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Supplemental Information 

 

Classical Test Theory 

 It is useful at the outset to more formally define reliability using concepts derived from 

classical test theory (CTT).  According to classical test theory, an individual’s observed score, 

Xi, on a measure X, comprises two components:  a true score component (Ti) and a random 

error component (Ei).  Thus, 

     Xi = Ti + Ei   (1) 

The reliability of the measure X, r(X,X’), is defined as the ratio of its true score variance, Var(T), 

to its observed score variance, Var(X): 

               Var(T) 

      r(X,X’) =       (2) 
              Var(X) 
 
Since we cannot observe true scores directly, it is impossible to directly compute true score 

variance.  Instead, we estimate it by computing the correlation between repeated 

measurements obtained from the same set of individuals.  Because we assume that 

measurement error is random across instances of measurement, the only way for a measure X 

to be correlated with itself on second measurement occasion (X’) is if the measure’s true scores 

are correlated.  Accordingly, we can estimate the numerator and denominator of the reliability 

coefficient by considering the correlation between the same measure on two occasions: 

    r(X,X’) = Covariance(X, X’) 

        SD(X) * SD(X’) 

where SD denotes the standard deviation.  Inspecting this equation, it is clear that 1) the 

numerator estimates Var(T), since the only parts of X and X’ that share variance (i.e., that 

covary) are their true scores, which are assumed to remain stable from test to retest; and 2) the 

denominator estimates Var(X), since SD(X) and SD(X’) are expected to be essentially the same, 

and therefore their product is equal to Var(X).   
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The Relationship Between Generalizability Theory and Intraclass Correlation Coefficients 

Based on Classical Test Theory 

 Generalizability (G) coefficients and Dependability (D) coefficients, derived from 

Generalizability Theory, are both intraclass correlation coefficients (ICC).  The variance 

components used to estimate these coefficients are derived from ANOVA models.  Thus, there 

is not really a “qualitative difference” between calculating a G-coefficient and an ICC.  However, 

one can distinguish the approaches based on the fact that an ICC reliability coefficient based on 

classical test theory does not distinguish among different sources of measurement error.  Thus, 

in classical test theory, the ANOVA model is typically limited to a design in which Persons is 

crossed with a single facet of measurement error (e.g., fMRI task run or scan occasion), and the 

ICC is equal to the ratio of person variance to the total expected observed score variance 

(which is defined as person variance + residual variance in the ANOVA model).  In contrast, G-

theory provides for more complex ANOVA models in which multiple facets of measurement 

error can be considered in a single design.  In estimating a G-coefficient, the investigator 

decides which variance components to include in the denominator of the ICC based on which 

facets of measurement error will contribute to between subject variability in the planned 

scientific study or “Decision Study.”  G-theory also distinguishes between relative (i.e., rank 

ordering of subjects or groups) and absolute (i.e., indexing an individual’s absolute level on the 

measure of interest) decisions to be made based on subject scores, whereas classical test 

theory only considers relative decisions.  Accordingly, when there is interest in using scores for 

absolute decisions or judgments, G-theory calls for the estimation of an ICC known as a D-

coefficient, which is distinguished from a G-coefficient by its inclusion of the variance 

components associated with the main effects of the various measurement facets (e.g., task run, 

scan occasion).  Finally, while the Spearman-Brown Prophecy formula can be applied to ICCs in 

classical test theory in order to project what reliability would be if based on a larger number of 

measurements associated with a single measurement facet (e.g., fMRI task runs), the G-
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coefficients and D-coefficients from G-theory provide for such projections to be made for 

multiple measurement facets simultaneously (e.g., what would my reliability be if I averaged 

over 8 fMRI runs and two fMRI scan occasions?). 

 

Reliability and Measurement of Change Over Time 

 A measure must also have adequate test-retest reliability if it is going to be used to track 

changes over time in a longitudinal study design.  However, it should be noted that reliability of 

a measure over a test-retest interval during which true change has not occurred does not 

address directly the reliability of change scores on that measure.  If change scores on a 

measure are ultimately going to serve as the primary unit of analysis in a study, then the 

reliability of the change score becomes an important consideration, though the reliability of such 

change measures is frequently low (1-4).  Based on a number of lucid reviews of this topic (5-8), 

several important points can be made.  First, the main reason change scores suffer from poor 

reliability is that they typically show substantially less true score variability than their constituent 

scores.  As true score variation approaches zero, reliability also approaches zero, even though 

the change score measurements may be quite precise. Second, the same reduction in true 

score variability that reduces the reliability of change scores is responsible for enhancing the 

statistical power of change scores to detect experimental treatment effects (8-12).  This is 

because smaller change score variance translates into smaller values for the denominator, or 

“error term”, of the test statistics used to evaluate differences between experimental groups.  

 In practice, it is not always possible to evaluate the reliability of change scores, at least 

from a test-retest consistency perspective.  This is because it is often difficult or impossible to 

design a reliability study in which true subject change can be repeatedly observed in the same 

subjects over time.  Still, with an understanding of the points delineated above, and some 

consideration of the time interval over which true change is expected to occur, one can make 

use of test-retest correlations to assess the likelihood that a measure can be successfully used 
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for its intended purpose.  For example, over a time interval in which true changes of interest are 

expected to occur, a high correlation between time 1 and time 2 scores for a given measure 

would support the conclusion that the measure is reliable and stable, but the potential utility of 

change scores on that measure to serve as correlates or predictors of other individual difference 

measures will be low.    

 

Conducting Reliability (Generalizability) Studies 

 The Choice of Participants: In designing a study to examine the psychometric 

characteristics of a potential biomarker measure (e.g., a generalizability study), there are a 

number of critical choices that one must make.  The first is the question of who the participants 

should be.  In assessing a measure’s reliability, it is important that the participants be sampled 

from the population of interest so that the sample reflects the full range of variability that one 

expects to measure in the actual decision study.  Thus, while it is sometimes tempting to assess 

the reliability of a measure in a sample of healthy control subjects, one cannot assume that the 

reliability estimated in such a sample will be applicable to a patient population.  In particular, to 

the extent that the subject sample employed in a generalizability study under-represents the 

true variability, or over-represents the sources of measurement error, present in the population 

of interest, reliability of the measure will be underestimated.  Likewise, if the subject sample 

employed in a generalizability study shows more true variability, or less susceptibility to 

measurement error, than the population targeted for study, reliability will be over-estimated.   

Thus, although it can be somewhat more effortful and time consuming, representative sampling 

from the population of interest in a generalizability study will provide more accurate estimates of 

the reliability that will actually affect the measurements in the substantive decision study. 

Test-retest Time Frame: Another important choice is the time frame over which one 

measures reliability in a test-retest study.  This time frame should be a long enough interval to 

capture the sources of random measurement error that are likely to contribute variation from 
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occasion to occasion (e.g., scanner performance fluctuations, ambient temperature, staff 

member running the subject, random variation in subject vigilance).  However, it should not be 

so long that true change in the measure is likely to have occurred (e.g., changes in brain 

function associated with exacerbation or remission of psychotic symptoms).   As an example, 

think about designing a test-retest study for a measure of depression.  Real and important 

changes in depression can occur over the course of a month.  Thus, one would want to have a 

test-retest interval short enough to capture what one thinks are the stable parts of the construct 

being measured, but not long enough to be confounded by true changes that are likely to occur.  

In the context of imaging biomarker measures to assess cognition in schizophrenia, one would 

not want the test-retest interval to be so long that changes in brain function associated with 

exacerbation or remission of psychotic symptoms could have occurred.  Thus, one may want to 

use a relatively short time frame in a test-retest study if you think true change could happen 

over a longer time frame (e.g., symptoms, etc.), even if the study you plan to conduct will occur 

over long time frame.  If you know you have reliable measures in the short term, a researcher 

can then use a no-treatment or comparison control group to help interpret the source of change 

over a longer time span. 

 

Reliability Estimates with Voxels Rather Than Subjects as the Objects of Measurement 

 All of the approaches to reliability assessment discussed above treat subjects as the 

objects of measurement and provide estimates of inter-subject variability relative to the total 

variability in the measurements.  However, another possibility described in the fMRI reliability 

literature involves treating voxels, rather than subjects, as the objects of measurement and asks 

whether the relative ordering of voxel activations is preserved from one test occasion to another.  

This is tantamount to asking about the test-retest consistency of the pattern of activation across 

all of the brain voxels in an fMRI activation map.  An advantage of this approach is that it 

permits estimation of the reliability of the activation map obtained from a single subject over two 
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or more occasions.  Once reliability coefficients are calculated for single subjects, it becomes 

possible to conduct statistical analyses using these coefficients as the unit of analysis.  Thus, 

single subject reliability coefficients can be statistically compared between subject groups in 

order to determine if two or more groups significantly differ in their reliability.  Individual 

differences in reliability can also be correlated with other variables representing subject 

characteristics (e.g., age, symptom severity) or sources of subject-specific noise (e.g., mean or 

maximum of a subject’s movement parameters) in order to examine factors that correlate with, 

and possibly contribute to, inter-subject variation in test-retest activation map reliability.  For 

some types of analytic methods, this approach may violate dependency assumptions, but it may 

still be an informative approximation.  For example, Raemaekers reported high variability in the 

reliability of individual subject maps, with much of this variability explained by low signal to noise 

ratios (SNR) in the subjects with low reliability (13).  Interestingly, these between subject 

differences in reliability did not appear to be related to differences in the degree to which 

activation in individual subjects matched the assumed hemodynamic response function (HRF), 

though one might have expected low SNR to also influence the goodness of fit for HRFs.  

Zandbelt et al. also found a good deal of variability in the within-subject consistency across 

sessions, even after subjects had been extensively practiced prior to scanning (14).  These 

authors raised important points about the influence factors such as stress responses to 

scanning, caffeine, or alcohol use prior to scanning, smoking, amount of sleep, etc., might have 

on the variability in activation across subjects and across sessions. 

 

Quality Assurance Considerations  

 Signal to Noise and Movement: Factors such as SNR, movement (which is often highly 

correlated with SNR), and other noise characteristics of the data (ghosting, etc.) can influence 

the quality of the data.  There are two approaches one can take to dealing with factors that 

influence data quality.  The first is to set some absolute threshold and only include data that 
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meet this threshold.  For example, a researcher could only include runs or subjects whose SNR 

is above some value and whose estimated movement is below some value.  Such an approach 

is appealing, as it provides clear and consistent guidelines. However, the down side is knowing 

exactly where to set the thresholds, as many choices can appear arbitrary, and it is not always 

clear what thresholds best balance the needs of high quality data with data acquisition 

demands.  An alternative approach is to not exclude subjects from analyses based on factors 

such as SNR or movement (at least above some very obvious cutoff), but to include estimates 

of these parameters as covariates in the statistical analyses.  The advantage to this covariance 

approach is that it maximizes data inclusion, but at the risk of lower quality data biasing the 

results.  Decisions about these issues are another domain in which a generalizability study can 

help. One can use the data from a generalizability study to help choose inclusion thresholds for 

quality assurance variables in a non-arbitrary fashion, by examining how factors such as SNR, 

movement, etc. influence estimates of reliability or activation magnitudes. 

 Equipment Stability: Another quality assurance consideration is the stability of the 

equipment that one is using to assess brain function.  In the context of fMRI, this involves the 

stability of the scanner, the head coils, and the behavioral presentation/acquisition equipment.  

Fortunately, the functional Bioinformatics Research Network (fBIRN) has developed 

recommended tools and analysis approaches for assessing the stability of imaging equipment 

(15).  These methods include the use of an agar phantom and a number of analyses that 

measure image quality characteristics.  The agar phantom is designed to provide T1 and 

radiofrequency (RF) conductivity characteristics similar to brain tissue.  The measured 

characteristics include signal-to-noise, signal-to-fluctuation noise, signal fluctuation and signal 

drift.  The suggested acquisition parameters and quality assurance thresholds for 3T Siemens 

and GE scanners are provided at https://xwiki.nbirn.org:8443/xwiki/bin/view/Function-

BIRN/What+is+the+agar+phantom+for+and+what+do+I+do+with+it.  However, while these 

quality assurance thresholds are a useful starting point, practical experience in the Treatment 

https://xwiki.nbirn.org:8443/xwiki/bin/view/Function-BIRN/What+is+the+agar+phantom+for+and+what+do+I+do+with+it
https://xwiki.nbirn.org:8443/xwiki/bin/view/Function-BIRN/What+is+the+agar+phantom+for+and+what+do+I+do+with+it
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Units Research Network (TURNS) consortium has revealed that one must also have a plan for 

determining what level of variance around these values is typical for any given scanner.  Thus, 

in an ideal study, each individual site would generate a reasonable collection of phantom quality 

assurance values collected on a weekly basis (e.g., 12-16 weeks) and compute means and 

standard deviations for that scanner in order to obtain an estimate of the expected variability 

across time.  With these data, one could use scanner specific estimates (e.g., greater than 1 SD 

from the mean for that scanner) to track quality assurance and to detect problems with scanner 

performance.  In addition, one would ideally also acquire agar phantom data with every subject 

scanned (in addition to weekly phantom scans) so as to be able to use the phantom data to 

identify any equipment issues that might be contributing to poor data quality in that participant. 

Analogous procedures are also available for assessing the quality of structural images (16, 17), 

including a “structural” phantom (18) and quality assurance procedures and guidelines (16, 17), 

much of which have been developed as part of the Alzheimer’s Disease Neuroimaging Initiative 

(19). 

Relationship to Generalizability Theory: From the standpoint of reliability, between-

subject variability in behavioral performance in fMRI studies is a source of “true score” variance 

(or “universe score” variance in G-theory terms) in the BOLD signal.  This true score variance is 

captured by the Person variance in the ANOVA model used to estimate variance components 

for the ICC.  High ICCs are achieved when the Person variance is large relative to the various 

error variance components.  Thus, it is difficult to conceive of performance differences between 

subjects as a source of measurement error.  In contrast, within-subject inconsistency in 

performance over time would be viewed as a source of measurement error.  This temporal 

variation in performance would contribute to the Person x Occasion interaction term, which is an 

error variance component estimated in a test-retest reliability study.  Accordingly, this interaction 

term implicitly contains variability due to unstable performance over measurement occasions.   

Beyond this, explicit inclusion of a performance variability measure, as suggested by the 
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reviewer, would not be easily accommodated within the conceptual framework of G-theory.   

Regarding equipment instability, the variance associated with such random instability is 

captured by the Person x Occasion interaction term estimated in a test-retest reliability study, 

similar to performance variability over time.  However, systematic variation in scanner 

performance due to malfunction or slow drifts in hardware would not be evident in a typical test-

retest reliability study, but could deleteriously affect scan quality over time.  This is an issue for 

both longitudinal studies and cross-section studies in which subject recruitment and scan 

acquisition occur over a period of several years.  To detect such drift, regular monitoring of 

scanner performance over time is necessary, typically by repeatedly scanning a phantom.  The 

benefit of such monitoring is that scanner hardware problems can be detected quickly and 

repaired, minimizing the collection of bad data.  The kind of measurement error introduced by 

hardware malfunction is not random; as such, it does not fit within a G-theory/reliability 

framework.  Therefore, we believe it makes sense to separate the discussion of quality 

assurance considerations from the assessment of fMRI measurement reliability.  

 

Potential Drug-Related Confounds 

Include a “Control” Task: The first suggestion by Iannetti and Wise is to include a 

“control” task that is not expected to be influenced by the pharmacological manipulation.  Should 

the study reveal changes in BOLD activity associated with the target cognitive task and not the 

control task, then one may be in a better position to argue for selective influences on neural 

activity.  However, there are two potential problems with this approach.  First, as noted by 

Iannetti and Wise, there may be regional specificity to some pharmacological influences on 

components of the BOLD response other than neural activity (20).  Thus, one would not want a 

control task that only activated very different regions than the target task (e.g., only visual cortex 

versus only frontal cortex).  Instead, it would be good to have a control task that activated 

regions that were separable from those activated in the target task, but in more similar regions 
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(e.g., different subregions of frontal cortex, parietal cortex, etc.).  A second potential problem 

with the control task strategy is that one may be interested in a pharmacological agent that is 

thought to have very wide spread effects on many aspects of cognition, and not just on very 

focused components.  For example, if you had a drug that was designed to augment 

glutamatergic transmission broadly, it may be hard to find a control task that one could strongly 

hypothesize to not be influenced by changes in glutamate function. 

 Measuring Changes in Cerebral Blood Flow: It is certainly feasible that many 

pharmacological agents could alter cerebral blood flow (CBF) and that this effect could lead to a 

change in BOLD reactivity (21).   Thus, Iannetti and Wise recommend including measures of 

CBF in pharmacological imaging protocols in order to directly address this potential confound 

(22).  One method gaining increasing use in MR studies is arterial spin labeling (23, 24).  Of 

note, simply finding CBF changes in response to a pharmacological intervention does not 

necessarily mean that changes in BOLD activity during cognitive challenge are solely due to 

drug influences on CBF.  However, including CBF values as a covariate would help one to 

understand whether there is an influence on BOLD response over and above the influence on 

CBF.  

 Measuring Changes in Vascular Reactivity: Vascular reactivity reflects the ability of 

blood vessels to either dilate or contract in response to changes in physiological parameters 

known to modulate the brain’s perfusion (20).  Changes in vascular reactivity that influence 

BOLD responses to cognitive events, even in the absence of changes in the underlying neural 

activity, are one of the major potential confounds in pharmacological fMRI studies.  Another way 

to frame this issue is to point out that the BOLD signal is the result of changes in CBF, cerebral 

blood volume (CBV) and cerebral metabolic rate of oxygen consumption (CMRO2) (25).  Thus, 

changes in CBF due to changes in vascular reactivity could change BOLD responses even 

when CMRO2 does not change.  A number of researchers have used a method called 

“calibrated” BOLD to assess CBF contributions to BOLD separately from CMRO2 (25-28).  In 
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calibrated BOLD, hypercapnia (increased levels of carbon dioxide in the blood) is induced by 

having participants breathe air with increased concentrations of CO2.  This leads to increased 

vasodilatation and changes in BOLD response in the absence of changes in CMRO2.  A number 

of studies have also used voluntary breathholding on the part of participants in order to induce 

hypercapnia, which is methodologically somewhat less complicated (25-29).  However, the 

successful use of breathholding to induce hypercapnia is dependent on participant’s compliance 

and accuracy in following the task instructions, a component of the process that could be more 

challenging in patient studies.  As with measures of CBF, determining that a drug influences 

vascular reactivity as revealed by increased BOLD responses to hypercapnia does not preclude 

the possibility that the drug also has a direct influence on neural activity.  However, similar to 

CBF measures, it would then be important to include BOLD activity related to hypercapnia as a 

covariate in statistical analyses of the cognitive-task related BOLD data. 

 Arousal, Cardiac Pulsation, and Respiration: It has long been known that cardiac 

pulsation and respiration effects can influence BOLD responses to cognitive challenges.  

Further, at least some pharmacological agents can influence factors such as arousal, which in 

turn could influence cardiac pulsation and/or respiration.  Thus, one may need to measure and 

control for such changes in analyses of functional brain activity related to cognition.  This can be 

accomplished using methods such as the RETROICOR algorithm that uses heart and 

respiration rate measurements in regression-based analyses to eliminate their influences on the 

BOLD signal related to cognitive performance (30, 31).  However, it is also important to be 

aware of the fact that such changes in heart rate and respiration could also be correlated with 

the changes of interest in neural activity.  Thus, removing such variance from the BOLD signal 

could also reduce sensitivity to drug-related changes in BOLD activity associated with cognition.
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