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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Overview of the modeling approach 

Our network model consists of four layers: a top input layer having three MAMP nodes 

(flg22, elf18, and chitosan), two signaling layers representing early and late states of four sectors, 

jasmonate (JA), ethylene (ET), PAD4, and salicylate (SA), a bottom output layer indicating the 

immunity levels against two bacterial strains, Pto and Pma (Figure 1). After normalization and 

preprocessing of expression levels of four sector marker genes which define the sector activities 

(Figures S1B-D), we fitted multiple regression models using L1-norm regularization (Lasso) 

(Friedman et al., 2010) (see Figure S1E and S1F for the starting model structures and the final 

models, respectively). The modeling approach was designed to overcome several limitations of 

conventional modeling approaches such as Bayesian network (Koller and Friedman, 2009) 

(Figure S2A). Our models were configured to predict the activity levels of four sectors and the 

immunity levels against two bacterial strains based on observations across four treatments 

including mock, two time points and 16 combinatorial genotypes. The predictive performance of 

the models was evaluated using a bootstrapping aggregation, which revealed high accuracy in 

predicting both the sector activities and immunity levels (Figures 2B and 2C). Mechanistic 

interpretation of the models was then accomplished through analysis of network activity maps, 

which allowed visualization of signal flows in the network across the combinatorial genotypes 

upon particular MAMP treatments (Figure S5). 

 

Generation and preprocessing of data 

Chemicals 
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Flg22 and elf18 peptides were purchased from EZBiolab Inc. (Westfield, IN, USA), and 

chitosan was purchased from SIGMA (C3646; St. Louis, MO, USA). 

Selection of the sector marker genes and the normalization gene  

The mRNA levels of the marker genes, At3g50280, At2g41230, At5g46960, and 

At2g14610 (PR1), were used as proxies for the JA, ET, PAD4, and SA sector activities, 

respectively.  Datasets used for marker gene selection were the GEO datasets GSE18978 and 

GSE50526. In GSE18978, expression profiles were obtained from leaves of wild-type (Col-0), 

coi1-1, ein2-1, npr1-1, pad4-1, and sid2-2 plants 24 hours after Pma (hemibiotrophic bacterium) 

inoculation. In GSE50526, expression profiles were obtained from leaves of wild-type (Col-0), 

dde2-2, ein2-1, and sid2-2 plants 9 and 24 hours after Alternaria brassicicola (necrotrophic 

fungus) inoculation. These datasets were generated using the same tissue used in the current 

study and include plant genotypes highly relevant to the current study and two pathogens of very 

different types. The Affymetrix ATH1 Arabidopsis whole genome array was used in generating 

the datasets. Log2-transformed expression level values preprocessed by GC-RMA (Wu and 

Irizarry, 2004) were used in the current study. In addition, the data sources of Biotic Stress, 

Biotic Stress II, Chemical, and Hormone in the Arabidopsis eFP Browser 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) (Winter et al., 2007) were used to check the 

response specificity of candidate genes. 

We defined the representing points of the JA, ET, and SA sectors as the respective 

hormone levels and selected sector marker genes that likely represent the hormone levels well. 

For this purpose, we used the following criteria: (1) the signal-to-noise ratio in induction by 

pathogens is high; (2) the induction is almost completely dependent on the sector of interest (i.e., 

almost no induction in the mutant corresponding to the sector); (3) strong induction by 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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exogenous application of the corresponding hormone (ACC in case of ET); (4) the induction is 

highly specific to the hormone of interest. Specific selection procedures for each sector follow: 

For the JA sector marker, with GSE18978 dataset: (1) (Pma – mock) > 0 and the 

associated q < 10
-5 

in WT (891 genes); (2) With Pma, ( (coi1 – WT) < 0 and q < 10
-4

)  AND (q > 

0.2 for all (sid2 – WT), (npr1 – WT), (pad4 – WT), and (ein2 – WT)) (244 genes). Two genes, 

At3g50280 and At2g39050, satisfied both selection criteria (1) and (2). (3) and (4): in the eFP 

Browser, At3g50280 showed strong and specific induction by MeJA. At3g50280 was selected. 

For selection of the ET sector marker, GSE50526 dataset generated with A. brassicicola 

(Ab) infection was used since Pma did not seem to strongly induce ET signaling. The data for 9 

hpi was used. (1) (Ab – mock) > 0 and q < 0.005 in WT (850 genes); (2) With Ab, ((ein2 – WT) 

< 0 and q < 0.005) AND (q > 0.3 for both (sid2 – WT) and (dde2-WT) (89 genes). Seven genes, 

At5g01210, At4g12480, At4g12470, At2g47270, At2g16060, At2g41230, and At2g44080, 

satisfied both selection criteria (1) and (2). (3) and (4): based on strong and specific induction by 

ACC and delayed induction by IAA in eFP Browser, At2g41230 was selected. It is common that 

ET production is induced by IAA with a delay (Abeles and Rubinstein, 1964), so delayed 

induction of an ET sector marker by IAA was expected. 

PR1 (At2g14610) is the most commonly used SA sector marker gene (Pieterse et al., 

2012) PR1 expression level measurement by the ATH1 array is not reliable, so we did not apply 

the ATH1 data-based gene selection with PR1. However, we previously compared PR1 

expression levels, measured by qRT-PCR, and SA levels under many PTI conditions in various 

plant genotypes and knew that the PR1 expression level tracks the SA level very well under PTI 

conditions (e.g., (Tsuda et al., 2008; Wang et al., 2009)). Thus, we used PR1 as the SA sector 

marker gene.  
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For selection of the PAD4 sector marker gene, we were not able to use criteria (3) and (4) 

because a measurable signal molecule representing the sector is not known. Since it is known 

that PAD4 is positively regulated by SA under many conditions (Jirage et al., 1999), we added a 

criterion related to criterion (2): (2p) the induction level is reduced by SA sector disruption, but 

not as much as by PAD4 sector disruption. Similarly, (3p) induction by exogenous SA 

application in PAD4 wild-type plants and (4p) the induction is highly specific to SA. We noticed 

that the effect of PAD4 on the majority of these genes is mainly on the basal level and that the 

fold-induction was not changed much in the pad4 mutant. Such genes do not report the PAD4 

sector activity correctly because the genes are still responding in the pad4 mutant. Thus, we 

added a criterion to select truly PAD4-dependent genes: (5) the expression level after mock 

treatment in wild type and the expression level after pathogen treatment in the pad4 are similar. 

Thus, we used criteria (1), (2), (2p), (3p), (4p), and (5) to select the PAD4 sector marker gene, 

and the representing point for the PAD4 sector was defined by this marker gene. Specifically, 

using the GSE18978 dataset: (1) (Pma – mock) > 0 and q < 10
-5

 (891 genes); (2) With Pma, 

((pad4 – WT) < 0 and q < 10
-4

) AND (q > 0.2 for both (coi1 – WT) and (ein2 – WT)) (115 

genes); (2p) With Pma, ((sid2 – WT) < 0 AND (npr1 – WT) < 0 AND (sid2 – WT) – (pad4 – 

WT) > 1 AND (npr1 – WT) – (pad4 – WT) > 1 (233 genes); (5) |pad4 Pma – WT mock| - (WT 

Pma – WT mock) < -4 (4 genes). Two genes, At5g46960 and At1g33950, satisfied all selection 

criteria (1), (2), (2p), and (5). (3p) and (4p), in the eFP Browser, At5g46960 showed specific 

induction by SA. At5g46960 was selected as the PAD4 sector marker gene. 

For selection of the normalization gene, both GSE18978 and GSE50526 datasets were 

used. The following criteria were used for selection: (1) low variation in expression levels in 

each dataset; (2) no significant difference in expression level between the sector mutants and 
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wild type plants during pathogen infection; (3) small difference in the expression level between 

two experiments; (4) the mean expression level value is not very high; (5) the expression level is 

stable after many different pathogen-related or hormone-related treatments. Criterion (4) was 

included for three reasons. First, the normal hybridization conditions for Affymetrix arrays result 

in having the hybridization signals for highly expressed genes outside the linear range, which 

artificially makes expression of highly expressed genes appear more stable than it actually is. 

Second, using quantile normalization, hybridization signals for highly expressed genes could be 

highly skewed as they fall into the upper tail of the distribution, which might artificially make 

expression of highly expressed genes appear more stable as well. Third, quantitation by qRT-

PCR is more accurate when the expression level of the normalization gene is closer to the 

expression level of the gene of interest. Criterion (4) excluded several conventional 

normalization genes. Specifically, (1) sd < 0.3 and max – min < 1.2 in each dataset (351 genes); 

(2) q > 0.1 in all (mutant – WT) in both datasets (1942 genes); (3) the mean difference between 

two datasets < 0.2 (1582 genes); (4) mean expression level value < 10 (10533 genes). This 

selection yielded 21 candidate genes. (5) based on the eFP Browser data, four genes, At4g29480, 

At2g30260, At3g07170, and At5g11980, were selected from the 21 genes. Among the four, 

At4g29480 was arbitrarily chosen as the normalization gene. 

Figure S1A shows the mRNA levels of the sector marker genes, in the log2-scale relative 

to the normalization gene, across the treatment:genotype:time combinations. For the ET, PAD4, 

and SA sector marker genes, it is clear that (1) the marker gene mRNA levels are induced by 

MAMP treatments and (2) the induced mRNA levels are almost completely dependent on the 

respective sector. 

Experimental design 
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One experimental set for the sector marker gene expression level measurement consisted 

of 16 or 17 genotypes (the latter of which included fls2 in the case of flg22 treatment) with one 

treatment. Two ft x 1 ft flats, each of which contained eight 6 inch x 6 inch pots, were used for 

growing Arabidopsis plants. Two adjacent pots (a pot pair), in which the positions of 16 or 17 

individual plants (one individual per genotype) were randomized, were randomly assigned to 

each time point. Three well-expanded leaves per individual plant were used, and leaf samples 

from four experimental sets were pooled for one biological replicate. Three biological replicates 

were made. In the case of the immunity level measurement, pot pairs were used similarly, and 

two leaves of each individual plant in each pot pair were used to generate a single bacterial count 

observation.  

Measurement of the sector marker gene expression levels 

Three well-expanded leaves per plant were infiltrated with mock (H2O), 1 µM flg22, 1 

µM elf18, or 100 µg/ml chitosan using a needleless syringe. At 3 or 9 hpt treated leaves were 

harvested and flash frozen in liquid N2 for RNA extraction later. Different individual plants were 

used for different time points because excision of some leaves at 3 hpt would affect the response 

in other leaves of the same individual at 9 hpt. Leaves from two to four individual plants were 

pooled for each biological sample. Total RNA was extracted from the tissue and subjected to 

quantitation by quantitative reverse transcription PCR (qRT-PCR) as previously described 

(Tsuda et al., 2012). The obtained Ct value was used as raw data for the sector marker gene 

expression level (Data S1). Measurements were made in three independent experiments; these 

are the three biological replicates. 

Measurement of MAMP-induced immunity levels 
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Two well-expanded leaves per plant were infiltrated with with mock (H2O), 1 µM flg22, 

1 µM elf18, or 100 µg/ml chitosan using a needleless syringe. At 24 hpt, after mock or elicitor 

treatment, the same leaves were infiltrated with suspension of Pto or Pma with OD600 = 0.0001. 

Two days after inoculation, leaf discs were punched out from the inoculated leaves and subjected 

to bacterial counting by plating bacterial suspension from macerated leaf discs. For each 

strain:genotype:treatment combination, the bacterial count was measured in at least eight 

biological replicates in each of at least three independent experiments. The log10-transformed 

bacterial count (CFU/cm
2
) was used in modeling and supplied as raw data (Data S1).  

Preprocessing of the sector marker gene expression levels to obtain the sector activity values 

The preprocessing of the sector marker gene expression levels were performed in the R 

environment. First, between-samples normalization based on the normalization gene expression 

level was performed to make expression level values of the same gene from different samples 

comparable. The Ct value for each sector marker gene was subtracted from the Ct value for the 

normalization gene of the same RNA sample to obtain the log2-transformed expression level 

value for each marker gene, i.e.,               
               

                  
      

. Second, each marker 

gene expression was weakly affected by signals mediated by signaling sectors other than the 

respective signaling sector (i.e., the marker gene expression levels were very good but not 

perfect representations of the sector activities). To obtain the expression level value specifically 

affected by the respective signaling sector, the log2-transformed expression level value for each 

genotype carrying the mutant allele for the sector in question was subtracted from the log2-

transformed expression level value for each genotype carrying the wild-type allele for the sector 

for each treatment:time:replicate combination. For example, to obtain the “mutant-adjusted” 

log2-transformed JA marker gene expression level value for ein2/sid2 at 3 hpt with flg22 in 
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replicate 1 (                            
  

), the log2-transformed JA marker gene expression level 

value for dde2/ein2/sid2 at 3 hpt with flg22 in replicate 1 was subtracted from the log2-

transformed JA marker gene expression level value for ein2/sid2 at 3 hpt with flg22 in replicate 

1, i.e., 

                            
  

                                
  

                                     
  

. This 

mutant-adjusting process resulted in expression levels of 0 for the respective sector being 

assigned to any genotypes containing the mutation corresponding to the respective sector (e.g., 

dde2-containing genotypes for the JA sector marker gene). The 0 values in these genotypes were 

kept as the fully preprocessed sector activity values for the genotypes, and the mutant-adjusted 

values in the other genotypes were subjected to further preprocessing. Third, the mutant-adjusted 

values were used to fit a linear mixed-effects model with the gene:treatment:genotype:time as the 

fixed effect and the replicate/gene as a random effect. The replicate/gene effect was subtracted 

from the mutant adjusted value to minimize the replicate effect in the data (the mutant.replicate-

adjusted value).  

When the standard deviation (SD) values of the mutant.replicate-adjusted values within 

the same treatment:genotype:time levels were plotted against their means for each marker gene 

in the MAMP-treated data, the SD values were not homogenous across the mean, except for the 

ET marker gene (Figure S1B). We decided to monotonically transform the values to obtain the 

homogenous SD of 1 across the mean for all the marker genes, which justifies use of multiple 

regression models that include the values from different marker genes. Note that transforming 

the values to have a homogenous SD is equivalent of making the level of noise constant at any 

activity level of every signaling sector.   
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(1) The JA and SA maker gene values tended to have higher SD values for the middle 

mean values (Figure S1B, first and the fourth panels). We assumed that these marker 

gene values follow logistic distributions. The first derivative   ( )  
     (   )

(     (   )) 
 of the 

logistic function  ( )  
 

     (   ) was fit to the SD vs. mean relationships using the 

nonlinear regression with least square. The fitted curve f’(x) (red curve) and the fitted 

values of a, b, and c are shown in Figure S1B. The inverse    ( )  
 

 
   (

   

     
)    

of the logistic function ( )  
 

     (   )    , where   
 

 
   

    

    
,   

  

 
,   

 

 
, 

      was used for transformation of the mutant.replicate-adjusted values. To 

moderate the transformation close to the logistic asymptotes, the parts of the inverse 

function corresponding to the logistic quantiles smaller than bottom 12.5% and larger 

than the top 12.5% were replaced with linear extensions of the inverse function at the 

boundaries. 

(2) The PAD4 marker gene values tended to have an approximately linear relationship 

between the SD and mean values (Figure S1B, third panel) although the fitted derivative 

of the logistic function (red curve) and the associated parameter values as in procedure 

(1) are shown in the panel. We fitted a linear regression (intercept, t; slope u) instead, and 

the shifted log-transformation  ( )  
 

 
   (  

 

 
)  was used to transform the 

mutant.replicate-adjusted values. To moderate the transformation near    
 

 
, the part 

corresponding to          were replaced with linear extension of the shifted log-

transformation at the boundary. 
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(3) The ET marker gene values appeared to already have a homogenous SD across the 

mean (Figure S1B, second panel). Therefore, the mutant.replicate-adjusted values were 

linearly scaled to make the average SD 1. 

After the above transformation procedures, a constant was added to set the minimum value for 

each marker gene 0 where the minimum value was negative. These fully preprocessed values are 

referred to as the sector activity values and were used in the modeling process (Data S2). To test 

the homogeneity of the SD of the sector activity, polynomial regressions of up to the fourth order 

were fit with the SD as the response and the mean as the explanatory variable, and the model 

with the lowest AIC was selected for each marker gene (Figure S1C). For each marker gene, the 

model with only an intercept, of approximately 1, had the lowest AIC (blue line), which indicates 

the transformed values have approximately homogenous SDs. Figure S1D shows the plots of the 

values after the transformation vs. the values before. 

 

Multiple regression models 

To construct a dynamic signaling network model, a multiple regression model was fit to 

the activity values of each of four signaling sectors. A multiple regression model was also fit to 

the bacterial counts of each strain, to construct a unified network capturing both the sector 

activities and the immunity levels across four treatments and sixteen genotypes. The starting 

models are depicted in Figure S1E.  

We assume that the entire signaling network mediating the phenomena of interest is a 

web-like network (Sato et al., 2010). The subnetwork composed of the four sectors forms a 

relative bottleneck (though not absolute bottleneck) in the network, thus, the major part of the 

network output (i.e., the immunity level) requires the four-sector subnetwork (Tsuda et al., 
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2009). Since a complex subnetwork exists between the PRRs and the four-sector subnetwork, 

some signals initiated by the PRR activation reach the four-sector subnetwork fast and other 

signals reach the four-sector subnetwork slowly. If the slow signals arrive in the four-sector 

subnetwork after 3 hpt, a model that lacks the links from the treatments to the 9-hpt nodes would 

not integrate the slow signal information in processing the network response. This is the reason 

the links from the treatments to the 9-hpt nodes were included. 

Similarly, even among the four sectors, as each sector forms a complex sub-subnetwork, 

some signals reach other sectors fast and other signals reach them slowly. Fast signals are 

represented by the links between the sector nodes within a single time point. We assumed that 

the values from the same time point for other sectors can approximate slightly earlier values for 

the sectors. Slow signals are represented by the links from the 3-hpt to the 9-hpt sector nodes. 

Furthermore, there is another complex subnetwork between the four-sector subnetwork and the 

highly summarized phenotype of induced immunity, and we assumed that both 3-hpt and 9-hpt 

sector activities could affect the immunity level. Thus, all the links in the full starting models are 

biologically justified. 

Multiple regression models with L1-norm (Lasso) regularization (Friedman et al., 2010) 

were used to avoid overfitting; models were formulated via 

 ̂         
(    )     

[
 

  
∑(  

       
  )

 
 

   

  ‖ ‖  ] 

where p is the total number of initial parameters excluding an intercept, N is the total number of 

cases covering all possible combinatorial conditions,    is an intercept,   is the parameter vector 

to be estimated (i.e., the links in Figure S1E). The explanatory variable    consists of either 

binary indicators for treatment-specific variables or continuous variables corresponding to the 
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sector activity.    
  is the response, which is either an actual activity value for m sector or an 

actual log10-transformed count of m bacterial strain.   is the penalty factor balancing the 

prediction error and the model complexity (Friedman et al., 2010).  

Specifically, for each sector, we modeled its 3-hpt activity value as a linear function of 

the input MAMP signal and the activity values of the other sectors at 3 hpt. Nine hpt activity 

value of each sector was modeled as a linear function of the input MAMP signal and the 3- and 

9-hpt activity values of the other sectors. A complete formulation of the regression model for JA 

sector (1
st
 panel in Figure S1E) was: 

      
                

              
              

                 
     

                             
                 

              
              

     

         
              

                 
                     

         

                     
                 

                     
                 

. 

Where    is an intercept;     and     are binary indicator variables for 3 hpt and  9 hpt 

respectively;   ,   ,   , and    are binary indicator variables for mock, flg22, elf18, and 

chitosan treatment, respectively;    , and     represent the ET sector activities at 3 hpt and 9 

hpt, respectively;      is a parameter that corresponds to  the signal flow from a source node   to 

a target node   for the JA sector activity. The models for ET, PAD4, and SA sector (2
nd

, 3
rd

, and 

4
th

 panels in Figure S1E) were formulated similarly: 
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. 

Given each of the regression model formulations incorporated with Lasso regularization,  

we used a bootstrap aggregation approach, called Bagging (Hastie et al., 2009), for measuring 

test errors with 1000 rounds of bootstrapping and chose an optimal structure (significant 

parameters) for each sector as follows. Several tens of candidate penalty factors,   

(         ), were first extracted based on an entire set of sector activity values. In each round of 

bootstrapping for each sector activity model, 32 treatment:genotype combinations (4 treatments x 

8 genotypes; the preprocessed dataset does not include 8 genotypes containing the mutation for 

the modeled sector) were randomly sampled with replacement, and the data corresponding to the 

sampled treatment:genotype combinations were used as a training dataset, which was used to fit 

the regression model with each λ value. The sector activity values of the treatment: genotype 

combinations that were held-out from the training dataset were predicted using the obtained 

model for each λ value. After this procedure was repeated 1000 times, the median of the 

predicted values for each treatment:genotype:time combination was selected as a test dataset for 

each λ value. The same procedure was applied to the other sector activity models, and the test 

datasets of all the sector activity models were aggregated into the final test dataset for each λ 

value. Among the models obtained with different λ values, the model with the largest   that 

yielded a PCC prediction performance within the 95 % confidence interval of the best measured 

PCC across all models was selected (Friedman et al., 2010). The selected model structure (a set 
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of non-zero parameters) was refit to the entire sector activity dataset using ordinary least square 

(See Table S1A for the mean estimates of the parameters and their confidence intervals). Figure 

S2D shows the fitted values of the model with these parameter values. 

To model immunity levels against each of two bacterial strains, we fit a separate multiple 

regression model with the model-predicted activity values of the four sectors as the explanatory 

variables to the log10-transformed bacterial count data. First, all sector activity values were 

predicted using the process described above, except that zeros were assigned for any sector 

activities for the genotype containing the mutation for the sector. In each regression model for a 

bacterial strain, an intercept for the bacterial count in the quadruple mutant with mock treatment 

was included, and three binary indicators were used to capture MAMP-specific effects in the 

quadruple mutant that were not be explained by the four sectors. All parameters except for the 

intercept were multiplied by -1 so that positive values represent positive contributions to plant 

immunity. The Pto-specific starting model (Figure 1B and Figure S1E, fifth panel) was 

formulated as 

        (                                 ̂              ̂               ̂

              ̂              ̂              ̂               ̂           

    ̂          ) 

Where    is an intercept;   ,   , and    are binary indicator variables for flg22, elf18, and 

chitosan treatment, respectively;    ̂, and    ̂ represent the predicted activity values of JA sector 

marker at 3 hpt and 9 hpt, respectively;      is a explanatory parameter for the effect from a 

sector node   to a target node   on the immunity level against Pto strain. Similarly, the Pma-

specific starting model (Figure S1E, sixth panel) was formulated as follows: 
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        (                                 ̂              ̂           

    ̂               ̂              ̂              ̂               ̂            

   ̂          ) . 

For each strain-specific model, Bagging with 1000 rounds of bootstrapping was applied to find 

the best model structure and least squares was used to estimate the selected parameters with the 

complete set of bacterial counts, similarly to the procedure described above for the sector activity 

models (see Table S1B for the mean estimates for the parameters and their confidence intervals). 

Figure S2C shows the fitted values of the model with these parameter values. 

 

Evaluation of the prediction accuracy 

 To assess the predictive power of the network model, we also used a Bagging approach 

by repeatedly training the model of the selected structure (Figure 2A) with sampled data and 

evaluating their performance by prediction of the out-of-bag (held-out) data. In each 

bootstrapping step, the treatment:genotype combinations were randomly sampled with 

replacement, and the data corresponding to the sampled treatment:genotype combinations were 

used as a training dataset. The models that were fit to the training dataset were used to predict the 

held-out data. This process was repeated 1000 times, and the final prediction of the sector 

activity value for each of 256 sector:treatment:genotype:time combinations (4 sectors x 4 

treatments x 8 genotypes x 2 time points) or the bacterial count for each of 128 

treatment:genotype:strain combinations (4 treatments x 16 genotypes x 2 strains) was obtained 

by taking the median over all predicted values for the instance. The final predicted values 

obtained from the Bagging procedure were then compared with the averages of the 
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corresponding observed values by calculating a PCC between them (prediction accuracy of the 

sector activities and the immunity levels in Figures 2B and 2C, respectively).  

 

A signaling network model based on a Bayesian network approach 

We also modeled the immune network using a Bayesian network approach. Like the 

starting structure of the regression model, the structure of the Bayesian network was constrained 

to have four layers: (1) an input layer with one ternary node for three MAMPs, (2) an activation 

layer with four binary nodes of the four sectors at 3 hpt, (3) a cross-talk layer with four binary 

nodes of the four sectors at 9 hpt, and (4) an output layer with two continuous nodes for log-

transformed bacterial counts of two bacterial strains (pto and pma). Two components of a 

Bayesian network model are the network structure, which defines conditional dependence 

relationships between the variables being modeled, and the conditional probability tables, which 

quantify these dependencies. We inferred both the structure of the network and the optimal 

conditional probability tables given the proper structure. For inference of the structure, rather 

than using a Bayesian structure learning approach (Koller and Friedman, 2009), a regularized 

linear modeling approach, an Elastic Net, was used (Friedman et al., 2010) to reduce the search 

space to a small set of structures that reasonably captured relationships between the network 

sectors. The conditional probability parameters in these candidate structures were fit to the 

observed data, and the inferred models were assessed by cross-validation. Further details are 

described below. 

Data preprocessing 

The mutant-adjusted values of the sector marker gene expression levels (See 

Preprocessing of the sector marker gene expression levels to obtain the sector activity values) 



18 
 

were used as the sector activity values in this section of “A signaling network model based on a 

Bayesian network approach”. The minimum and the maximum values of each signaling sector 

across 64 different treatment:genotype:time conditions (4 treatments x 8 genotypes x 2 time 

points) were converted to 0 and 1 of the activation probability, respectively, by linear mapping. 

For example,     

          

      where     

    was an activation probabilities of the JA sector at 

time t, where     

   
 is an adjusted expression value of the JA sector marker at t time, with a = 

0.173 and b = -0.202. The mapping parameter values for the other sectors were: a = 0.184, b = -

0.021 for the ET sector; a = 0.174, b = 0.031 for the PAD4 sector; a = 0.065, b = 0.092 for the 

SA sector. Although the activation probabilities of each sector at 3 hpt considerably varied 

across the genotypes, we only considered the wild-type activation probability values for the (3-

hpt) activation nodes for the sake of the simple structure with directed acyclic graphs (Koller and 

Friedman, 2009). All activation probabilities of each sector with the genotypes containing the 

mutation for the sector were set to zero. Only the data from the three MAMP (flg22, elf18, and 

chitosan) were used for modeling.  

For the immunity levels, we chose the same number, 24, of replicates across all 

treatment:genotype:strain combinations In any conditions with more than 24 replicates, we first 

filtered replicates based on z-scores, satisfying 

   
    

 
   

where   and  are a mean and a standard deviation, respectively, of all data for the 

treatment:genotype:strain combination, and    is a z-score of    bacterial count. 24 replicates 

were then randomly chosen from the set that passed the filter.  

Elastic Net 
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To extract a set of candidate Bayesian network structures, we applied an Elastic Net 

(Friedman et al., 2010). The Elastic Net structure was the same as that described above for the 

Bayesian network constraints except three MAMP nodes instead of one were used in the input 

layer: 

   {                    }  {        }   

    {        }       {           }          {             }; and      {       }.  

Vin, Vact, Vcross, and Vout correspond to the input, activation, cross-talk, and output layers, 

respectively. The Elastic Net problem is defined as 

   
(    )     

 

   
∑(        

  )   ((   )  
 

 
‖ ‖  

   ‖ ‖  )

  

   

 

where    is the total number of instances for the Elastic Net,   is a p   1 vector with p 

parameters,    is a p   1 vector with p variables capturing variant network structures for an i 

instance of treatment:genotype:time:replicate or treatment:genotype:strain:replicate 

combinations,    is an actual measurement of the i instance (either an activation probability or a 

bacterial count),   is an Elastic Net penalty factor, and   is a balancing factor controlling the 

compromise between ridge regression (   ) and lasso regression (   ) (Friedman et al., 

2010). More specifically,    has 42 variables, representing states of all possible links:      (  

{      }) , links between     and     ;      (  {       }) , links between      and       ; 

     (  {       }), links between        and     ;      (  {       }), links between     and 

    . If    is either an activation probability at 3 hpt or a bacterial count,    is a binary vector 

containing 1 or 0 according to the i treatment:genotype condition. If    is an activation 

probability at 9 hpt,    is a continuous vector which contains   ⁄  (m = 4 for wild type; m = 3 for 

4 single mutants; m = 2 for 6 double mutants; m = 1 for 4 triple mutants) or 0 for     (  
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{      }) and 1 or 0 for     (  {       }) according to the i treatment:genotype condition. 

To integrate two different types of data, the sector activation provability and the log10-bacterial 

counts, which have different ranges, the activation probabilities was rescaled by multiplying by a 

scaling factor (1.403) before fitting the Elastic Net. Note that for the Elastic Net, the response 

does not have to be restricted to [0,1]. This factor was derived by maximizing a correlation 

between original and rescaled values.   

To estimate the model parameters, we used a 6-fold cross-validation (6CV) approach 

according to the treatment:strain combinations in order to minimize the test error. The quadruple 

mutant immunity level data were always retained in the 6-fold training data, such that the 

prediction accuracies of the six models only affected by four sectors were calculated. For 

example, if bacterial counts of the Pto strain in 15 genotypes (all except the quadruple mutant) 

with flg22 treatment were held-out for the test data, the model was fit to the rest: all activation 

probabilities of the four sectors in all conditions, bacterial counts in 16 genotypes in the other 

five treatment:strain  combinations, and bacterial counts in the quadruple mutant of the flg22:pto 

combination. With an   (    0.01, 1]), we applied a coordinate descent algorithm for finding 

a set of appropriate  s to be searched (   (         )) based on the entire data (Friedman et 

al., 2010). Given the two factors, the model was fit to the data for 5 out of 6 treatment:strain 

combinations (the training data) and tested the predictions of the held-out data. With a selection 

of   resulting in the smallest mean square test error from 6CV given  , we refit the Elastic Net to 

obtain the model structures and the parameters with the penalty factors (Friedman et al., 2010). 

Among these fitted models with different levels of sparsity, we chose 10 candidate structures 

(   
    {      })  that retained distinct sets of non-zero parameters for the inter-
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connectedness between four sectors as an initial set of model structures for the Bayesian 

network.  

Data preparation for the Bayesian network 

The Bayesian network model has 11 network components: one ternary node (  ) for 

three MAMP treatments as input signals; four binary nodes (     {     }) at early states (3 

hpt) and four binary nodes (     {     }) at late states (9 hpt) describing dynamics of the four 

sectors; two continuous nodes (     {     }) for two bacterial strains. The Bayesian network 

model was designed to capture the dependency between input signals (three treatments) and 

outcomes (immunity levels against two bacterial strains) only through the four sectors. Thus, 

given a MAMP treatment, the effects that were not explained by the four-sector network 

(remainder effects) were estimated by taking the differences between two means of bacterial 

counts with mock and MAMP treatments in the quadruple mutant.  

In each treatment:genotype combination, 24 instances, each of which consists of a set of 

states of each of the 11 components of the network, were generated as follows: 

           ]        
       

       

         

       

       

       

         

       

      
      

 ] 

where      
  is a ternary variable (     

  {     }  1, flg22; 2, elf18; 3, chitosan),    
  is a 

binary variable representing an on or off state of s sector at time t (   
  {   }  0, inactivation 

state or mutation; 1, activation state),    
  is a continuous variable representing the bacterial count 

of p strain (  
   ). For example, an instance for chitosan:wild-type condition is described as  

                              ]. 

To derive the binary states from the observed continuous data, we first generated the 

corresponding number of zeros and ones according to the activation probabilities (e.g. If    
    = 

0.25, the    
  variables in 24 instances under the condition consist of 6 ones and 18 zeros). Within 
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24 instances under each condition, we randomly assigned the zeros and ones into the binary 

variables (       {     }). In total, we generated a set of instances covering all data 100 times 

(     {       }) to prevent from any bias due to the discretization process.  

Parameter inference 

A set of    random variables (  {        
}      ) is a Bayesian network with 

respect to a directed acyclic graph (  ) if its joint probability density function can be written as 

 ( )  ∏ (     )

  

   

       {    (  )]}  

where   (  ) is a set of parents of    and    ] is an index function, satisfying a local Markov 

property: each variable is conditionally independent of its non-descendants given its parent 

variables, 

               {      (  )]}       {    (  )]} 

where   (  ) is a set of descendants of    (Koller and Friedman, 2009).  

To infer the parameters, conditional probabilities of all variables given a network 

structure   
 , a network with random parameters was created first. The parameter sets for nine 

discrete nodes (       {     }) were generated based on a likelihood equivalent uniform 

Bayesian Dirichlet prior (Koller and Friedman, 2009) and the parameter sets for last two 

continuous nodes (       {     }) were generated from normal distributions. We then found 

the maximum likelihood estimates (MLEs) of the parameters, 

 ̃   
     

    

 (       
      )     

    

∑  (         
      )

  

   

 

where      is a set of instances of j random variable in an i set of instances,      is a conditional 

probability distribution of j random variable (   {      } ) with i set of instances (   
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{       }),   
  is a given m structure (  {      }),  ̃   

  is the estimated     , maximizing 

the posterior conditional probability distribution,  (       
      ) ,    is the total number of 

instances and        is a k instance in      (  {      }). In our case, the states of all nodes 

were fully observed, such that the maximum likelihood estimates were counts of the number of 

instances with the given combination of states. Note that in case of a zero instance due to 

perturbation, we updated the parameters only for the descendent nodes of the perturbed node 

(Koller and Friedman, 2009).  

Relative conditional dependencies 

To explore strengths of conditional effects between two connected nodes, we defined 

several different types of regulatory effects related to links (visualized in Figure S2A), which 

could be calculated directly from the learned Bayesian network models:  

1. For the links between    and    (  {     }), the strength of the signaling activation of 

   sector at 3 hpt under t MAMP treatment can be calculated as 

 ̃          
  (      

         
      

   ̃ 
 )   

where  ̃    is a measured weight of the link between a and d.  

2. For the links between    and      (  {     }), the strength of the direct regulation of 

the   sector from 3 hpt to 9 hpt can be measured as  

 ̃           
      (

 (      
   |      

          

      
   ̃ 

 )

 (      

   |      

          

      
   ̃ 

 )
)  

         (     )          |  (     )|      

where  ̃   
  is a measured weight of the link between a and d based on   . 

3. For the links between    (  {     }) and    (  {     }), the strength of the cross-

talk regulation of    sector at 9 hpt from    sector at 3 hpt can be measured as 
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4. For the links between    (  {     }) and    (  {     }), the strength of the relative 

contributions of   sector to the immunity level against bacterial strain p can be measured 

as 

 ̃             (
 ̃              

          

      
 

 ̃              

          

      
 )    {     }   

where  ̃  is an estimated mean of    (  {     }) based on the condition. 

Model evaluation and selection 

We evaluated each Bayesian network model with the estimated parameters ( ̃ 
 ) given 

the structure (  
 ) in five different ways: 

1. calculating a log-likelihood (   ), 

2. using Bayesian information criteria (    ), 

3. calculating two Spearman’s rank correlation coefficients  to measure both a training set 

accuracy,   (3CV, trng, activation probabilities),  and a test set accuracy,   (3CV, test, 

activation probabilities), of predicting activation probabilities of the four sectors with 

3CV across the three MAMP treatments, 

4. calculating two Spearman’s rank correlation coefficients to measure both a training set  

accuracy,   (6CV, trng, immunity levels), and a test set accuracy,   (6CV, test, immunity 

levels), of predicting log-transformed bacterial counts of two strains with 6CV across the 

six MAMP:strain combinations, and 
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5. computing the statistical significance of conditional dependencies for links between any 

two sector nodes. 

Each of the evaluation methods is described in detail below. 

The log-likelihood with    instances was defined as 

       ∏ (       
   ̃ )

  

   

 ∑ ∑     (            ( )    ̃   )

  

   

 

   

 

where      ( )   is a set of instances of all the parent nodes of j random variable in an i set of 

instances.  

Given the log-likelihood with    instances, the      was calculated as 

     
 

  
∑     (       

   ̃ )

  

   

 
  

 

 
      

where   
  is the total number of estimated parameters given the structure   

 . 

To explore the prediction accuracy of the activation probabilities of the four sectors with 

each Bayesian network model given   
  and   , 3 CV was used by splitting entire instances into 

three parts based on the MAMP treatments,  

                                 ]   

For the k part (held-out test data,   {     }), we created a network with random parameters 

(See Parameter Inference), estimated the model parameters with the other parts of the instances 

(training data) by MLEs, and predicted both the training and test data. Two Spearman’s rank 

correlations for the training error and the test error were then calculated between observed and 

predicted instances. For the prediction accuracy of the log-transformed bacterial counts against 

two bacterial strains, the same procedures as above were executed to calculate two Spearman’s 

rank correlations with 6CV in terms of treatment:strain combinations,  
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                                                                                       ]   

Note that we selected median values as final values of the four metrics explained above.  

Wilcoxon signed rank test was applied to measure the statistical significance of the 

conditional dependencies among sectors (Siegel, 1956). Specifically, with 100 different 

measured weights ( ̃   ) of the cross-talk regulation between a and b in 100 different models 

based on   (   {       }), a two-sided rank test was performed of the hypothesis that the 

values in the vector come from a distribution whose median is zero.  To do so, a test statistic  , 

denoted as 

  |∑[   ( ̃     ̃   )    ]

   

   

|  

where      is the number of pairs, sgn is a sign function,  ̃    and  ̃    are any paired 

measurements of the weights, and    is the rank of i pair, was calculated to obtain a p-value. If 

p       , we designated that the conditional dependence between a node and b node was 

significant with the sign. Starting with 10 structures (  
    {      }) from the Elastic Net, 

the parameters and the structures of each of the models were evaluated in the five validation 

criteria. Note that selected Bayesian network models with high prediction accuracy and 

reasonable complexity (high   , high   (CV, trng) and   (CV, test) for both activation 

probabilities of four sectors and bacterial counts against two strains, and high BIC) shared most 

of significant links for cross-talks among four sectors but also had distinct links, some of which 

might be insignificant. Thus, extra sets of candidate structures were iteratively extracted by the 

model consensus, and the models with the structures were evaluated, until the sparsest model 

having all significant links with high prediction accuracy was selected. The final Bayesian 

network model selected by the iterative approach is shown in Figure S2A. The same color codes 
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for nodes and links as in Figure 2A were used. The width and color intensity of each link is 

proportional to the strength of the conditional association. All labeled values in the links are 

medians among 100 values from the models with      {       }. The sizes of the sector 

nodes at both 3 hpt and 9 hpt are proportional to their marginal activation probabilities,  ̃  
    

 (    ). 

 

Multiple regression models with the same starting structure as the Bayesian network (Bm-

like regression model) 

We also implemented multiple regression models starting from the same network structure 

as the Bayesian network (Fig S2B). Basically, the structure of starting models consists of links 

connecting between nodes belonging to two neighboring layers. It also contains the direct link 

from the 3-hpt to the 9-hpt nodes within each sector. Similar to the Bayesian network, only wild-

type datasets for the activity levels of the four sectors at 3 hpt were used for capturing relative 

activation strengths from three different MAMPs. The complete formulations of the sector-

specific regression models for JA, ET, PAD4, and SA sector are: 
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Similarly, the strain-specific regression models for Pto and Pma are formulated as 

        (                                 ̂              ̂                
̂  

              ̂          ); 

        (                                 ̂              ̂           

     
̂                ̂          ) . 

Given the starting model structures, we applied same modeling procedures and evaluation 

strategies as the original full regression model (Figure 2A).  

 

Confirmation of model-predicted signaling interactions 

SA and JA measurements and analysis 

Plants of 16 combinatorial mutants and an fls2 mutant were used. Three well-expanded 

leaves per plant were infiltrated with 1 µM flg22, and the infiltrated leaves were harvested at 9 

hpt and flash frozen. At the time of flg22 treatment, leaves of untreated plants were harvested for 

0 hpt samples. Leaves from four plants of a same genotype were pooled for one biological 

sample. Three biological replicates were made from independent experiments. The frozen tissue 

was macerated to powder and freeze-dried. Extraction and determination of SA and JA from 

Arabidopsis were performed with an UPLC-MS/MS (AQITY UPLC™ System/Quattro Premier 

XE; Waters) with an ODS column (AQUITY UPLC BEH C18, 1.7 µm, 2.1 × 100 mm, Waters) 

(Kojima and Sakakibara, 2012). The detailed conditions of UPLC-MS/MS are described 

previously (Kojima et al., 2009). 

A mixed-effects linear model with the genotype:time interaction as the fixed effect and 

the experiments as a random effect was fit to the SA level values that were log2-transformed for 
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data normalization. The mean estimates of the difference between 0 and 9 hpt were derived from 

this model and used in Figure 3A. The same type of the model was fit to the same dataset except 

that the sid2-containing genotypes were aggregated to one genotype. This second model was 

used to derive the mean estimates and their standard errors to compare the difference between 

the genotypes in the difference between 0 and 9 hpt (difference of difference) by two-tailed t-

test. 

For the JA level, only 9-hpt data were used as many 0-hpt JA levels were below 

detection. Many JA level values from the genotypes containing dde2 at 9 hpt were also below 

detection, and all these genotypes were aggregated into one genotype for this reason. Thus, it is 

very likely that the mean estimate for the aggregated dde2-containing genotype is overestimated. 

A mixed-effect linear model with the genotype as the fixed effect and the experiments as a 

random effect was fit to the JA level values that were log2-transformed for data normalization. 

The mean estimates shown in Figure 3B and the mean estimates and their standard errors of the 

difference between the genotypes were derived from the model. The latter were used to compare 

the difference between the genotypes by two-tailed t-test. 

 

Differential fragilities of the sectors 

We defined differential fragility as the impact of removal of the signaling sector in 

question on the fragility, which is the phenotypic difference between the presence and absence of 

the secondary signaling sector. For example, when the ET sector is the sector in question and i 

sector is the secondary sector, the fragilities in the EIN2 and ein2 genotypes are calculated as: 

Fragility of EIN2 regarding i sector and t treatment (x-axis in Figure S4B),  

    
   |        

             
 |, 
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Fragility of ein2 regarding i sector and t treatment (y-axis in Figure S4B),  

    
   |             

         
 | , 

Differential fragility of the ET sector regarding i sector and t treatment,     
       

   

where         
  is a mean of observed bacterial count of s strain (either Pto or Pma) with the i 

secondary sector removal (dde2, pad4, or sid2 for      ) and treatment t.  The fragilities were 

calculated for the JA, PAD4, and SA sectors similarly:     
   |        

             
 |  and 

    
  

 |             
         

 |  where       {              } ;     
     |        

  

           
 |  and     

     |             
         

 |  where       {              } ; 

    
   |        

             
 |  and     

   |             
         

 |  where 

      {              }. These fragility values were compared between the presence and 

absence of the sector in question in Figure S4. The mean and standard error of the differential 

fragility of each sector across the treatments, the strains, and the secondary sectors were 

calculated separately for the observed data and the model predictions and are shown in Figure 4. 

 

Network activity map 

To systematically examine the mechanistic behavior of the network triggered by MAMP 

inputs, we generated network activity maps to quantitatively visualize the variation in activity 

levels of components and signal flows among them in specific genotypes after specific 

treatments. First, predictions of node activities for all 60 conditions (4 treatments x 15 

combinatorial genotypes, excluding the quadruple mutant) were made. The signal flow value for 

each link was calculated by multiplying its estimated parameter value (Table S1) by the 

predicted activity of the source node. For the two immunity nodes, the constants 
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(                                          in Multiple regression models) associated directly with 

each treatment were subtracted such that our activity maps show the contributions to immunity 

only explained by the four sectors. For the final network activity maps shown in Figures 5 and 

S5, the mock treatment map values for the nodes and the links were subtracted from the 

corresponding MAMP treatment map values of the same genotypes, and the differential values 

are shown for flg22, elf18, and chitosan treatments in each genotype. Note that in these 

differential network activity maps, node and link values could be negative. The sizes of the 

nodes, with the exception of MAMP nodes, were made proportional to their predicted node 

activity level (either predicted sector activity values or immunity level values). The color 

intensity and the width of the links in activity maps are proportional to the signal flow value. For 

a better visualization in the figures, the node sizes are scaled differently between the signaling 

sector nodes and the immunity nodes, and the color intensities and the widths of the links are 

scaled differently between the links targeting the signaling sector nodes and those targeting the 

immunity nodes. 

 

Network model with noise-added data 

The standard deviation of the observed data was defined as the standard deviation of the 

residuals when a linear model with the sector:genotype:treatment:time combinations as the fixed 

effect was fit to the sector activity data or when a linear model with the genotype:treatment:strain 

interactions as the fixed effect was fit to the immunity level data. In each different level of 

artificial noise, we generated 100 different sets of Gaussian noise having a zero mean and a 

standard deviation k times that of the observed data (k =                ) and added the noise 

to the observed data. The noise for the sector activity data and the immunity level data were 
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generated separately since they had different standard deviations. With each set of the 100 

different noise-added datasets, the same modeling approach described in Multiple regression 

models was applied. The structural stability of the original model (Figure 2A) was evaluated by 

the cosine similarity (uncentered PCC) of the parameter estimates between each of the 100 

models and the original model obtained with the data without additional noise (Figure S3A). In 

one case (k = 2), the distributions of the parameter estimates across the 100 models were 

compared with the parameter estimates in the original model (Figure S3B). 

 

Treatment-specific network models 

We built separate models for different individual MAMP treatments (treatment-specific 

models) to compare them with the invariant model (the original model, which has the invariant 

links from the signaling sectors across four treatments). To build each of treatment-specific 

models, the data specific to one MAMP treatment and the mock data were used to train the 

multiple regression models similarly to the approach used for the original model (Figure S3C). 

The sector activities and immunity levels were predicted with each of treatment-specific models 

in a similar way to one for the original model, and the predictions were compared with the 

observed means with the same treatment by PCC. For the invariant model, PCCs were calculated 

between the predictions and the observed means for particular MAMP treatments, separately 

(Table S3). 

 

A network model without inter-sector links 

To show an importance of the cross-talk information among four sectors to improve the 

prediction accuracy, we first reformulated the multiple regression starting model structure by 
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removing all the parameters for the links connecting two signaling sector nodes. Given this as the 

starting model structures, the multiple regression modeling approach similar to that for the 

original model was applied. The PCCs between observed data and predicted data for the sector 

activities and immunity levels were calculated (Table S2). 

 

Predicting the sector activities and the immunity levels of a held-out treatment 

If the parameter values for the links from the sectors (sector-specific parameter values) 

are invariant across the treatments, the sector-specific parameter values that are estimated with 

some MAMP treatments should be able to be used to predict the sector activities and the 

immunity levels after treatment with a new MAMP across the genotypes, given the parameter 

values for the links from the new MAMP treatment (new MAMP-specific parameter values). 

This notion of predictability of the sector activities and the immunity levels with new MAMP 

treatment was tested by: holding out the data from one of the MAMP treatments in the network 

modeling for estimation of the sector-specific parameter values; estimating the MAMP-specific 

parameter values for the held-out MAMP using the wild-type and quadruple mutant data with the 

held-out MAMP treatment; and predicting the sector activity and immunity level values in the 

rest of the genotypes with the held-out MAMP treatment. 

First, the data from one of the three MAMP treatments were held out from the full dataset 

(i.e., the resulting dataset contains the data from two MAMP treatments and mock treatment), 

and the multiple regression models were fit to the dataset with one MAMP treatment held-out, 

using the approach similar to that used for the original model. The first step yielded the estimates 

for the sector-specific parameters. Second, multiple regression models in which the values for 

the sector-specific parameters were fixed to the estimates obtained in the first step were fit using 
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least square to the sector activity data of the wild-type genotype and the immunity level data of 

the wild-type and quadruple mutant genotypes with the held-out MAMP treatment. Only the 

parameter estimates with p < 0.05 were considered, and the others were set to 0. The second step 

yielded the estimates for the new MAMP-specific parameters. 

Third, with the parameter values from the first and second steps, the following 

simultaneous linear equations for the sector activities,  ̂, were solved to obtain the predictions of 

the sector activity values. 

  ̂    

where  
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̂      ̂     ̂     
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After solving the equations, all obtained, predicted sector activities were adjusted by adding the 

difference between maximum values of observed and predicted activities of the sector in that the 

values of sector activities should be positive. To predict the log-transformed bacterial counts, we 

calculated the following linear combinations to obtain the predicted immunity level values: 

 ̂  [
 ̂   

 ̂   ]  [
    

    ]  [
 
 
 ̂
] 
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where  

        
                                                             

                                         ], 

        
                                                             

                                         ],  

and  ̂ is a column vector with the adjusted, predicted values of the sector activities from the 

above. PCCs were calculated between the observed and predicted values of the sector activities 

and of the bacterial counts separately for each of three MAMP-held out cases (flg22, elf18, or 

chitosan held-out)  (Figure S3D). 

 

Models based on the data with the limited orders of network perturbation 

The benefit of higher orders of network perturbation at the signaling sectors was 

evaluated by comparing the models fit by the approach similar to the original modeling approach 

to datasets with limited orders of perturbation (genotype-constrained models; Figures S6A-S6C): 

(i) the “single-double” dataset consisting of the data for single mutant, and double mutant 

genotypes, (ii) the “up-to-single” dataset consisting of the data for wild-type and single mutant 

genotypes, (iii) the “up-to-double” dataset consisting of the data for wild-type, single mutant, and 

double mutant genotypes, and (iv) the full dataset (up to triple) for comparisons (the original 

model, Figure 2A). Note that the sector activity data corresponding to each case were extracted 

from the fully preprocessed sector activity dataset, so that the values were already mutant-

adjusted although the data of genotypes for orders of perturbation higher than the specified in the 

case were needed in this mutant-adjusting step. This is the reason the original model is 

designated as using up to triple mutants. The genotypes used in particular genotype-constrained 

cases and provide non-zero values to particular sectors are shown in the table below. 
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Order Genotype 

Sectors 

JA ET PAD4 SA 

wild-type (ii, iii, iv) (ii, iii, iv) (ii, iii, iv) (ii, iii, iv) 

single 

dde2 0 (i, ii, iii, iv) (i, ii, iii, iv) (i, ii, iii, iv) 

ein2 (i, ii, iii, iv) 0 (i, ii, iii, iv) (i, ii, iii, iv) 

pad4 (i, ii, iii, iv) (i, ii, iii, iv) 0 (i, ii, iii, iv) 

sid2 (i, ii, iii, iv) (i, ii, iii, iv) (i, ii, iii, iv) 0 

double  

dde2/ein2 0 0 (i, iii, iv) (i, iii, iv) 

dde2/pad4 0 (i, iii, iv) 0 (i, iii, iv) 

dde2/sid2 0 (i, iii, iv) (i, iii, iv) 0 

ein2/pad4 (i, iii, iv) 0 0 (i, iii, iv) 

ein2/sid2 (i, iii, iv) 0 (i, iii, iv) 0 

pad4/sid2 (i, iii, iv) (i, iii, iv) 0 0 

triple 

dde2/ein2/pad4 0 0 0 (iv) 

dde2/ein2/sid2 0 0 (iv) 0 

dde2/pad4/sid2 0 (iv) 0 0 

ein2/pad4/sid2 (iv) 0 0 0 

The only difference in modeling in the genotype-constrained cases from the original 

modeling approach is that the largest λ that resulted in the same number of non-zero parameters 

as that of the original model was used in Lasso regression instead of searching λ values based on 

test errors. Note that although the total number of the non-zero parameters is the same, the 

partition between the sector-specific and treatment-specific non-zero parameters could be 

different (shown in Figure S6A in parentheses). To assess the prediction accuracies of the 
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genotype-constrained models, a Bagging approach was applied by repeatedly training regression 

models of the determined structures with sampled data from the corresponding genotype-

constrained data, and the model performance was evaluated on the held-out data (prediction 

accuracies for the sector activity values and the immunity levels in Figure 6A and Figure S6B, 

respectively, three left cells of the first row for (ii)-(iv)). Since the number of elements in the 

PCC calculation varies to a great extent, the significance of the PCC (-log10P) instead of the 

direct PCC value was used in the comparisons. 

The Jaccard index was used to compare the structures of two models, m and n: 

      (  
    

 )  
|  

 
   

 
|

|  
 

   
 
|
 

where   {         -                  -        } , and   ( )
 

 is a binary column vector 

indicating 0 or non-zero for p parameters in m(n) model. Figure S6A shows that the model 

structures regarding both the sector-specific and treatment-specific parameters are substantially 

different in the “(ii) up to single” model from the original model (iv). 

 When the sector activity values that correspond to the training datasets were predicted, 

the prediction accuracies between the model with the original model structure and the genotype-

constrained model were very similar when each was fit to the genotype-constrained datasets 

(Figure 6C, left panel). However, when the genotype-constrained models were used to predict 

the sector activities of the triple mutant genotypes, which were not included in the genotype-

constrained datasets (i)-(iii), the “(ii) up to single” model had clearly lower prediction accuracy 

compared with when the model with the original model structure was trained with the same 

genotype-constrained dataset (Figure 6C, right panel). The results of similar analysis for the 

immunity level are shown in Figure S6C. 
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Effects of multiple modeling factors. 

We generalized the analysis of the genotype-constrained models to investigate the 

impacts of three modeling factors (the order of network perturbation, the number of sectors in the 

model, and the number of MAMP treatments) on both prediction accuracies and structural 

similarities. The approach to explore the order of network perturbation is the same as the above 

genotype-constrained models. To explore the effect of the number of sectors in the model, the 

starting models in which particular sector(s) and all links connecting to the sectors were removed 

and the datasets with the data from the genotypes corresponding to the removed sector(s) were 

used. For example, when a starting mode lacking the PAD4 sector was used, all data from the 

pad4-containing genotypes were removed. To explore the effect of the number of MAMP 

treatments, the starting models in which particular MAMP treatment(s) and the links from the 

treatment(s) were removed and the datasets that have the data with the MAMP treatment(s) 

removed were used. The combination of the order of network perturbation and the number of 

MAMP treatments and the combination of the number of sectors and the number of MAMP 

treatments were also explored. In each case, the largest penalty factor λ that resulted in the same 

number of non-zero parameters as that of the corresponding part of the original model was used 

in Lasso regression. 

Figures S6D and S6E show the significance of the PCC (-log10P) in the evaluation of 

prediction accuracy for sector activities and immunity levels, respectively. The significance of 

the PCC instead of the PCC value itself was used because the number of elements in PCC 

calculation varies to a large extent. Figure S6F shows the Jaccard index compared to the original 

model with the full dataset for the sector- and treatment-specific parameters separately. In the 

heatmap figures, a darker color corresponds to a higher value. Figures S6D and S6E also contain 
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the heatmaps for the prediction of the triple mutant values in the combination of the order of 

network perturbation and the number of MAMP treatments. 

 

LEGENDS TO SUPPLEMENTARY FIGURES 

Figure S1. Modeling approach, related to Figure 1. (A) The sector marker gene expression levels. 

Each plot shows the expression levels, after between-samples normalization before mutant-

adjustment, of the indicated sector marker gene. The wild-type alleles in the genotype are shown 

by black dots. Each bar represents an observation: black, genotype containing the wild-type 

allele for the sector; gray, genotype containing the mutant allele for the sector. See key at top for 

the color-codes for the treatment and the time. (B)-(D) Non-linear transformation of the 

mutant:replicate-adjusted sector marker gene expression levels. (B) The standard deviation vs. 

the mean of every treatment:genotype:time combination in each indicated sector before the 

transformation. The derivative of the logistic function,   ( )  
     (   )

(     (   )) 
, was fit (red curve), 

and the parameter values, a, b, and c, are shown, except for the ET sector. For the ET sector, a 

line parallel to the x-axis was fit, and its intercept is shown. (C) The standard deviation vs. the 

mean after the transformation. The blue line shows the best model determined by AIC among 

those up to the fourth-order polynomial: the best model was a line parallel to the x-axis with the 

intercept ~ 1 for every sector. (D) The transformation function is shown as the values after vs. 

the values before the transformation for each sector. (E) The starting multiple regression model 

structures for each target sector or target strain. (F) The final model structure for each target 

sector or target strain. 
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Figure S2. Obtained models and the fitted values for the full multiple regression model, related 

to Figure 2. (A) The model structure obtained by a Bayesian network approach. Red and green 

directed links represent activation and inhibition. How the link parameter values and the node 

sizes were calculated are described in “A signaling network model based on a Bayesian network 

approach”. The width and the color intensity of a link are proportional to the link parameter 

value. (B) The model structure obtained by a regression model approach with the same starting 

model structure as the Bayesian network model (A) (Bayesian model (Bm)-like regression 

model). Directional links in red and green represent the significant parameters, indicating 

activation and inhibition, respectively. The width and color intensity of the links represent 

parameter values. The links to the immunity nodes are scaled differently from those to the sector 

nodes for better visualization. The links from the MAMP nodes to the immunity nodes are not 

shown as they represent the immunity level that is not explained by the four sectors. The 

estimated mean parameter value for each link is indicated. Note that the predictive power of this 

model for the sector activities shown as a Pearson correlation coefficient, rexp, = 0.778, is 

substantially lower than that of the full regression model, which is 0.881. (C) The fitted values of 

the final multiple regression models for the immunity levels for the genotype:treatment:strain 

combinations. The wild-type alleles in the genotype are shown by black dots. The treatment is 

color-coded as shown at the top. Each plot corresponds to the immunity level against each 

indicated strain. Gray bar, observed immunity level; blue dot, mean of the observations; brown 

dot, mean estimate and its 95% confidence interval according to the final model. (D) The fitted 

values of the final multiple regression models for the sector activities for the 

genotype:treatment:time:sector combinations. The wild-type alleles in the genotype are shown 

by black dots. The treatment and the time are color-coded as shown at the top. Each plot 
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corresponds to each indicated sector. Gray bar, observed sector activity value; blue dot, mean of 

the observations; brown dot, mean estimate and its 95% confidence interval according to the 

final model.  

 

Figure S3. Analysis of the full multiple regression model, related to Figure 2. (A) and (B) The 

model inference is stable against artificially added noise. (A) The parameter estimates in the 

models obtained with noise-added datasets are compared to the original model with the original 

dataset. k represents the ratio of the artificial noise SD over the residual SD of the data. Even 

when twice more artificial noise than the biological noise of the original data was added, the 

parameter estimates did not change much (log2k = 1, dashed circle). Error bar, standard 

deviation. (B) The distributions of the parameter values when log2k = 1 are shown by boxes-and-

whiskers for the treatment-specific (upper panel) and the sector-specific (lower panel) 

parameters. Blue dot, parameter estimate in the original model. See key at top for the color-codes 

for the treatment and the time. (C) Treatment-specific models. The representations are the same 

as in Figure 2A. (D) Prediction accuracy for the held-out MAMP treatment. 

 

Figure S4. Fragilities compared in the presence and the absence of each signaling sector, related 

to Figure 4. (A)-(D) the JA, ET, PAD4, and SA sectors, respectively. Dots above the y = x line 

represent the cases where the fragility increases upon loss of the sector. 

 

Figure S5. All network activity maps, related to Figure 5. The representations are the same as in 

Figure 5. 
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Figure S6. Effects of different factors in modeling, related to Figure 6. (A) The genotype-

constrained models. The genotypes used in modeling are indicated by black dots. The heatmap 

shows the Jacccard index values for the sector-specific (bottom-left half) and the treatment-

specific (top-right half) parameters. The bar plot shows a comparison of the parameter estimates 

between the “up to single” model and the original model. Red asterisk, a link that was captured 

only in the original full model. Error bar, 95% confidence interval. (B) The prediction accuracy 

of immunity levels by the constrained models. (C) The prediction accuracy of the immunity level 

by the genotype-constrained models. The model with the original model structure trained with 

the same genotype-constrained datasets and the genotype-constrained models were compared for 

the prediction accuracy in the values corresponding to the genotypes in the genotype-constrained 

datasets (top panel) or to the tripe mutant genotypes (bottom panel). Error bar, 95% confidence 

interval. (D) The significance of the PCC (-log10P) for the prediction accuracies of the sector 

activities with constrained models. The left heatmap is for the genotype-constrained models. The 

genotypes used are shown at the bottom by black dots. The right heatmap is for fewer signaling 

sectors in the models. The sectors included are shown at the bottom by black dots. The MAMP 

treatments used differ in different rows of the heatamps. The MAMP treatments used are shown 

at the right by black dots. The bottom heatmap is for prediction of the sector activities in the 

triple mutant genotypes. (E) The significance of the PCC (-log10P) for the prediction accuracies 

of the immune levels with constrained models. The representations are the same as in (D). (F) 

The Jaccard index values of the non-zero parameters between the constrained models and the 

original model. The representations are the same as in (D).  
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Figure S7. Network activity maps for the models with fewer signaling sectors, related to Figure 

6. (A) The network activity maps for the models with three sectors. (B) The network activity 

maps for the models with two sectors. The representations in (A) and (B) are the same as in 

Figure 2A. 

 

SUPPLEMENTARY TABLES 

Table S2. Comparison of the original model and the model devoid of the inter-sector links 

 The original model The model without inter-

sector links 

Predictive power for sector activities 0.881 0.681 

Predictive power for immunity levels 0.911 0.887 

 

Table S3. Comparison of the invariant (original) model and the treatment-specific models 

MAMP 

The structure-invariant model Treatment-specific model 

Sector activities Immunity levels Sector activities Immunity levels 

flg22 0.89 0.93 0.88 0.93 

elf18 0.85 0.91 0.84 0.93 

chitosan 0.89 0.88 0.88 0.91 

 

Table S4. Primers used in qRT-PCR 

 Primer (5' to 3') 

At3g50280 AGCCCTTGCTTGCTTTACAA GAAGATTCTCCCGTTGACCA 
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At2g41230 CTCCGAGTTTTTCTTTTCAAGG CAATTCATAATGTGACGCTGAT 

At5g46960 GAAAGACCCGCAATTGTCAT CGTCGATGCTAGGACCAAAC 

At2g14610 (PR1) CGGAGCTACGCAGAACAACT CTCGCTAACCCACATGTTCA 

At4g29480 TGAAGATGGCATCGAAGTTG TTGGCACTTCTCAACAGTGG 
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