.5269	531.628	0.2875 0.6648 18.4793	543.755	0.2095 0.5708 18.6249	

We notice minor changes in the local spectrum and anisotropy of individual Kramers doublets upon increasing the size of the active space.

Fig. S3 Measured and calculated molar magnetization at 1.9 K.

Fig. S4 Measured and calculated molar magnetization at 2.3 K.

Fig. S5 Measured and calculated molar magnetization at 3.0 K.

Fig. S6 Measured and calculated molar magnetization at 5.0 K.

Fig. S7 Ab initio calculations of temperature dependence of powder susceptibility for an individual DyNCN complex (lines) and their comparison with experiment (diamonds). The intermolecular magnetic interaction was not taken into account. The $\chi_M T$ at around 10 K shows a kink, which is not expected for molecular susceptibility. The kink cannot be due to magnetic ordering since intermolecular dipolar interaction is much weaker. This phenomenon may probably a kind of structural phase transition (for instance ordering of solvent molecules) which suddenly changes the crystal field at the Dy site and its magnetic properties. However these changes are not large, otherwise the calculations based on the room temperature geometry would not have sense.

3 Inelastic neutron scattering measurements

Fig. S8 (Top) Color map of Inelastic neutron scattering spectra of DyNCN taken at the Ei \sim 70 meV Fermi Chopper 1 at 240 Hz. (Bottom) Low Q data of inelastic neutron scattering spectra of **DyNCN** taken at the Ei \sim 70 meV Fermi Chopper 1 at 240 Hz. There are more peaks that are probably libration or rotation motions of the H.

4 Alternating current (ac) magnetic susceptibility

measurements

Fig. S9 Temperature dependence of out-of-phase (χ'') component of ac magnetic susceptibility for DyNCN (Top) and Dy_{0.05}Lu_{0.95}NCN (bottom) in zero static field. The χ'' data are normalized at each temperature by the corresponding value of χ_{dc} from the data in Fig. S7.

Fig. S10 Frequency dependence of χ'' component of ac magnetic susceptibility for for DyNCN (left) and Dy_{0.05}Lu_{0.95}NCN (right) in zero static field.

Fig. S11 The dependence of relaxation rate τ^{-1} on the external magnetic field *H* for DyNCN and Dy_{0.05}Lu_{0.95}NCN.

5 References

- (a) F. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P. Å. Malmqvist, P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov and R. Lindh, *J. Comput. Chem.*, 2010, **31**, 224; (b) L. Ungur and L. F. Chibotaru, SINGLE_ANISO program in MOLCAS (http://molcas.org/documentation/manual/node95.html).
- 2. B. A. Hess, C. M. Marian, U. Wahlgren and O. Gropen, Chem. Phys. Lett., 1996, 251, 365.
- 3. B. O. Roos and P. Å. Malmqvist, *Phys. Chem. Chem. Phys.*, 2004, **6**, 2919.
- 4. P. Å. Malmqvist, B. O. Roos and B. Schimmelpfennig, Chem. Phys. Lett., 2002, 357, 230.
- (a) L. F. Chibotaru, L. Ungur and A. Soncini, *Angew. Chem. Int. Ed.*, 2008, 47, 4126; (b) L. Ungur, W. V. d. Heuvel and L. F. Chibotaru, *New J. Chem.*, 2009, 33, 1224; (c) P.-H. Guo, J.-L. Liu, Z.-M. Zhang, L. Ungur, L. F. Chibotaru, J.-D. Leng, F.-S. Guo and M.-L. Tong, *Inorg. Chem.*, 2012, 51, 1233; (d) G. Novitchi, G. Pilet, L. Ungur, V. V. Moshchalkov, W. Wernsdorfer, L. F. Chibotaru, D. Luneau and A. K. Powell, *Chem. Sci.*, 2012, 3, 1169; (e) S. K. Langley, L. Ungur, N. F. Chilton, B. Moubaraki, L. F. Chibotaru and K. S. Murray, *Chem. – Eur. J.*, 2011, 17, 9209.