
1 

 

Additional file 1: Genome scale in silico models and flux variability analysis 

(additional considerations).   

 
1. Genome-scale in silico models 

The metabolic maps for particular strains of microorganisms may be reconstructed from 

genomic, biochemical, physiological and genetic information, among others. These maps 

render the stoichiometric coefficients of all the biochemical reactions that can be taking place 

in any condition. For a system with m  metabolites and r  reactions, the stoichiometric 

coefficients are arranged in a stoichiometry matrix, N , having m  rows and r  columns. The 

element ikN is the stoichiometric coefficient of the i th metabolite taking part in the k th 

reaction. In this work, we use the E. coli stoichiometry matrices of the iJO1366 ( 1136=m  and 

2251=r ) (1) and iJR904 ( 904=m  and 1075=r ) (2) in silico models. The rates of the 

reactions are arranged in a column vector, v  . At steady state, the rates fulfill the matrix 

equation: ovN = , where o  is the null vector. The rates are functions of the internal 

metabolite concentrations and parameters. If these kinetic laws were replaced in the matrix 

equation, the metabolite concentrations and fluxes could be calculated (numerically) as a 

function of the parameters. However, we still lack reliable information on the kinetic laws and 

parameter values governing the rates of the metabolic processes in vivo, hindering the 

possibility to perform, with confidence, this type of analysis. On the other hand, we can 

consider the rates as the dependent variables, and solve ovN =  for these. This type of 

approach, which does not rely on detailed kinetic information, is the one used in the present 

work (3).      

       Reactions of metabolic networks are of three types: external, growth and internal. External 

reactions are auxiliary rates that produce or consume the metabolites external to the cell, 

maintaining their concentrations constant. They are introduced to ensure the steady state of 

the system. There is one external rate for each external metabolite. Growth reactions consume 

metabolic intermediates to produce biomass. Finally, internal reactions are all the remaining 

reactions, including the membrane transport processes and the metabolic machinery. There 

are limits to the range of values that the rates of the reactions can take. The upper and lower 

bounds depend on physical constraints or conditions imposed by the particular properties of 

the medium. For example, irreversible reactions are either positive or negative, being one of 

their bounds zero, and the upper bound of rates of nutrient incorporation to the cell cannot 

exceed the maximum transport rate through the plasma membrane. 

       In all well defined genome-scale metabolic reconstructions, there are more reactions (i.e. 

columns of N ) than independent metabolites (i.e. linearly independent rows of N ), the 

system being underdetermined and showing an infinite number of solutions. Selecting 

particular flux distributions, from the set of infinite solutions, requires imposing additional 

criteria. One possibility is the optimization of a given objective function (which can be any 

variable or linear combination of variables of the system), for example, maximizing the growth 

rate, as in flux balance analysis (FBA) (3). However, even after the additional criteria are 

imposed, there may still be more than one alternative solution, satisfying all the constraints. 

 

2. FVA in genome-scale metabolic reconstructions  

One simple approach to quantify changes in the high dimensional volume of alternative 

solutions is using Flux Variability Analysis (FVA) (4). The absolute flux variability of reaction i , in 

given conditions, may be calculated as the difference
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solutions. The variability of reaction i , in certain conditions, may be expressed relative to the 

variability in reference conditions: ( ) ( )min
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maximum and minimum flux values of reaction i  in the reference conditions. The average flux 

variability is: r
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δ  (4, 5), where the sum is over the internal reactions. 

       Reactions where minimum and maximum flux values, as computed by flux variability 

analysis (FVA) (4), coincide do not contribute to flux variability. These uniquely determined 

reactions are of two types: fixed and blocked. In the case of fixed reactions, the maximum and 

minimum flux values coincide and are different from zero. In the iJR904 model there is one 

fixed reaction in all conditions: the flux of ATP consumption for cell maintenance 

( 6.7=ATPmv ). The iJO1366 model has no fixed reactions. Note that other fluxes are fixed for 

particular conditions, as it is the case for oxygen uptake when the models are studied in 

anaerobic conditions, in which case oxygen uptake is set to zero. Blocked reactions, on the 

other hand, are those reactions with zero flux, under given conditions (6). In iJO1366 there are 

878 blocked reactions in glucose minimal medium, 213 of which are external, and in iJR904, 

there are 408 blocked reactions in glucose minimal medium, 86 of which are external. Allowing 

a maximum glucose uptake of 20 (instead of 10) does not change the number of reactions that 

are fixed or blocked neither in iJO1366 nor in iJR904. Fixed and blocked reactions found in 

glucose minimal medium were identified and not used in variability calculations because they 

do not contribute to flux variability.  After excluding these, there are 1373 remaining reactions: 

111 external, 2 growth (“wild type” and “core”) and 1260 internal in iJO1366 and there are 667 

remaining reactions: 86 external, 1 growth and 580 internal in iJR904. The calculations with 

iJO1366 are performed with the “core” biomass reaction (as in (1)). In addition to the 

calculation of the reference state, the calculation of the average flux variability ( ∆ ) for each 

new condition requires solving 2520 LP problems in iJO1366 and 1160 LP problems in iJR904. 

In iJO1366 and iJR904 some reactions show unbounded fluxes even if the nutrient uptake rates 

are bounded. The presence of these unbounded fluxes would violate the second law of 

thermodynamics, so that they should be eliminated from the model. We used the algorithm of 

Wright and Wagner (7) to identify these cycles and eliminate them from the variability 

calculations (see also (8)).  

       In this work, we do not include the external rates and the growth rate in the calculation of 

the average flux variability ( r
r
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δ , where r  is the number of internal reactions). 

External rates are auxiliary rates introduced for convenience to perform the calculations, their 

variability having no biological significance. The growth rate is a reaction introduced in the 

model to account for the complex sub-network of metabolic reactions consuming 

intermediates in the proportions of the cellular composition to produce biomass (3). 

Introducing this reaction in the calculation of ∆ , which has a large number of terms, will 

produce no significant difference, potentially underestimating the contribution that the sub-

network associated to growth could make to the average flux variability if it were displayed in 

all its extent. 
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