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TECHNICAL APPENDIX 1 Maternal Comorbid Conditions and Infant Congenital Anomalies
Included in This Study

Comorbid Condition or Anomaly ICD-9-CM Code

Disorders of placentation 641.0x, 641.1x, 641.2x
Chronic hypertension 642.0x, 642.1x, 642.2x
Cord abnormality 663.0x, 663.1x, 663.5x
Preterm labor 644.0x, 644.2x
Premature rupture of membranes 658.1x, 658.2x
Chorioamniotis 658.4x, 659.2x, 659.3x
Genitourinary tract infection 646.6x
Pregnancy-induced hypertension 642.4x, 642.5x, 642.7x
Oligohydramnios 658.0x
Blood transfusion 99.0, 99.00, 99.02, 99.03, 99.04
Amniocentesis 75.1
Cord prolapse 663.0x, 762.4
Diabetes mellitus 250.x 357.2 362.0x 366.41 648.0x
Gestational diabetes 648.8x
Renal disease 646.2x
Uterine rupture 665.0x 665.1x
OB shock hypotension 669.1x 669.2x
Thyroid disfunction 648.1x
Thrombosis 671.2x 671.3x 671.4x 671.5x
Congenital cardiac disease 648.5x
Eclampsia 642.6x
Placenta previa 641.0x 641.1x
Placenta abruption 641.2x
Hysterectomy 68.3 68.4 68.5x 68.6 68.7 68.8 68.9
Gastrointestinal malformation 756.70, 756.79, 750.3, 750.4, 750.5,

750.7, 750.8, 750.9, 751.1, 751.5,
751.8, 751.9, 560.2, 751.4, 751.0,
751.2, 751.3, 771.1, 751.61,
751.7, 751.60, 751.69

Genitourinary malformation 753.0, 753.12, 753.14, 753.15, 753.10,
753.19, 753.3, 753.4, 753.21,
753.22, 753.23, 753.29, 753.6,
753.7, 753.8, 753.9, 753.20, 756.71

Central nervous system
malformation

741.0x, 741.9x, 742.0, 742.1, 742.2,
742.3, 742.4, 742.59, 742.8, 742.9

Pulmonary malformation 519.4, 553.3, 748.9, 750.6, 756.6,
748.3, 748.4, 748.60, 748.61,
748.69, 748.8

Cardiac malformation 746.3, 746.4, 424.1, 747.10, 747.21,
747.29, 747.11, 747.22, 746.81,
746.7, 425.3, 746.5, 424.0, 746.6,
746.84, 745.10, 745.19, 745.12,
746.85, 425.1, 745.3, 745.11,
745.0, 746.01, 746.83, 746.2,
746.09, 745.2, 746.1, 745.60,
745.61, 745.69, 746.82, 747.41,
747.42, 747.40, 747.49, 746.9,
746.89, 746.87

Skeletal malformation 756.50, 756.51, 756.55, 756.56,
756.59

Skin malformation 757.1
Chromosomal anomaly 758.3, 758.5, 758.89, 758.9, 759.89,

759.9 759.7 759.4
Other malformation 778.0, 759.6, 776.5

For each ICD-9-CM code, “x” represents any number at that specific digit location.
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TECHNICAL APPENDIX 2

This technical appendix follows closely
to the work done in Baiocchi et al
(2010). This technical report serves as
a foundation for intuition of the meth-
ods used in this article. Arguments are
reproduced without proof, although
care is taken to provide references.
For a more complete discussion and
development of these methods please
consult Baiocchi et al (2010).

1 Matching to Create Stronger
Instruments

1.1 Fewer Pairs at Greater Distances

Weused optimal nonbipartitematching
to pair infants with similar covariates
but different excess travel times. There
are 2I infants. First, a discrepancy is
defined between every pair of infants,
yielding a 2I 3 2I discrepancy matrix.
(The term "discrepancy" is used in
place of the more common term "dis-
tance" to avoid confusion of covariate
discrepancy with the geographic dis-
tance to a NICU.) An optimal nonbipartite
matching then divides the 2I infants
into I nonoverlapping pairs of 2 infants
in such a way that the sum of the
discrepancies within the I pairs is
minimized. That is, 2 infants in the
same pair are as similar as possible.
Fortran code for a polynomial-time op-
timization algorithm was developed by
Derigs (1988), and was made available
inside R by Lu et al (2009). For sta-
tistical applications of optimal non-
bipartite matching, see Lu et al. (2001),
Rosenbaum and Lu (2004), Lu (2005),
and Rosenbaum (2005); and, for a dif-
ferent application in neonatology, see
Rosenbaum and Silber (2009a) and
Silber et al (2009).

In addition, the matching eliminates
some infants in an optimal manner by
using “sinks”; see Lu et al (2001). To
eliminate e infants, e sinks are added
to the data set before matching, where
each sink is at zero discrepancy to each
infant and at infinite discrepancy to

all other sinks. This yields a (2I 1 e) 3
(2I 1 e) discrepancy matrix. An optimal
match will pair e infants with the e sinks
in such a way as to minimize the total of
the remainingdiscrepancieswithin I2e/2
pairs of 2I 2 e infants; that is, the best
possible choice of e infants is removed.

The discrepancy matrix was built in
several steps by using standard devices.
Because we are matching mothers
from different parts of the states, and
because socioeconomic status varies
from place to place, it is important
to compare mothers from wealthy
communities with other mothers from
wealthy communities, and mothers from
poor communities with other mothers
from poor communities. The 6 census/
zip code measures are intended to rep-
resent local socioeconomic status, but
socioeconomicstatusisnot6-dimensional.
First, socioeconomic measures de-
scribing a zip code were summarized
by using their first 2 principal com-
ponents. These 2 components were
combined with individual-level data
about mother and infant in calculating
a Mahalanobis discrepancy between
every pair of infants. A small penalty
(ie, a positive number) was added to the
discrepancy for each of the following
circumstances for any pair of infants
which (i) did not agree on the number of
congenital disorders, (ii) did not agree on
black race, (iii) did not agree on whether
zip code information was missing. Two
independent observations drawn from
the same L-variate multivariate Normal
distribution have an expected Maha-
lanobis discrepancy equal 2L, so that,
speaking informally, a penalty that is
typically of size 2 will double the im-
portance of matching on a variable.
Small penalties are used to secure
balance for a few recalcitrant covar-
iates, usually those which are most
systematically out of balance; see
Rosenbaum (2010, x9.2) for discussion.
It is typical to adjust small penalties
to secure the desired balance. Finally,

a substantial penalty was added to the
discrepancy between any pair of infants
whose excess travel time differed in ab-
solute value by at most L, where L 5 0
in the first match described above,
and L 5 25 minutes in the second
match. Substantial (effectively infinite)
penalties are used to enforce compli-
ance with a constraint whenever com-
pliance is possible and to minimize the
extent of deviation from a constraint
whenever strict compliance is not pos-
sible. This substantial penalty used a
"penalty function," a continuous function
that is 0 if the constraint is respected
and rises rapidly as the magnitude of
the violation of the constraint increases;
see Avriel (1976) for discussion of pen-
alty functions and see Rosenbaum (2010,
x8.4) for discussion of the use of penalty
functions in matching.

In fact, we matched exactly on 4 im-
portantcovariates. Thefirst covariate is
state. Another was year of birth. The
other 2 covariates that were exactly
matched were coarse categorical ver-
sions of birth weight and gestational
age. This means that we split 1 large
matching problem into several smaller
matching problems, grouping the pairs
into 1 study at the end. In addition to
ensuring exact matches on these 4
covariates, this process permits a
rather large matching problem to be
broken into several smaller problems
that are solved separately in the man-
ner indicated above. Because the dis-
crepancy matrix has size on the order
of the square of the number of infants
and the algorithm has a worst case
time bound on the order of the cube of
the number of infants, splitting the
problem to produce an exact match
drastically reduces the computational
effort; see Rosenbaum (2010, x9.3) for
discussion. Inside these exact-match
categories, we also used the continu-
ous versions of birth weight and ges-
tational age to obtain closer matches
than the categories alone required.
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2 Inference About Effect Ratios

2.1 Notation: Treatment Effects,
Treatment Assignments

There are I matched pairs, i5 1,… , I,
with 2 subjects, j 5 1, 2, one treated
subject and one control, or 2I subjects
in total. If the jth subject in pair i
receives the treatment, write Zij 5 1,
whereas if this subject receives the
control, write Zij 5 0, so 1 5 Zi1 1 Zi2
for i 5 1, … , I. In our study, the
matched pairs consist of 1 mother
close to a high-level NICU (say control),
the other further away (say treated).
Notice that, in this terminology, prox-
imity is the "treatment," although our
real interest is in the effect of delivering
at a low-versus-high level hospital.

The subscripts ij are bookkeeping labels
and carry no information; all informa-
tion about subjects is contained in ob-
served or unobserved variables that
describe them. (It is easy to construct
noninformative labels: number the pairs
i at random, then number the subjects
j at random within each pair.) The
matched pairswere formed bymatching
for an observed covariate xij, but may
have failed to control an unobserved
covariate uij; that is, xij5 xik for all i, j, k,
but possibly uij � uik. This structure is
in preparation for the inevitable com-
ment or concern that the pairs look
similar in terms of the observed variables
that are reported in the tables showing
the balance of the covariates, but the
tables omit the specific covariate uij,
which might bias the comparison.
Write u 5 (u11, u12, … u I2) for the 2I-
dimensional vector.

For any outcome, each subject has 2
potential responses, one seen under
treatment, Zij5 1, the other seen under
control, Zij 5 0; see Neyman (1923) and
Rubin (1974). In the current study of
NICUs, speaking in this way of 2 poten-
tial responses entails imagining that a
mother ij who lived either close to a
high-level NICU (Zij5 0) or far from one

(Zij5 1) might instead have lived in the
opposite circumstances. What would
have happened to a mother and her
newborn had she lived either close to or
far from a high-level NICU? Here, there
are 2 responses, (rTij, rCij) and (dTij, dCij),
where rTij and dTij are observed from jth
subject in pair i under treatment, Zij5 1,
while rCij and dCij are observed from
this subject under control, Zij5 0. In our
study, (rTij, rCij) indicates infant death,
1 for dead, 0 for alive, and (dTij, dCij)
indicates whether mother delivered at
a hospital without a high-level NICU, 1
if yes, 0 if no. For instance, if (rTij, rCij)5
(1, 0) with (dTij, dCij) 5 (1, 0), then (i) if
mother had lived far from a high-level
NICU (Zij 5 1), she would not have de-
livered at a high-level NICU (dTij5 1) and
her infant would have died (rTij5 1), but
(ii) if mother had lived near a high-level
NICU (Zij 5 0), then she would have de-
livered at a high-level NICU (dCij5 0) and
her infant would have survived (rCij5 0).

The effects of the treatment on a subject,
rTij2 rCij or dTij2 dCij, are not observed
for any subject; that is, each mother
lives either near to or far from a high-
level NICU, and the fate of her infant
under the opposite circumstance is not
observed. However,Rij5 ZijrTij1 (12 Zij)
rCij, Dij5 ZijdTij1 (12 Zij) dCij and Zij are
observed from every subject. Let F 5
{(rTij, rCij,dTij,dCij, xij,uij), i51,… , I, j51, 2}.

Fisher sharp null hypothesis of no treat-
ment effect on (rTij, rCij) asserts that H0 :
rTij5 rCij, for i5 1,… , I, j5 1, 2. In our
study, this says that living close to a
high-level NICU has no effect on perinatal
mortality, even if proximity shifts some
mothers todeliverat ahospitalwithahigh-
level NICU. If Fisher null hypothesis were
plausible, it would be difficult to argue
that regionalization of care is warranted.

A substantial distance between mother’s
home and the nearest high-level NICU is
thought to “encourage”mother to deliver
at a less capable but presumably closer
hospital. A mother with (dTij, dCij)5 (1, 0)
is said to be a “complier,” in the sense

that she would deliver at a high-level
NICU if one were close by (dCij 5 0),
but she would deliver at a less capable
hospital if she lived far away dTij 5 1.

Write |A| for the number of elements in
a finite set A. Let Z5 (Z11, Z12,…, ZI,2)

T, let
V be the set containing the |V| 5 2I

possible values z of Z, so z 2 V if z 5
(z11, z12,… , zI,2)

Twith zij5 0 or zij5 1, 15
zi1 1 zi2 for i 5 1, … ,I. Write Z for the
event that Z 2 V. In a randomized ex-
periment, Z is picked at random fromV,
soPr(Z5 z|F ,Z)51/ |V| foreach z2V.

2.2 Effect Ratios

The effect ratio, l, is the parameter

l5
+I

i51+
2
j51ðrTij 2 rCijÞ

+I
i51+

2
j51ðdTij 2 dCijÞ

; ð1Þ

where it is implicitly assumed that
0�+I

i51+
2
j51dTij 2 dCij . Here, l is a pa-

rameter of the finite population of 2I individ-
uals whose data are recorded in F , and
because (rTij, rCij) and (dTij, dCij) are not jointly
observed, l cannot be calculated from ob-
servable data, so inference is required. Notice
that under the Fisher sharp null hypothesis of
no effect H0 in x2.1, l 5 0.

The effect ratio is the ratio of 2 average
treatment effects. In a paired, ran-
domized experiment, the mean of the
treated-minus-control difference pro-
vides unbiased estimates of numerator
and denominator effects separately, and
undermild conditions as I→‘ , the ratio
of these unbiased estimates is consistent
for l. The effect ratio measures the rela-
tive magnitude of 2 treatment effects,
here the effect of distance on mortality
compared with its effect on where moth-
ers deliver. For instance, if l 5 1/100,
then for every 100 mothers discouraged
by distance from delivering at a hospital
with a high-level NICU, there is 1 additional
infant death.With no furtherassumptions,
l is both estimable in a randomized ex-
periment and interpretable; however, the
interpretation does not explicitly link the
effects in the numerator and the effects in
the denominator.
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As discussed by Angrist et al (1996), with additional assumptions such as the exclusion restriction andmonotonicity,lwould be the
average increase inmortality caused by delivering at a less capable hospital among compliers, that is, motherswith (dTij, dCij)5 (1,
0), ormotherswhowould deliver at a low-level NICU if and only if therewasno high-level NICU close by. Our inferences are valid forl
whether or not the exclusion restriction lends this interpretation to l. Here, l is unknown and is a function of F .

2.3 Inference About an Effect Ratio in a Randomized Experiment

Consider the null hypothesis,HðlÞ
0 : l5l0 . Here,H

ðlÞ
0 is a composite hypothesis: there aremany different finite populationsF

in whichHðlÞ
0 : l5l0 is true. Recall that the size of a test of a composite hypothesis is the supremum over null hypotheses of

the probability of rejection, and a valid test has size less than or equal to its nominal level. The hypothesis will be tested with the
aid of the statistic,

T ðl0Þ51

I
+
I

i51

n
+
2

j51
ZijðRij 2 l0DijÞ2 +

2

j51
ð12 ZijÞðRij 2 l0DijÞ

o
5
1

I
+
I

i51
Viðl0Þ; say; ð2Þ

where, because Rij 2 l0Dij 5 rTij 2 l0dTij if Zij 5 1 and Rij 2 l0Dij 5 rCij 2 l0dCij if Zij 5 0, we may write

Viðl0Þ5 +
2

j51
ZijðrTij 2 l0dTijÞ2 +

2

j51
ð12 ZijÞðrCij 2 l0dCijÞ: ð3Þ

Also, define yTij,l0 5 rTij 2 l0dTij, yCij,l0 5 rCij 2 l0dCij and

S2ðl0Þ5 1

IðI 2 1Þ +
I

i51
fViðl0Þ2 T ðl0Þg 2:

For large I, the hypothesis HðlÞ
0 : l5l0 will be tested by comparing T(l0) /S(l0) with the standard Normal cumulative dis-

tribution,F(×). In the limiting argument here, with I→‘ , there is no sampling of pairs from a population, but instead random
treatment assignment is being applied to an ever large number I of pairs (eg, Welch 1937).

2.4 Inference About Risk Ratios

The compliance class Hij of subject ij describes ij’s behavior under encouragement by the IV versus no encouragement. The
possible compliance classes are Hij 5 complier if dTij 5 1, dCij 5 0; Hij 5 always taker if dTij 5 1, dCij 5 1; Hij 5 never taker if
dTij5 dCij5 0; and Hij5 defier if dTij5 0,dCij5 1. We make the monotonicity assumption that there are no defiers as in Angrist
et al (1996). Suppose pairs are sampled from a superpopulation and rT, rC are the potential outcomes of a randomly selected
subject; R, D, Z are the observed response, treatment received and encouragement level of the randomly chosen subject; and
H is the compliance class of the randomly chosen subject. Then,

EðrT jH5complierÞ5E

8>><
>>:

R3D3Z

PðZ51Þ 2
R3D3ð12 ZÞ

PðZ50Þ
D3Z

PðZ51Þ2
D3ð12ΖÞ
PðZ50Þ

9>>=
>>;

ð4Þ

and

EðrC jH5complierÞ5E

8>><
>>:

R3ð12 DÞ3ð12 ZÞ
PðZ50Þ 2

R3ð12 DÞ3Z

PðZ51Þ
D3Z

PðZ51Þ2
D3ð12ΖÞ
PðZ50Þ

9>>=
>>;

ð5Þ

The risk ratio for compliers is

RRcomplier5
EðrT jH5complierÞ
EðrC jH5complierÞ:

We estimate RRcomplier by plugging the sample values of R, D, Z, P(Z5 1), P(Z5 0) into the right-hand sides of (4) and (5), and taking the ratio
of ÊðrT jH5complierÞ to ÊðrC jH5complierÞ. To find a confidence interval for RRcomplier, we bootstrapped the pairs (ie, resampled the
pairs with replacement) and found a bootstrap percentile confidence interval (Efron and Tibshirani, 1986).
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RESULTS APPENDIX 1 Strength of Instrument in Pennsylvania, California, and Missouri, 1995–2005

Quartiles for Instrument

1st 2nd 3rd 4th D/SDa

Pennsylvania
Differential travel time (1.5) 3.3 13.5 38.6 2.26
Percent deliver at high-level NICU 79.8% 72.9% 45.6% 23.9% 1.12
Birth weight 2538 2550 2624 2630 0.13
Gestational age 35.0 35.0 35.2 35.3 0.11
Race
White 55.5% 58.6% 82.4% 85.4% 0.65
Black 28.8% 26.5% 5.8% 4.8% 0.65
Asian 1.7% 1.5% 1.1% 0.5% 0.11
Other 4.2% 3.9% 3.3% 1.4% 0.16

Insurance status
FFS 18.0% 17.0% 23.6% 25.4% 0.20
HMO 34.5% 37.8% 43.1% 30.3% 0.27
Public 35.5% 33.0% 22.0% 32.9% 0.29
Other 10.4% 10.6% 9.5% 8.9% 0.06
Uninsured 1.3% 1.1% 1.4% 1.8% 0.06

Singleton birth 83.7% 83.2% 81.6% 84.4% 0.07
SGA 17.4% 16.7% 14.9% 15.5% 0.07
Maternal comorbid conditions

and complications of pregnancy
Comorbid conditions
Chronic HTN 1.80% 1.97% 1.48% 1.27% 0.05
Gestational diabetes 5.31% 5.12% 5.27% 5.11% 0.01
Diabetes mellitus 1.75% 1.79% 1.71% 1.97% 0.02
Renal disease 0.27% 0.30% 0.30% 0.30% 0.01
Congenital heart disease 0.12% 0.10% 0.14% 0.10% 0.01

Complications of pregnancy
Preterm labor 46.43% 45.12% 43.53% 43.75% 0.06
PIH 10.51% 10.78% 10.09% 10.24% 0.02
PROM 19.12% 18.65% 17.81% 17.18% 0.05
Oligohydramnios 4.58% 4.08% 3.86% 3.10% 0.08
Disorders of placentation 5.66% 5.76% 5.92% 5.36% 0.02

California
Differential travel time (1.8) 1.2 4.2 26.3 1.49
Percent deliver at high-level NICU 79.60% 67.17% 63.72% 37.72% 0.86
Birth weight 2613 2622 2629 2633 0.02
Gestational age 35.4 35.4 35.4 35.4 0.02
Race
White 61.11% 60.09% 62.69% 72.81% 0.27
Black 10.94% 8.27% 8.01% 4.77% 0.23
Asian 9.51% 11.05% 10.00% 7.16% 0.13
Other 16.82% 18.87% 17.70% 13.55% 0.14

Insurance status
FFS 3.26% 3.30% 3.21% 5.52% 0.12
HMO 46.13% 43.33% 46.05% 45.52% 0.06
Public 46.50% 49.38% 46.80% 44.15% 0.10
Other 0.85% 0.67% 0.95% 1.42% 0.08
Uninsured 3.23% 3.28% 2.95% 3.36% 0.02

Singleton birth 89.45% 89.93% 89.84% 89.15% 0.03
SGA 10.53% 10.43% 10.37% 10.27% 0.01
Maternal comorbid conditions and

complications of pregnancy
Comorbid conditions
Chronic HTN 1.04% 0.99% 0.97% 1.05% 0.01
Gestational diabetes 5.68% 5.66% 5.67% 5.52% 0.01
Diabetes mellitus 1.26% 1.30% 1.29% 1.09% 0.02
Renal disease 0.16% 0.16% 0.15% 0.18% 0.01
Congenital heart disease 0.04% 0.05% 0.05% 0.05% 0.01
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RESULTS APPENDIX 1 Continued

Quartiles for Instrument

1st 2nd 3rd 4th D/SDa

Complications of pregnancy
Preterm labor 27.50% 27.23% 26.64% 26.86% 0.02
PIH 6.73% 6.86% 6.83% 7.60% 0.03
PROM 10.10% 10.32% 9.96% 11.12% 0.04
Oligohydramnios 3.44% 3.40% 3.23% 2.99% 0.03
Disorders of placentation 4.12% 4.14% 4.08% 4.27% 0.01

Missouri
Differential travel time 2.47 9.93 24.86 93.23 2.16
Percent deliver at high-level NICU 55.7% 22.6% 24.1% 10.1% 1.02
Birth weight 2803 2800 2820 2830 0.04
Gestational age 35.2 35.1 35.3 35.3 0.06
Race
White 72.57% 62.83% 77.51% 91.87% 0.68
Black 22.73% 34.44% 20.74% 6.10% 0.70
Asian 3.37% 2.08% 1.07% 0.78% 0.19
Other 0.75% 0.47% 0.46% 1.11% 0.08

Insurance status
FFS 30.18% 28.37% 29.79% 23.78% 0.14
HMO 25.72% 25.75% 26.34% 15.48% 0.26
Public 37.27% 34.50% 36.19% 53.11% 0.38
Other 3.26% 8.74% 5.10% 4.70% 0.24
Uninsured 3.15% 2.46% 2.42% 2.88% 0.05

Singleton birth 88.19% 89.48% 89.66% 90.71% 0.08
SGA 12.10% 11.96% 11.55% 11.65% 0.02
Maternal comorbid conditions and

complications of pregnancy
Comorbid conditions
Chronic HTN 1.39% 1.54% 1.50% 1.13% 0.04
Gestational diabetes 4.71% 4.79% 4.23% 3.68% 0.05
Diabetes mellitus 1.21% 1.35% 1.37% 1.21% 0.01
Renal disease 0.26% 0.18% 0.28% 0.21% 0.02
Congenital heart disease 0.09% 0.04% 0.04% 0.05% 0.02

Complications of pregnancy
Preterm labor 31.54% 28.69% 29.46% 28.71% 0.06
PIH 8.45% 9.28% 9.13% 8.54% 0.03
PROM 13.04% 12.24% 12.11% 11.14% 0.06
Oligohydramnios 4.85% 3.88% 3.87% 3.67% 0.06
Disorders of placentation 4.71% 4.52% 4.39% 4.02% 0.03

FFS, fee for service; HMO, health maintenance organization; SGA, small for gestational age; HTN, hypertension; PIH, pregnancy-induced hypertension; PROM, premature rupture of membranes
aD/SD is the standardized difference between the high-level NICU and other delivery hospital groups for a specific variable, defined as (difference in means between 2 groups of patients)4
(SD of entire cohort). A value ,0.20 is considered adequate balance between groups.
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RESULTS APPENDIX 2 Adjusted Rates of Complications at High-level NICUs and Other Delivery Hospitals by Using Matched-Paired Propensity Score
Analyses, Pennsylvania, California, and Missouri, 1995–2005

Pennsylvania California Missouri

RDa RRb RDa RRb RDa RRb

In-hospital death 20.6 (21.6, 0.4) 0.93 (0.89–1.04) 22.1 (22.6 to 21.6)c 0.86 (0.81–0.88)c 22.7 (24.7 to 20.6)c 0.90 (0.83–0.98)c

Neonatal death 20.5 (21.5, 0.5) 0.95 (0.85–1.05) 20.4 (20.8 to 0) 0.96 (0.93–1.01) 0.2 (21.7 to 2.1) 1.01 (0.92–1.10)
Preventable fetal death 20.3 (20.7, 0.1) 0.78 (0.58–1.02) 21.7 (21.9 to 21.4)c 0.61 (0.57–0.66)c 22.9 (23.9 to 21.9)c 0.50 (0.40–0.64)c

BPD 3.8 (2.9–4.7)c 1.54 (1.41–1.69)c 1 (0.7–1.3)c 1.18 (1.13–1.25)c 25.4 (27.3 to 23.5)c 0.79 (0.71–0.86)c

NEC 0.9 (0.2–1.6)c 1.26 (1.08–1.51)c 0.8 (0.6–1.1)c 1.36 (1.25–1.47)c 3.5 (2.2–4.7)c 1.62 (1.35–1.88)c

Fungal sepsis 3.9 (3.1–4.8)c 1.93 (1.66–2.22)c 0.9 (0.6–1.2)c 1.3 (1.22–1.41)c 2.3 (0.7–4.0)c 1.18 (1.04–1.32)c

Bacterial sepsis 2.4 (0.6–4.2)c 1.08 (1.03–1.15)c 3.4 (2.7–4)c 1.16 (1.14–1.20)c 34.1 (31.0–37.3)c 1.89 (1.78–2.00)c

ROP 1 (0.3–1.7)c 1.27 (1.07–1.51)c 3.4 (3.1–3.8)c 1.73 (1.64–1.83)c 10.8 (8.7–12.9)c 1.50 (1.37–1.62)c

Surgery for ROP 0.2 (20.1 to 0.5) 1.42 (0.85–2.26) 0.7 (0.5–0.8)c 2.05 (1.80–2.39)c 0.1 (20.8 to 1.0) 1.03 (0.82–1.26)
Laparotomy 0.3 (20.3 to 0.8) 1.12 (0.88–1.38) 0.1 (20.3 to 0.1) 0.94 (0.84–1.03) 2.3 (1.2–3.4)c 1.52 (1.29–1.82)c

Any IVH 3.2 (2.2–4.3)c 1.39 (1.27–1.52)c 2.5 (2.2–2.9)c 1.56 (1.49–1.64)c 3.1 (1.1–5.2)c 2.41 (1.50–3.36)c

a A positive RD indicates a higher rate at high-level NICUs compared with other delivery hospitals. A negative RD indicates a lower rate at high-level NICUs compared with other delivery
hospitals.
b A RR .1 indicates a higher rate at high-level NICUs compared with other delivery hospitals. A RR ,1 indicates a lower rate at high-level NICUs compared with other delivery hospitals.
c All results statistically significant at a P , .05 level.
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