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1 Supplementary Figure
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Figure S1: A directed graphical representation of the proposed model. The plate notation is used here. The plate is used to
group random variables that repeat. The number of replicate is shown on the corner. {Aij} and {Fic} are observed variables;
θik and ψkc are latent variables; and λ is hyperparameter.
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Figure S2: Performance of GMFTP with respect to different value of λ on the Collins network. From top to down, each
row represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF, PPI+total).
From left to right, each column represents the results of the four criteria used to judge performance (ACC, PR, the number
of covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ, and y-axis
denotes the value of corresponding evaluation criterion.
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Figure S3: Performance of GMFTP with respect to different value of λ on the Gavin network. From top to down, each
row represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF, PPI+total).
From left to right, each column represents the results of the four criteria used to judge performance (ACC, PR, the number
of covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ, and y-axis
denotes the value of corresponding evaluation criterion.
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Figure S4: Performance of GMFTP with respect to different value of λ on the Krogan core network. From top to down, each
row represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF, PPI+total).
From left to right, each column represents the results of the four criteria used to judge performance (ACC, PR, the number
of covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ, and y-axis
denotes the value of corresponding evaluation criterion.
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Figure S5: Performance of GMFTP with respect to different value of λ on the Krogan extended network. From top to
down, each row represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF,
PPI+total). From left to right, each column represents the results of the four criteria used to judge performance (ACC, PR,
the number of covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ,
and y-axis denotes the value of corresponding evaluation criterion.
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Figure S6: Performance of GMFTP with respect to different value of λ on the DIP network. From top to down, each row
represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF, PPI+total). From
left to right, each column represents the results of the four criteria used to judge performance (ACC, PR, the number of
covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ, and y-axis
denotes the value of corresponding evaluation criterion.
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Figure S7: Performance of GMFTP with respect to different values of λ on the BioGRID network. From top to down, each
row represents the results of the five categories of functional properties (PPI only, PPI+BP, PPI+CC, PPI+MF, PPI+total).
From left to right, each column represents the results of the four criteria used to judge performance (ACC, PR, the number
of covered protein and the number of detected complexes). For each figure, the x-axis denotes the value of log λ, and y-axis
denotes the value of corresponding evaluation criterion.
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Figure S8: The DNA-directed RNA polymerase I, II, III complexes detected by GMFTP with different value of parameter λ
(a) λ = 4 . (b) λ = 8 . (c) λ = 32 from the Collins network. Proteins are labeled according to the complex to which they
belong: blue circle nodes represent RNA polymerase I; yellow triangle nodes represent RNA polymerase II; green rectangle
nodes represent RNA polymerase III. Proteins shared by all the three complexes are labeled with red diamond, and proteins
shared by RNA polymerase I and III are labeled with purple hexagon. Shaded areas represent the clusters detected by our
model.
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Figure S9: Comparative performance of GMFTP using different categories of functional properties with respect to the SGD
gold standard. The total height of each bar is the value of the composite scores of four metrics (ACC, FRAC, MMR and PR)
for a given functional property on a given network. Larger scores are better.
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Figure S10: Functional features of mono (Mo)- and multi (Mu)-group proteins detected by GMFTP using the PPI network
and the total GO annotation. For each subontology, the distributions of the number of annotated functions of mono (Mo)-
and multi (Mu)-grouped proteins are represented by boxplots (line = median). (a) BP. (b) CC. (c) MF.
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2 Supplementary Text

2.1 Model parameter estimation
The objective function of GMFTP is

minΘ,Ψ −
∑N
i=1

∑C
c=1 SiFic log

(
1− exp

(
−
∑K
k=1 θikψkc

))
+
∑N
i=1

∑C
c=1 Si (1− Fic)

(∑K
k=1 θikψkc

)
− 1

2

∑N
i,j=1Aij log

(
1− exp

(
−
∑K
k=1 θikθjk

))
+ 1

2

∑N
i,j=1 (1−Aij)

(∑K
k=1 θikθjk

)
+
∑N
i=1

∑K
k=1 λθik +

∑K
k=1

∑C
c=1 λψkc

s.t. Θ ≥ 0,Ψ ≥ 0,

(1)

where Θ ≥ 0 and Ψ ≥ 0 mean each element θik ≥ 0 and ψkc ≥ 0.
We use the multiplicative updating rules [19] to solve this nonnegative constrained optimization problem. Let ϕik and

ωkc be the Lagrange multipliers for constraints θik ≥ 0 and ψkc ≥ 0, respectively, and Φ = [ϕik], Ω = [ωkc]. The Lagrange
function L is

L (Θ,Ψ,Φ,Ω) = −
N∑
i=1

C∑
c=1

SiFic log

(
1− exp

(
−

K∑
k=1

θikψkc

))
+

N∑
i=1

C∑
c=1

Si (1− Fic)

(
K∑
k=1

θikψkc

)

−1

2

N∑
i,j=1

Aij log

(
1− exp

(
−

K∑
k=1

θikθjk

))
+

1

2

N∑
i,j=1

(1−Aij)

(
K∑
k=1

θikθjk

)

+λ
N∑
i=1

K∑
k=1

θik + λ
K∑
k=1

C∑
c=1

ψkc +
N∑
i=1

K∑
k=1

ϕikθik +
K∑
k=1

C∑
c=1

ωkcψkc. (2)

The gradients of Lagrange function L with respect to θik and ψkc are

∇θikL = −
C∑
c=1

SiFic
exp

(
−
∑K
k=1 θikψkc

)
1− exp

(
−
∑K
k=1 θikψkc

)ψkc + C∑
c=1

Si(1− Fic)ψkc

−
N∑
j=1

Aij
exp

(
−
∑K
k=1 θikθjk

)
1− exp

(
−
∑K
k=1 θikθjk

)θjk + N∑
j=1

(1−Aij)θjk + λ+ ϕik

= −Si
C∑
c=1

Fic

1− exp
(
−
∑K
k=1 θikψkc

)ψkc + Si

C∑
c=1

ψkc

−
N∑
j=1

Aij

1− exp
(
−
∑K
k=1 θikθjk

)θjk + N∑
j=1

θjk + λ+ ϕik, (3)

and

∇ψkc
L = −

N∑
i=1

SiFic
exp

(
−
∑K
k=1 θikψkc

)
1− exp

(
−
∑K
k=1 θikψkc

)θik + N∑
i=1

Si(1− Fic)θik + λ+ ωkc

= −
N∑
i=1

Si
Fic

1− exp
(
−
∑K
k=1 θikψkc

)θik + N∑
i=1

Siθik + λ+ ωkc. (4)

Since the estimators of θik and ψkc need to satisfy ∇θikL = 0 and ∇ψkc
L = 0, we can get

ϕik = Si

C∑
c=1

Fic

1− exp
(
−
∑K
k=1 θikψkc

)ψkc − Si C∑
c=1

ψkc +

N∑
j=1

Aij

1− exp
(
−
∑K
k=1 θikθjk

)θjk − N∑
j=1

θjk − λ, (5)

and

ωkc =
N∑
i=1

Si
Fic

1− exp
(
−
∑K
k=1 θikψkc

)θik − N∑
i=1

Siθik − λ. (6)
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By the Karush-Kuhn-Tucker (KKT) conditions [18], ϕikθik = 0 and ωkcψkc = 0, we get the following equations for θik and
ψkc:

θik

Si C∑
c=1

ψkc +
N∑
j=1

θjk + λ

 = θik

Si C∑
c=1

Fic

1− exp
(
−
∑K
k=1 θikψkc

)ψkc + N∑
j=1

Aij

1− exp
(
−
∑K
k=1 θikθjk

)θjk
 ,

(7)
and

ψkc

(
N∑
i=1

Siθik + λ

)
= ψkc

 N∑
i=1

Si
Fic

1− exp
(
−
∑K
k=1 θikψkc

)θik
 . (8)

Then, it is easy to obtain the updating formulae for Θ and Ψ, respectively,

θik ← θik

Si
∑C
c=1

Fic

1−exp(−
∑K

k=1 θikψkc)
ψkc+

∑N
j=1

Aij

1−exp(−
∑K

k=1 θikθjk)
θjk

Si
∑C
c=1 ψkc +

∑N
j=1 θjk + λ

, (9)

and

ψkc ← ψkc

∑N
i=1 Si

Fic

1−exp(−
∑K

k=1 θikψkc)
θik∑N

i=1 Siθik + λ
. (10)

To order to help to discuss the computational cost of our model, we rewrite the two updating formulae in a matrix form

Θ← Θ ·

(
diag(S) ∗ F

1−exp(−ΘΨ)ψ
T + A

1−exp(−ΘΘT )
Θ

diag(S) ∗ repmat(sum(Ψ, 2)T , N, 1) + repmat(sum(Θ), N, 1) + λ

)
, (11)

and

Ψ← Ψ ·

(
ΘT diag(S) F

1−exp(−ΘΨ)

repmat(sum(diag(S) ∗ theta)T , 1, C) + λ

)
, (12)

where S = [S1, S2, . . . , SN ]T .

2.2 Data sets
We concentrate our study on yeast since it is a well studied model organism for mammalian. Two experimental yeast PPI
data sets [14, 17], a combined computational interaction map [10], the interactions derived from DIP [25] and the ones
derived from BioGRID [8] are used to test the performance. We refer to these as Gavin, Krogan, Collins, DIP and BioGRID
data sets. The Krogan data set is used as two variants: the core data set (referred to as Krogan core) which contains only
highly reliable interactions and the extended data set (referred to as Krogan extended) which contains more interactions
with less overall reliability. The Collins, Gavin, Krogan core and Krogan extended data sets include edge weights which
are estimations of the reliability of interactions. We derive two variants of these four networks: weighted version which
includes the weights and unweighted version which ignores the weights. As DIP (version April 6, 2013) and BioGRID
(version 3.1.77) provide weights for only a low proportion of the interactions, we treat them as unweighted in a similar
manner to that of [21]. We download the Collins, Gavin, Krogan core, Krogan extended and BioGRID networks from the
website of Nepusz et al’s study (http://membrane.cs.rhul.ac.uk/static/cl1/cl1_datasets.zip) [21].
For the DIP network, self-interactions, redundant interactions and interactions involving proteins of which the systematic
names are not available are filtered out. For simplicity, we just analyze its the largest connected component. Table S1
lists several topological features of the six networks and shows that they have different structural characterizations. The
topological differences between them might can be used to test the generalization and explain the performance differences of
a considered approach on different data sets.

We use Gene Ontology [3] as the data source of functional profiles. The Gene Ontology file including three subontologies
(biological process (BP), cellular component (CC), and molecular function (MF)) and the GO annotations in SGD [9] are
downloaded on 6 April 2013 from http://www.geneontology.org. Annotations with the IEA, ND, NAS evidences
and the NOT qualifier are excluded. To keep the true-path rule, we process the annotations by associating each protein with
its GO terms and all ascendant terms of the associated ones using the ‘ is a’ and ‘ part of’ relations. To avoid too special and
too general functions, we only take into account GO terms with at least 3 and at most 200 associated proteins in the yeast
organism. We then derive four categories of functional properties from the annotations of the three individual subontologies
and a comprehensive annotation profile which concatenates the ones of all the three subontologies. We refer to them as
BP, CC, MF and Total functional profiles, respectively. Proteins that are not associated with any functions considered are
regarded as functionally uncharacterized ones. Some statistics of the four functional profiles are presented in Table S2.

We use the CYC2008 [23] and SGD [9] benchmarks as the gold standards of yeast protein complexes. The CYC2008
catalogue is downloaded from http://wodaklab.org/cyc2008/downloads on April 6, 2013. For the SGD gold
standard, we use the one which is used in [21] and download it from http://membrane.cs.rhul.ac.uk/static/
cl1/cl1$_$gold_standard.zip. For details of the construction of the benchmark, please refer to [21]. We map
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Table S1: Statistics of topological features of the used networks.

Collins Gavin Krogan core Krogan extended DIP BioGRID

Number of proteins 1,622 1,855 2,708 3,672 4,850 5,640
Number of interactions 9,074 7,669 7,123 14,317 21,592 59,748
Weighted yes yes yes yes no no
Average number of neighbors 11.19 8.27 5.26 7.80 8.90 21.19
Centralization 0.0715 0.0215 0.0502 0.0560 0.0553 0.4521
Clustering coefficient 0.5549 0.4675 0.1877 0.1203 0.0985 0.2463
Number of connected components 193 43 63 14 1 1
Density 0.0069 0.0045 0.0019 0.0021 0.0018 0.0038
Diameter 15 13 12 10 10 6

These statistics are calculated using software Cytoscape [29].

Table S2: Statistics of the functional profiles we use.

Collins Gavin Krogan core Krogan extended DIP BioGRID

BP Number of annotated proteins 1,527 1,712 2,335 3,052 3,826 4,507
Number of associations 20,232 22,649 31,347 39,940 48,525 54,632

CC Number of annotated proteins 1,353 1,426 1,761 2,202 2,788 3,284
Number of associations 5,119 5,444 6,546 8,210 10,472 12,039

MF Number of annotated proteins 1,047 1,241 1,779 2,360 2,980 3,408
Number of associations 5,775 6,812 9,500 12,461 15,517 17,489

Total Number of annotated proteins 1,585 1,790 2,480 3,257 4,111 4,872
Number of associations 31,126 34,905 47,393 60,611 74,514 84,160

Here “Total” represents the total functional annotations of all the three subontologies.

all the two reference sets onto each PPI network and filter them based on size in a similar manner to that of [21] (http:
//membrane.cs.rhul.ac.uk/static/cl1/additional_information.html). The two gold standards are
used independently for evaluation of the methods. The general properties of the reference sets are listed in Table S3.

Table S3: Statistics of the gold standard complexes we use.

All Collins Gavin Krogan core Krogan extended DIP BioGRID

CYC2008 Number of complexes 408 144 138 164 181 224 236
Number of proteins 1,627 895 836 850 934 1,128 1,342
Number of proteins in ≥ 2 complexes 211 140 131 135 142 169 176

SGD Number of complexes 323 140 132 169 191 229 237
Number of proteins 1,279 685 629 798 909 1,099 1,168
Number of proteins in ≥ 2 complexes 332 189 182 240 268 296 306

Here “All” denotes the statistics of each reference set which is not mapped onto the PPI network and filtered in terms of size.

2.3 Evaluation methods
To assess the performance of a considered approach, we need a quantitative criterion to evaluate how a set of predicted
complexes matches with a set of reference complexes. Due to the fact that the gold standard complexes (and the predicted
complexes if the used algorithm handle overlaps) overlap with each other, a gold standard complex can have a (partial) match
with more than one predicted complex and vice versa [21]. It is therefore difficult to find a universal evaluation metric that
can work well on this task. In this paper, we use four independent quality measures to evaluate the predicted complexes by
comparing them with the reference complexes: accuracy (ACC) [20], fraction of matched complexes (FRAC), maximum
matching ratio (MMR) [21] and precision-recall score (PR) [30]. The four metrics assess the performance from different
perspectives and have complementary strength.

ACC is a widely used metric which is the the geometric mean of two other measures: the clustering-wise sensitivity (Sn)
and the clustering-wise positive predictive value (PPV) [6]. As discussed in [20, 21], the PPV does not evaluate overlapping
clusters properly and penalizes the overlapping clustering algorithms. Furthermore, the ACC measure assumes that a com-
plete set of true protein complexes is available, where in reality the gold standards are often incomplete, it therefore puts an
approach that predicts many real complexes which do not match with the references at a disadvantage.

FRAC represents the fraction of complexes in the benchmark that are matched by at least one predicted complex with a
match score larger than a given threshold w (w is usually set to 0.25) [21]. The FRAC metric pays attention to how the set
of reference complexes is matched by a set of predicted complex but ignores how well a reference complex is recovered by
a predicted complexes individually.

14



MMR, which is strongly recommended by the authors, offers a natural way to compare a set of predicted complexes and
a set of reference complexes [21]. As discussed by the authors, it penalizes an approach which tends to split a reference
complex into more than one part in the predicted complexes. Owing to focusing mainly on test how well the gold standard is
matched by the predicted complexes, it does not take the false positive predictions into account. As a result, other methods
which quantify the functional homogeneity of predicted complexes are advised to complement the maximum matching ratio
[21].

PR score is a metric which pays attention not only to how well the reference complexes are recovered by the predicted
complexes (recall) but to how the predicted complexes match to the reference complexes (precision) [30]. Since it takes the
size of complexes into account, it penalizes an approach that performs well for small size complex but worse for large size
complexes. Similar to ACC, the PR score may be partial to an approach which has a higher precision but a lower recall for
an optimal harmonic mean score.

The four metrics are independent and can work together to evaluate the performance of a complexes detection ap-
proach. For ACC, FRAC and MMR, the python script for the calculation of quality scores is downloaded from http:
//membrane.cs.rhul.ac.uk/static/cl1/cl1_reproducibility.zip. We implement the Matlab code for
the calculation of PR score according to the formulations described in [30].

We also test the functional homogeneity of predicted complexes, following the method of Nepusz et al [21]. The hyper-
geometric distribution is used to calculate the P-value of biological relevance for a predicted complex and a given functional
term. The overrepresentation score of an approach is calculated by the ratio between the number of predicted complexes
with at least one enriched annotation and the total number of predicted complexes. The Bonferroni method is used to adjust
the P-value to keep that the overall significance level of the test at 0.05. We implement the calculation using the web service
of GO Term Finder (http://go.princeton.edu/cgi-bin/GOTermFinder) [5]. Here we also use the yeast GO
annotations downloaded on 6 April 2013 as the data source of functional classifications and annotations, which are previ-
ously used to construct the functional profiles. Similarly, annotations with the IEA, ND, NAS evidences are not taken into
account. Since one may argue that using GO annotations with evidence IPI presents a case of circular reasoning as these
annotations are also inferred from physical interactions, the annotations with IPI evidence code are also excluded. In order
to avoid evaluation bias, we only use the GO annotations to assess the functional homogeneity of complexes predicted using
only the PPI networks rather than those using both the PPI networks and the functional profiles.

2.4 Convergence and computational complexity analysis
We have developed an iterative algorithm to solve the optimization problem of GMFTP based on multiplicative updating
rules. It is known that the multiplicative updating rules are special cases of gradient descent methods with an automatic step
parameter selection for guaranteeing the nonnegativity of parameters [7]. It may therefore be able to prove that the objective
function of our model is nonincreasing under the update and that the iterative algorithm is guaranteed to find at least locally
optimal solutions by constructing an auxiliary function similar to that used in [27, 7]. Instead of proving this in theory, we
validate the convergence experimentally.

For the six networks considered in this paper, we consider the two extreme cases of functional properties: PPI only
which represents using only the PPI networks and PPI+total which represents using both the PPI networks and the total
functional profiles. From Fig. S11, we find that the objective function decreases sharply first and then becomes smoothly
under the update. For small size data sets (e.g., Collins, Gavin and Krogan core), the updating process converges within 400
iterations (the relative change of the objective function is less than 10−6); for large size data sets (e.g., DIP and BioGRID),
the procedure can not converge within 400 iterations but the change of the objective function is also negligible. These results
demonstrate the convergence of our parameter estimation algorithm.

The computational cost of GMFTP is mainly determined by Equations (11) and (12). In Equation (11), computation
of diag(S) ∗ F

1−exp(−ΘΨ)Ψ
T requires O(NKC) times; computation of A

1−exp(−ΘΘT )
Θ requires O(N2K) times; computa-

tion of diag(S)∗repmat(sum(Ψ, 2)T , N, 1) requiresO(K(N+C)) times; computation of repmat(sum(Θ), N, 1) requires
O(NK) times. Thus, each update of Θ takesO (KN(N + C)) times. In Equation (12), computation of ΘT diag(S) F

1−exp(−ΘΨ)

requiresO(NKC) times; computation of repmat(sum(diag(S)∗Theta)T , 1, C) requiresO(K(N+C)) times. Thus, each
update of Ψ takes O(NKC) times. Therefore the total time cost of GM-FTP is O (KNT (N + C)), where T is the number
of iterations.

In real world situations, the PPI networks and functional profiles usually are extremely sparse. The overall cost therefore
can be reduced. In fact, computation cost of F

1−exp(−ΘΨ) can be reduced to O(KR) times, where R is the number of
functional associations between proteins and functions. This is because it does not need to compute (1 − exp(−ΘΨ))ic if
Fic = 0. Computation of F

1−exp(−ΘΨ)Ψ
T requires only O(KR) times due to the fact that F

1−exp(−ΘΨ) only contains R
non-zero elements. Thus, computation of diag(S) ∗ F

1−exp(−ΘΨ)Ψ
T requires only O(KR) times. Similarly, computation

cost of A
1−exp(−ΘΘT )

Θ can be reduced to O(KE), where E is the number of interactions between proteins. As a result,
time cost of updating Θ can be reduced to O(K(N + C + E + R)). Similarly, time cost of updating Ψ can be reduced to
O(K(N + C +R)). The total cost can therefore be reduced to O(KT (N + C + E +R)).

Table S4 presents the time cost of our parameter estimation method. For each PPI network, we only consider the results
using ‘PPI only’ and ‘PPI+total’ functional profiles. We repeat the updating process 100 times, and compute the average
time cost for the entire process of parameter estimation and for per update. We implement the algorithm using Matlab in
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Figure S11: Convergence analysis of parameter estimation. For each figure, the x-axis denotes the number of iterations, and
the y-axis denotes the value of the objective function. (a) Collins with PPI only. (b) Collins with PPI+total. (c) Gavin with
PPI only. (d) Gavin with PPI+total. (e) Krogan core with PPI only. (f) Krogan core with PPI+total. (g) Krogan extended
with PPI only. (h) Krogan extended with PPI+total. (i) DIP with PPI only. (j) DIP with PPI+total. (k) BioGRID with PPI
only. (l) BioGRID with PPI+total.
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a workstation with Intel 4 CPU (3.40 GH × 4) and 16 GB RAM. Each update costs at most 3.25 seconds and the entire
estimation takes less than 1300 seconds when we set the maximum number of iterations to 400.

Table S4: Average time cost of GMFTP for estimating model parameters.

Property Type Collins Gavin Krogan core Krogan extended DIP BioGRID

PPI only Per update 0.32 0.36 0.60 0.90 1.38 1.82
Entire estimation 78.20 79.16 127.42 361.87 550.02 708.54

PPI+total Per update 0.76 0.88 1.32 1.85 2.62 3.25
Entire estimation 252.48 320.77 456.68 740.31 1049.05 1299.39

2.5 Effect of random restarts
Due to the fact that the objective function of GMFTP is not convex, the multiplicative updating rules-based iterative algorithm
does not necessarily converge to the global minimum. In the main text, to guard against the possibility of getting stuck in
a local minimum to some degree, we repeat the entire calculation 100 times with random restarts and choose the result
that gives the lowest value of the objective function. We limit the number of repetitions to 100 because of the time cost of
more repetitions. As a result, we can not guarantee the final estimator is the globally optimum solution and the result is
not deterministic. We therefore focus on the variability in results of multiple run of this procedure. The entire repetition
procedure is implemented 20 times of which each time uses 10 random restarts to obtain a result.

Here we also just consider the ‘PPI only’ and ‘PPI+total’ functional profiles. The mean, median, maximum, minimum
and standard deviation of the evaluation results of these 20 experiments are use to assess the stability. Due to the higher value
of the standard deviation, the performances measured using the FRAC and MMR criteria are more sensitive to initialization
conditions than those measured using the ACC and PR criteria (Table S5). The low value of standard deviation shows that
the performance of GMFTP does not have a big change with different initializations. However, the differences between
the maximum and the minimum value of evaluation scores show that we would obtain better performance if we implement
GMFTP with more restarts.

2.6 Effect of K
In the main text, we do not discuss the effect of K, which is assumed to be the maximum possible number of complexes.
Since we have placed an exponential prior over Θ and Ψ, which leads the fact that the estimators of model parameters are
sparse automatically. We therefore set K = 1000 as the possible number of complexes in all the six data sets. Here, we try
to test whether the choice of K has a significant influence on the performance of GMFTP. We fix λ to 4 and run GMFTP
with various values of K (K ∈ {500, 1000, 1500}). The performance is evaluated by comparing the predicted complexes to
the gold standard complexes.

For the six networks, we only consider the two extreme cases of functional properties (PPI only and PPI+total). The
results listed in Table S6 show that the performances vary a little with respect to different value of K. For each PPI network
and category of functional profile, there is not a deliberately selected K that can dominate the other two cases in terms of
all the four evaluation metrics and the three gold standards. We may therefore conjecture that the variability in performance
may come from the local minimum of the solution as discussed in the above section. These results may suggest that the
performance of GMFTP would not have a big change if we set K to a value which is higher than the true number of
complexes.

2.7 Parameter settings of compared algorithms
In this paper, in order to evaluate the performance of GMFTP in detecting protein complexes, we compare it with ten
competitive methods: Affinity propagation (AP) [13], CFinder [1], ClusterONE [21], COAN [31], Linkcomm [2], MCL
[11], MCODE [4], MINE [24], SPICi [15] and SR-MCL [28]. Table S7 lists the websites where we download the softwares
of these algorithms, the version numbers of these softwares and several indications about whether these algorithms could
be applied to weighted PPI networks or handle overlaps. Before describing the parameter settings for each algorithm, we
declare several general consideration first. Since the performance of each algorithm depends on the choice of its inherent
parameters and the data set under consideration, for all the considered algorithms, we optimize the parameters that yield the
best results in a similar way to that of [21]. To avoid evaluation bias, we also consider the following three criteria:

• Four quality metrics (ACC, FRAC, MMR and PR score) are used to evaluate the performance of each algorithm.

• Two different gold standards (the CYC2008 complexes and the SGD complexes) are used.

• For each algorithm, the final results are obtained by choosing the parameters that yield the best performance which are
measured by the MMR metric on the gold standard that is being tested in the benchmark (CYC2008 or SGD).

We briefly review the main features of these algorithms and the setting of parameters for each algorithm in the following
text.
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Table S5: Stability analysis of GMFTP with respect to different random restarts.

CYC2008 SGD

Data set Property Statistics ACC FRAC MMR PR ACC FRAC MMR PR

Mean 0.762 0.851 0.563 0.575 0.706 0.790 0.516 0.473
Median 0.763 0.847 0.565 0.574 0.706 0.787 0.517 0.473

PPI only Max 0.767 0.882 0.591 0.593 0.709 0.806 0.538 0.481
Min 0.755 0.833 0.539 0.561 0.699 0.769 0.494 0.464

Collins Std 0.004 0.014 0.015 0.010 0.003 0.011 0.013 0.005

Mean 0.778 0.876 0.634 0.646 0.715 0.829 0.586 0.525
Median 0.778 0.882 0.635 0.647 0.715 0.828 0.584 0.528

PPI+total Max 0.788 0.896 0.659 0.660 0.722 0.866 0.614 0.536
Min 0.769 0.847 0.610 0.639 0.709 0.791 0.554 0.511
Std 0.005 0.017 0.014 0.006 0.005 0.022 0.017 0.008

Mean 0.741 0.820 0.486 0.454 0.696 0.759 0.430 0.367
Median 0.741 0.822 0.489 0.455 0.696 0.758 0.434 0.369

PPI only Max 0.746 0.848 0.500 0.462 0.703 0.789 0.443 0.376
Min 0.737 0.790 0.461 0.448 0.691 0.734 0.394 0.357

Gavin Std 0.003 0.019 0.011 0.005 0.004 0.015 0.014 0.006

Mean 0.758 0.868 0.588 0.567 0.710 0.821 0.538 0.469
Median 0.759 0.870 0.587 0.566 0.713 0.824 0.532 0.471

PPI+total Max 0.769 0.891 0.615 0.583 0.719 0.844 0.572 0.487
Min 0.750 0.841 0.569 0.545 0.696 0.797 0.517 0.456
Std 0.006 0.014 0.017 0.012 0.007 0.014 0.019 0.010

Mean 0.717 0.735 0.457 0.480 0.613 0.644 0.384 0.395
Median 0.716 0.735 0.456 0.481 0.613 0.645 0.383 0.394

PPI only Max 0.723 0.756 0.474 0.491 0.625 0.667 0.403 0.406
Min 0.710 0.707 0.442 0.469 0.607 0.618 0.371 0.386

Krogan core Std 0.004 0.014 0.010 0.008 0.005 0.015 0.009 0.005

Mean 0.756 0.774 0.545 0.636 0.640 0.709 0.491 0.515
Median 0.755 0.771 0.543 0.635 0.640 0.709 0.494 0.512

PPI+total Max 0.768 0.805 0.573 0.649 0.647 0.739 0.520 0.531
Min 0.746 0.750 0.523 0.622 0.633 0.685 0.464 0.501
Std 0.006 0.017 0.014 0.008 0.005 0.014 0.015 0.007

Mean 0.683 0.606 0.376 0.467 0.569 0.523 0.305 0.372
Median 0.683 0.613 0.373 0.468 0.568 0.524 0.306 0.371

PPI only Max 0.692 0.652 0.399 0.483 0.576 0.551 0.314 0.382
Min 0.673 0.558 0.354 0.446 0.564 0.497 0.295 0.366

Krogan extended Std 0.006 0.027 0.015 0.010 0.005 0.016 0.007 0.005

Mean 0.727 0.684 0.481 0.595 0.601 0.619 0.421 0.469
Median 0.729 0.688 0.483 0.597 0.601 0.623 0.421 0.469

PPI+total Max 0.741 0.696 0.497 0.608 0.612 0.647 0.432 0.480
Min 0.716 0.669 0.464 0.574 0.590 0.594 0.405 0.460
Std 0.007 0.012 0.009 0.011 0.007 0.017 0.008 0.007

Mean 0.629 0.533 0.289 0.322 0.535 0.457 0.232 0.271
Median 0.632 0.540 0.293 0.324 0.536 0.455 0.231 0.273

PPI only Max 0.642 0.580 0.302 0.329 0.543 0.498 0.248 0.277
Min 0.613 0.491 0.269 0.311 0.522 0.444 0.224 0.259

DIP Std 0.009 0.019 0.011 0.006 0.006 0.008 0.007 0.006

Mean 0.700 0.675 0.422 0.462 0.597 0.621 0.369 0.378
Median 0.701 0.670 0.419 0.462 0.597 0.621 0.369 0.377

PPI+total Max 0.708 0.705 0.431 0.474 0.605 0.646 0.382 0.390
Min 0.690 0.652 0.414 0.448 0.589 0.596 0.358 0.365
Std 0.006 0.019 0.006 0.007 0.005 0.016 0.008 0.008

Mean 0.716 0.674 0.365 0.370 0.634 0.609 0.318 0.310
Median 0.716 0.672 0.365 0.369 0.634 0.605 0.317 0.310

PPI only Max 0.723 0.699 0.381 0.380 0.640 0.631 0.340 0.322
Min 0.708 0.653 0.348 0.358 0.626 0.588 0.300 0.305

BioGRID Std 0.004 0.015 0.011 0.008 0.004 0.015 0.013 0.005

Mean 0.748 0.753 0.458 0.438 0.663 0.726 0.428 0.373
Median 0.747 0.752 0.459 0.437 0.664 0.727 0.429 0.373

PPI+total Max 0.754 0.788 0.489 0.450 0.675 0.760 0.455 0.385
Min 0.741 0.733 0.416 0.427 0.651 0.678 0.393 0.365
Std 0.004 0.017 0.019 0.008 0.007 0.026 0.019 0.006

Affinity propagation

In the affinity propagation algorithm (AP) [13], each node is assigned a parameter called preference, which controls the
likelihood of that node being an exemplar (i.e., a representative element of a cluster). It is a common practice to set the
preference value equal for all nodes. In this paper, the optimal preference value is determined by trying different values
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Table S6: Performance of GMFTP with respect to different values of K.

CYC2008 SGD

Data set Property K ACC FRAC MMR PR ACC FRAC MMR PR

500 0.764 0.854 0.560 0.587 0.710 0.784 0.521 0.488
PPI only 1000 0.765 0.868 0.591 0.593 0.707 0.806 0.538 0.481

Collins 1500 0.766 0.854 0.575 0.579 0.710 0.799 0.524 0.478

500 0.779 0.882 0.641 0.665 0.715 0.836 0.603 0.543
PPI+total 1000 0.788 0.890 0.659 0.651 0.721 0.843 0.614 0.528

1500 0.774 0.896 0.661 0.648 0.708 0.843 0.601 0.530

500 0.742 0.790 0.472 0.460 0.694 0.750 0.411 0.367
PPI only 1000 0.742 0.841 0.489 0.457 0.703 0.789 0.442 0.371

Gavin 1500 0.747 0.819 0.497 0.456 0.696 0.742 0.433 0.367

500 0.761 0.855 0.588 0.576 0.716 0.828 0.523 0.469
PPI+total 1000 0.768 0.877 0.594 0.570 0.719 0.836 0.543 0.471

1500 0.769 0.855 0.593 0.580 0.718 0.813 0.522 0.459

500 0.715 0.713 0.442 0.487 0.613 0.655 0.377 0.402
PPI only 1000 0.722 0.756 0.474 0.491 0.625 0.667 0.403 0.406

Krogan core 1500 0.714 0.726 0.454 0.468 0.616 0.642 0.383 0.386

500 0.755 0.762 0.540 0.624 0.631 0.727 0.496 0.510
PPI+total 1000 0.768 0.805 0.573 0.649 0.647 0.739 0.518 0.520

1500 0.765 0.799 0.570 0.651 0.640 0.679 0.496 0.522

500 0.680 0.597 0.346 0.461 0.565 0.508 0.289 0.370
PPI only 1000 0.692 0.652 0.398 0.469 0.575 0.551 0.314 0.372

Krogan extended 1500 0.688 0.608 0.381 0.479 0.570 0.519 0.302 0.376

500 0.719 0.658 0.449 0.577 0.605 0.578 0.398 0.465
PPI+total 1000 0.745 0.696 0.487 0.601 0.612 0.647 0.432 0.472

1500 0.725 0.713 0.499 0.611 0.610 0.636 0.434 0.484

500 0.618 0.491 0.257 0.309 0.533 0.448 0.218 0.266
PPI only 1000 0.639 0.580 0.296 0.329 0.541 0.498 0.239 0.278

DIP 1500 0.629 0.527 0.306 0.328 0.536 0.453 0.245 0.277

500 0.709 0.679 0.420 0.456 0.625 0.632 0.371 0.383
PPI+total 1000 0.704 0.705 0.430 0.474 0.600 0.632 0.372 0.389

1500 0.695 0.705 0.452 0.478 0.596 0.637 0.393 0.402

500 0.712 0.623 0.329 0.366 0.628 0.579 0.281 0.304
PPI only 1000 0.723 0.687 0.377 0.378 0.640 0.631 0.340 0.322

BioGRID 1500 0.722 0.703 0.398 0.377 0.632 0.635 0.334 0.312

500 0.738 0.678 0.413 0.409 0.664 0.682 0.379 0.348
PPI+total 1000 0.754 0.750 0.474 0.448 0.675 0.760 0.455 0.385

1500 0.741 0.801 0.501 0.448 0.664 0.760 0.465 0.383

(ranges from -1 to 1 with 0.1 increment) and setting on the preference value that results in the best quality score. Affinity
propagation can handle both weighted and unweighted networks, therefore, besides the original PPI networks, we design
a heuristic comparison to test the performance of Affinity propagation when incorporating GO annotations into complexes
detection process. We employ three widely used measures Jiang, Kappa and Lin to weight the PPI networks, and implement
Affinity propagation on these weighted networks to detect protein complexes. The optimal value of preference for each data
set is shown in Table S8.

CFinder

Adamcsek et al. [1] provided a software called CFinder which is based on Clique Percolation Method (CPM) [22] to detect
overlapping modules in biological networks. CPM detects overlapping clusters by finding k-clique percolation communities.
Therefore, a key parameter of CFinder is the size of k-clique. In this paper, for each PPI network, we test CFinder with
k-clique size from 3 to 10, step size by 1. For BioGRID network, since CFinder did not give any result within 48 hours, we
set an optional time limit (10 seconds) for the time to spend on each node of the network, such that it can analyze the network
efficiently. Table S9 lists the optimal values of parameter k for each PPI network. The original CPM method can only handle
unweighted networks. Even though Farkas et al have proposed a weighted extension of CFinder [12], the computational cost
of the new variant is more prohibitive and can not analyze Collins network in 48 hours [21]. Therefore we just list the results
on the unweighted PPI networks.

ClusterONE

ClusterONE is recently proposed by Nepusz et al. [21] to detect overlapping protein complexes in PPI networks based on
overlapping neighborhood expansion. ClusterONE can deal with weighted and unweighted networks, therefore, besides
the original network, we also test its performance on the weighted networks which are constructed by assigning weights to
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Table S7: Characteristics of the compared algorithms.

Algorithm Version
weights overlap

Downloading website supported supported

AP http://www.psi.toronto.edu/index.php?q=affinity%20propagation
√

CFinder http://cfinder.org/ 2.0.5
√

ClusterONE http://www.paccanarolab.org/cluster-one/index.html 0.94
√ √

COAN http://www.plosone.org/article/info:doi/10.1371/journal.pone.0062077
√

Linkcomm http://barabasilab.neu.edu/projects/linkcommunities/ 2010-02-25
√

MCL http://micans.org/mcl/ 09-308
√

MCODE http://baderlab.org/Software/MCODE 1.32
√

MINE http://www.biomedcentral.com/1471-2105/12/192 1.5
√

SPICi http://compbio.cs.princeton.edu/spici/
√

SR-MCL http://www.cse.ohio-state.edu/˜shihy/
√ √

Table S8: The value of preference selected for Affinity propagation

Gold Standard Network
PPI (nw) PPI (w) PPI + BP PPI + CC PPI + MF PPI + Total

Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin

CYC2008 Collins 0.9 0.5 0.4 0.1 0.2 0.9 0.5 0.8 0.3 0.1 0.9 0.3 0.1 0.1
Gavin 0.6 0.2 0.7 0.3 0.7 0.4 0.7 0.4 0.1 0.2 0.2 0.3 0.3 0.3

Krogan core 0.4 0.7 0.5 0.4 0.6 0.4 0.6 0.9 0.7 0.3 0.6 0.1 0.3 0.4
Krogan extended 0.9 0.7 0.4 0.4 0.9 0.8 0.6 0.8 0.6 0.2 0.8 0.4 0.3 0.5

DIP 0.9 - 0.7 0.4 0.8 0.4 0.9 0.9 0.2 0.2 0.4 0.7 0.3 0.8
BioGRID 0.1 - 0.7 0.3 0.7 0.5 0.7 0.7 0.9 0.3 0.5 0.4 0.3 0.9

SGD Collins 0.9 0.5 0.8 0.1 0.2 0.9 0.5 0.9 0.3 0.1 0.9 0.3 0.1 0.7
Gavin 0.1 0.2 0.9 0.1 0.7 0.3 0.7 0.4 0.6 0.4 0.1 0.6 0.2 0.9

Krogan core 0.4 0.6 0.4 0.3 0.5 0.4 0.6 0.9 0.8 0.1 0.8 0.6 0.3 0.4
Krogan extended 0.9 0.6 0.4 0.2 0.9 0.9 0.6 0.9 0.6 0.2 0.7 0.4 0.3 0.5

DIP 0.9 - 0.8 0.4 0.9 0.4 0.8 0.8 0.2 0.1 0.5 0.6 0.5 0.5
BioGRID 0.9 - 0.7 0.3 0.8 0.2 0.7 0.9 0.9 0.3 0.1 0.4 0.3 0.6

Table S9: Parameters selected for CFinder.

Gold Standard Collins Gavin Krogan core Krogan extended DIP BioGRID

CYC2008 3 4 3 4 5 6
SGD 3 4 3 4 5 6
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Table S10: Parameters selected for COAN.

Gold Standard Collins Gavin Krogan core Krogan extended DIP BioGRID

CYC2008 0.7 0.6 0.6 0.6 0.8 0.7
SGD 0.7 0.6 0.6 0.7 0.7 0.7

Table S11: The value of inflation selected for MCL.

Gold Standard Network
PPI (nw) PPI (w) PPI + BP PPI + CC PPI + MF PPI + Total

Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin

CYC2008 Collins 3.2 5.0 5.0 3.4 5.0 4.2 4.6 4.8 1.8 2.6 2.6 4.0 4.4 2.8
Gavin 3.6 3.4 3.6 4.8 3.2 4.2 2.8 3.2 2.0 3.0 2.2 4.0 3.2 5.0

Krogan core 2.6 2.4 2.6 3.8 2.6 2.4 2.4 2.2 1.8 2.0 1.8 2.8 2.4 2.4
Krogan extended 2.2 2.4 2.6 2.4 2.2 2.8 2.6 2.4 1.8 2.4 1.8 3.0 2.6 2.2

DIP 2.0 - 2.2 2.2 2.2 2.2 2.0 2.2 2.0 2.4 2.0 2.4 2.6 2.2
BioGRID 3.2 - 3.0 2.4 3.2 2.8 2.6 2.8 2.6 2.4 2.4 2.8 2.6 2.8

SGD Collins 2.8 5.0 5.0 3.4 5.0 4.2 5.0 4.8 1.8 2.6 2.6 4.0 3.4 2.6
Gavin 2.8 4.6 3.6 4.6 4.2 4.2 2.8 3.2 3.4 2.8 3.0 4.4 2.8 5.0

Krogan core 2.8 2.0 2.6 2.0 2.4 2.2 2.4 2.2 1.8 1.8 1.8 2.8 2.4 2.4
Krogan extended 2.2 2.6 2.6 2.0 2.2 2.0 2.0 1.8 1.8 1.8 1.8 2.0 2.0 2.2

DIP 2.2 - 2.4 2.2 2.2 2.2 2.6 2.0 2.4 2.4 2.4 2.4 2.6 2.0
BioGRID 3.2 - 2.4 2.8 2.6 2.8 2.4 2.8 2.6 2.8 2.6 3.0 2.6 2.6

interactions according to the GO annotations. As suggested by the authors, we do not tune the parameters for a particular
network. Thus, we use the default settings of parameters in the software.

COAN

Zhang et al. [31] utilized the protein-protein interaction data and Gene Ontology to construct ontology augmented networks,
and proposed a novel method (clustering based on ontology augmented networks (COAN)) to predict protein complexes.
COAN can take into account both the topological structure of the PPI network and the similarity of GO slims annotation.
The key parameter of COAN is the extend thres which is used to expand seed complexes. In this study, we use GO
slims annotation data provided by the authors in their Supporting Information. As suggested by the authors, the range of
extend thres is from 0 to 1 with 0.1 increment. The optimal value of extend thres for each PPI network is shown in Table
S10.

Linkcomm

Linkcomm [2] is a landmark method in the field of community detection. Through reinventing communities as groups of
links rather than nodes, it successfully captures the organizing principles of overlapping communities and hierarchy. It has a
parameter which is used to cut the dendrogram. In this study, we use the default parameter, such that it automatically cuts the
hierarchical tree at the point where the density function of the partition is maximized. The original method is implemented
on unweighted networks, and Kalinka and Tomancak then extended it to handle networks that are weighted [16]. Here we
implement the unweighted version such that the comparative experiments are in accordance with the original method.

MCL

Markov Clustering Algorithm (MCL) [11] is a competing protein complex detection algorithm and has been implemented in
different languages, such as JAVA, R and C. The key parameter of MCL is inflation, which tunes the granularity of clustering.
Here, we try different values of inflation, ranges from 1.2 to 5.0 with 0.2 increment. The optimal value of inflation for each
PPI network is shown in Table S11. MCL can handle weighted networks, thus we also list its results on the weighted PPI
networks constructed.

MCODE

MCODE [4] is an effective approach for detecting protein complexes. It consists of three stages: vertex weighting, complex
prediction and optionally post-processing. Among its inherent parameters, the depth limit parameter controls the duration
of the augment process. The node score cutoff parameter controls the difference that can be tolerance between scores of
proteins within the same complex, and it is closely related to the size of the complex. There are two possible post-processing
operations: haircut and fluffing. MCODE is able to produce overlapping complexes in the fluffing case, but we experimentally
find that when fluffing is turned off, MCODE always has better performance. Therefore, we turn off the fluffing process in
this study. We try all possible combinations of the following parameters:

• Depth limit: 3, 4, 5
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Table S12: Parameters selected for MCODE.

Gold Standard Parameter Collins Gavin Krogan core Krogan extended DIP BioGRID

CYC2008 Depth limit 3 3 3 3 3 3
Node score cutoff 0.2 0.1 0.3 0.2 0.1 0.1

Haircut on on on on on on
Fluffing off off off off off off

Node density cutoff N/A N/A N/A N/A N/A N/A
SGD Depth limit 3 3 3 3 3 3

Node score cutoff 0.3 0.2 0.3 0.3 0.1 0.1
Haircut on on on on on on
Fluffing off off off off off off

Node density cutoff N/A N/A N/A N/A N/A N/A

Table S13: Parameters for MINE.

Gold Standard Parameter Collins Gavin Krogan core Krogan extended DIP BioGRID

CYC2008 Depth limit 3 3 3 3 3 3
Node score cutoff 0.1 0.1 0.1 0.1 0.1 0.1

Modularity score cutoff 0.2 0.8 0.1 0.1 0.1 0.1
SGD Depth limit 3 3 3 3 3 3

Node score cutoff 0.1 0.1 0.3 0.1 0.1 0.1
Modularity score cutoff 0.1 0.8 0.2 0.2 0.1 0.1

• Node score cutoff: 0.1 to 1.0 with a step size of 0.1

• Haircut: on or off

• Fluffing: on or off

• Node density cutoff: 0, 0.1, 0.2

Since MCODE can not deal with weighted networks, we list the optimal parameters of MCODE for the unweighted
verion of each PPI network in Table S12.

MINE

MINE [24] can identify highly modular sets of proteins within highly interconnected PPI networks. The key parameters of
MINE are node score cutoff and modularity score cutoff. We try different value of node score cutoff and modularity score
cutoff (from 0.1 to 1 with 0.1 as the step size) and 3 settings of depth limit (3, 4, 5). For the other parameters, without
stating, we use the default values in the software. MINE can not handle weighted networks neither, thus we apply it on the
unweighted PPI networks. The optimal values of the parameters of MINE for each PPI network are listed in Table S13.

SPICi

SPICi [15] is a computationally efficient local network clustering algorithm for large biological networks, which can be
applied on PPI networks for complex detection. SPICi can handle weighted networks, so we apply it on the weighted and
unweighted PPI networks to test its performance. SPICi has two parameters: the density threshold and the support threshold.
Here, we try different values of density threshold, ranges from 0.1 to 1 with 0.1 increment. For the other parameters, we use
the default settings in the software. Table S14 lists the optimal value of density parameter for each PPI networks.

SR-MCL

In order to redress the limitation of MCL [11] and its variants (e.g. regularized MCL) [26] that it only supports hard clustering,
Shih and Parthasarathy proposed a soft variation of Regularized MCL (called SR-MCL) [28]. There are four parameters that
need to be tuned: the balance parameter b, the inflation parameter r, the penalized ratio β and the number of iteration t.
Because it would take a very long time to find the optimal values of the four parameters by grid searching, SR-MCL is set
to the default values as suggested by the authors. Even though the method can be implemented on weighted networks, we
experimentally find that the software provided by the authors can only be performed on weighted networks for which the
edge weights are integers (We also discussed this point with authors). Because the edge weights considered in this study are
in [0, 1], we only implement it on the unweighted networks.
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Table S14: The value of density selected for SPICi

Gold Standard Network
PPI (nw) PPI (w) PPI + BP PPI + CC PPI + MF PPI + Total

Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin Jiang Kappa Lin

CYC2008 Collins 0.6 0.5 0.6 0.5 0.8 0.1 0.1 0.5 0.2 0.1 0.1 0.6 0.5 0.6
Gavin 0.9 0.4 0.8 0.6 0.5 0.6 0.5 0.6 0.4 0.4 0.3 0.6 0.5 0.7

Krogan core 0.3 0.4 0.1 0.1 0.1 0.4 0.3 0.5 0.1 0.2 0.3 0.4 0.3 0.6
Krogan extended 0.5 0.6 0.6 0.4 0.6 0.1 0.4 0.6 0.5 0.4 0.1 0.6 0.4 0.6

DIP 0.5 - 0.6 0.4 0.5 0.4 0.6 0.5 0.2 0.4 0.6 0.3 0.3 0.6
BioGRID 0.6 - 0.6 0.6 0.6 0.6 0.6 0.6 0.3 0.4 0.6 0.5 0.1 0.8

SGD Collins 0.6 0.3 0.6 0.5 0.1 0.1 0.5 0.8 0.3 0.1 0.1 0.6 0.4 0.6
Gavin 0.9 0.4 0.8 0.5 0.6 0.6 0.8 0.6 0.1 0.4 0.1 0.7 0.4 0.7

Krogan core 0.3 0.5 0.1 0.4 0.1 0.5 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.5
Krogan extended 0.4 0.6 0.4 0.6 0.6 0.1 0.2 0.6 0.5 0.4 0.4 0.4 0.4 0.6

DIP 0.5 - 0.6 0.4 0.6 0.4 0.6 0.4 0.3 0.6 0.6 0.6 0.3 0.6
BioGRID 0.6 - 0.8 0.7 0.6 0.6 0.9 0.6 0.6 0.4 0.6 0.5 0.1 0.6
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