

Fig. S1. Activation of the *RTS1*-**RFB does induce cell cycle delay.** Strain containing the *RuraR* locus and harboring the *cdc25-22* allele were grown at 25°C in minimal media with (arrest off) or without thiamine (arrest on) for 24 hours, then synchronized in G2 at 36°C for 4 hours and released at 25°C. Samples was taken at the indicated times and analyzed for septation index (an S-phase marker) and DNA content by FACS.

Fig. S2. The checkpoint kinases Cds1 and Chk1 and the nuclease activity of Mre11 are not required to regulate Rad52 recruitment to the *RuraR* locus. (A) Schematic representation of the *RuraR* locus. Grey and black lines indicate telomere and centromere proximal side of the *ura4* gene, respectively. Blue boxes represent the *RTS1*-RFBs and their polarity. *Ase*I sites are ~1 kb *cen* proximal and 0.6 Kb *tel* proximal from RTS1 (see Fig. 1A for further details). (B). Rad52-GFP enrichment relative to wt at the RuraR locus in the rad9-d strains, as described for Fig. 1D. ChIP of Rad52-GFP followed by qPCR was carried out on the indicated *RuraR rad52⁺-GFP* strains after 40 hours growth either with or without thiamine (arrest "off" and "on" respectively). Cells containing the *RuraR* locus in a wild type (*wt*) background were analysed alongside an isogenic strain harboring the *rad9-d* alleles. Values are the mean from two to three independent experiments, with \pm 95% CI. (C). An equivalent experiment for the *chk1 day* (top panel) and *cds1 day* (bottom panel) strain.

Fig. S3. Checkpoint pathways do not affect template exchange occurring during the restarting of the fork at RuraR. (A) Diagram of the RuraR locus (see Fig. 1 for details). Upon fork-arrest at the RTSI-RFB stalled nascent strands switch template and invade the opposite RTS1 sequence, leading to the formation of an early joint-molecule (D-loop). The incoming of the opposite fork leads to a reciprocal template switch of stalled nascent strands leading to the formation of a late joint-molecule containing Holliday junctions (HJs). The resolution of HJ-like structures leads to three distinct products: acentric or dicentric isochromosomes and the inversion of ura4 orientation. (B). Analysis of RIs by 2DGE from indicated strains grown in media containing or lacking thiamine (fork-arrest "off") and "on" respectively). Top panels are diagrams of RIs within the Asel restriction fragment analysed by 2DGE in indicated conditions. Numbers indicate the percentage of forks arrested by the RTS1-RFB \pm standard deviation (SD). The panels from wt and rad3-d strains are also presented on Fig. 1C. (C). Quantification of joint-molecules observed in Panel B. Values are the mean of three independent experiments \pm s.d. (D). Top panel: chromosomes from indicated strains and conditions were separated by Pulse Field Gel Electrophoresis (PFGE) and analysed by Southern-blotting using an rng3 probe, located telomere-proximal from ura4. Cells were grown for 48 hours in media with (fork arrest "off") or without thiamine (fork-arrest "on"). Bottom panel: Quantification of the acentric level in indicated strains and conditions. Values correspond to the mean of three independent experiments \pm s.d. (E). Top panel: representative Southern blot showing accumulation of rearrangement following digestion of genomic DNA with EcoRV, Southern blotting and hybridisation with a ura4 probe. Cells from indicated strains were grown for 48 hours with (fork-arrest "off") or without (fork-arrest "on") thiamine. Bottom panel: quantification of the amount of chromosomal rearrangements observed in the top panel. Values correspond to the mean of three independent experiments \pm s.d.

Supplementary Table 1. qPCR primers used for ChIP

Primer	Sequence (5'-3')	Size	Primer	Sequence (5'-3')	Size
R1400F	CACCAAAGCCGATTTATTCC	118	L600R	CCCTGGCGGTTGTAGTTAGT	
R1400R	CCCGTATTTCTCAAAATAAATCTCA		L900F	AACGGTTGTAGAAGACGAGCA	112
R1200F	AGTATGTTAAGATGGCTTGTCTGTTC	80	L900R	TGTAAGCACACCTTCAATGTATCA	
R1200R	CCTAATGACAGCGGCAAGA		L1200F	CAAATATGGAGTGCTTTATCTCCA	87
R1000F	TTGCTTATCGATCACTGAATATTTCT	94	L1200R	CCTTTAATGAACGAAACTTAGAATCA	
R1000R	AAGATGCATTTCCATTATAATCCTCTA		L1400F	AACATCGGTGACCTCGTTCT	83
R800F	TCTGATTTAAGGATACGTAGAACTGC	81	L1400R	CTCTTCGCTCCAAGCGTTAT	
R800R	TGCTACTTATACAACCCGTGTATTG		L1600F	CGACATAGATTCCGCTGATG	115
R600F	ACATGTGACATATAGTGATACACAACG	87	L1600R	TTCATCATTGTCGGTGTTCC	
R600R	GGGTACGAACTTACAGTGTTTACCAA		L1800F	GGCAAAGTAGATCCGACAGC	101
R400F	CACACTTGCTCTGTACACGTATTCT	115	L1800R	TGAATACGCCGTTACTCCTAAAG	
R400R	AGGATCCATGATGCACAGATT		L2000F	GGTGACGTCAAATCACCAAA	84
R5F	TTGCCAAACATCCTCCTACC	88	L2000R	CCCACAAAGCTCTTCATACAAA	
R5R	GAAACACAAGCCAAAGTTGC		L2200F	AAGGCAAGAAACGCTGAGAC	106
R3F	TTCTGTTCCAACACCAATGTTT	97	L2200R	GGCATGCATACTACCCGATAA	
R3R	TGTACAAAGCCAATGAAAGATG		L2400F	TTGCTTTCAAGAAAGTCACTGTAGTT	82
uraF	TGATATGAGCCCAAGAAGCA	80	L2400R	GTGCAGGAAGTGATGAATCG	
uraR	CAAATTCGCAGACATTGGAA		L2600F	ACAGATAAATGGCGCAAACC	109
L5F	AGGGCATTAAGGCTTATTTACAGA	118	L2600R	CGAACACAAGTGTGGTCTTTG	
L5R	TCACGTTTAATTTCAAACATCCA		L2800F	GCATCAATTGCTCGTCAAAA	116
L3F	TTTAAATCAAATCTTCCATGCG	91	L2800R	GCGGTAAAATCGTGATATTTGAG	
L3R	TGTACCCATGAGCAAACTGC		L3000F	TCGTACGTACTGCATCGCTATAA	115
L400F	ATCTGACATGGCATTCCTCA	101	L3000R	TTCATCCTACCTTCTAGTTCGGTAA	
L400R	GATGCCAGACCGTAATGACA		Ade623	GGCTGCCTCTACCATCATTC	109
L600F	CCATTGACTAGGAGGACTTTGAG	86	Ade625	TTAAGCTGAGCTGCCAAGGT	

Size = amplicon size

|--|

Strains	Genotype	Reference
FTS17	h- smt() sun35:mmtA1:rtf1+ ade6_704 lou1_32 RuraR :uraA+	Lambert 2005
ETS20	h smt0 sup35:mmt1:rtf1+ ade6_704 lev1_32 rura4+	Lambert 2005
ETS24/SI 895	h smt0 sup35:mmt41:rtf1+ ada6 704 lau1 32 RuraR :uraAtrad3 ::HuoMY	This study
ETS24/3L893	h smt0 sup35:nmt41:rtf1+ ada6 704 lau1 32 RuraR :ura4+rad0 ::NATMY	This study
ETS22/SL894	h smt0 sup35:nmt41:rtf1+ ada6 704 lau1 32 RuraR :ura4+rad17 ::HuaMY	This study
ETS207	h smt0 sup25:mm+1.1.111 uue0-7.04 leu1-32 KuruK .uru4 ruu17119gtv1X	Lambort 2005
E13207	h smt0 sup25:nmt41.rtf1+ ado6 704 lau1 22 RuraR :ura4+alah1:VanMX	This study
ETSE2	It Shito sup35.nmi41.nfft ddc 704 leu1-32 KuruK .uru4 Chk1KuriviA	This study
E1552 ETE102/EL 202	It sinto supsisimiti riji uueo-704 leui-32 KuruK uru4 cusiNATMA	This study
E15195/5L695	It SINO Sup55.nmi41.rtj1* uue0-704 leu1-52 KuruK .uru4*ex01NA1MA	Lambart 2005
5L550	It supso.nmi41.rtj1' uueo-704 leu1-52 uruK .uru4'	Lambert 2005
SL903/E13412	It sinto supsisimitativitati alec 704 leut 32 ura Divertati radio ultro MX	This study
SL907/E15410	n' smto sup35:nmt41:rtf1' aae6-704 leu1-32 uraR :ura4' raa3 ::r1ygtv1X	This study
SL916/JZ52	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ aae6-704 leu1-32 uraK :ura4 ⁺ exo1::NATMX	This study
II306/JZ54	h smt0 sup35:nmt41:rtf1* ade6-/04 leu1-32 uraK :ura4* exo1::NATMX rad3 ::HygMX	This study
JZ107	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 uraK :ura4 ⁺ exo1::NATMX rad17::HygMX	This study
ETS57	h smt0 sup35:nmt41:rtf1* ade6-/04 leu1-32 RuraR :ura4* rad52*-GFP :KanMX	This study
ETS62	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX rad3 ::HygMX	This study
ETS66	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX rad17 ::HygMX	This study
ETS70	h [·] smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX chk1::KanMX	This study
ETS77	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX cds1::KanMX	This study
ETS136	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX rad9 ::NATMX	This study
ETS185	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX rad3 ::HygMX rad17 ::NATMX	This study
ETS233	h ⁻ smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX exo1 ::NATMX	This study
ETS235	h [·] smt0 sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RuraR :ura4 ⁺ rad52 ⁺ -GFP :KanMX exo1 ::NATMX rad3 ^{··} HueMX	This study
FTS241	h: smt0 sun35:nmt41:rtf1+ ade6-704 leu1-32 RuraR :ura4+ rad52+-CFP :HuoMX rad50 ::KanMX	This study
ETS254	h: smt0 sup35:mmt11:rtf1+ ade6-704 leu1-32 RuraR :ura4+ rad52+-CFP :HugMX rad3::NATMX	This study
ETS320	h smt0 sup35:nmt41:rtf1* ade6-704 leu1-32 RuraR :ura4* rad52*-GFP :HygMX rad3 ::NatMX	This study
ETCOZE	raabu::KanwiA	This stards.
E15375	n' smto sup35:nmt41:rtf1+ ale6-704 leu1-32 Rurak :ura4+ raa52+-GFP :Kantvik raa52-D65N	This study
E15383	n° smto sup35:nmt41:rtf1* aae6-704 leu1-32 KuraK :ura4* raa52*-GFP :KanMX raa3::HygMX rad32-D65N	I his study
YC5	h ⁻ sup35:nmt41:rtf1+ ade6-704 leu1-32 ura4-sd20	Iraqui 2012
YC13	h ⁻ sup35:nmt41:rtf1+ ade6-704 leu1-32 ura4-sd20 :RTS1	Iraqui 2012
YC21	h [.] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RTS1 :ura4-sd20	Iraqui 2012
II264	h ⁻ sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 exo1 :NATMX	This study
II258	h [.] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 :RTS1 exo1 :NATMX	This study
II324	h [.] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RTS1 :ura4-sd20 exo1 :NATMX	This study
II340	h [·] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 rad3 ::HygMX	This study
II317	h [.] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 :RTS1 rad3 ::HygMX	This study
II334	h ⁻ sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RTS1 :ura4-sd20 rad3 ::HygMX	This study
II359	h [.] sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 rad3 ::HygMX exo1 :NATMX	This study
II352	h ⁻ sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 ura4-sd20 :RTS1 rad3 ::HygMX exo1 :NATMX	This study
II346	h ⁻ sup35:nmt41:rtf1 ⁺ ade6-704 leu1-32 RTS1 :ura4-sd20 rad3 ::HygMX exo1 :NATMX	This study
ETS349	h: smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/RTS1(A2)/ade6-L469	This study
IM836	h ⁻ smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/RTS1(A2)/ade6-L469 tRNA-mmt41-rtf1+ rad3HugMX	This study
IM838	h ⁻ smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/RTS1(A2)/ade6-L469 tRNA:nmt41:rtf1+ rad17::Hu9MX	This study
IM840	h ⁻ smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/RTS1(A2)/ade6-L469	This study
D (0.12	tKNA:nmt41:rtf1+ exo1::NA1MX	m1 · · · 1
1M842	n [.] smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/R151(A2)/ade6-L469 tRNA:nmt41:rtf1+ rad3::HygMX exo1::NATMX	This study
IM844	h [.] smt-0 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6-M375 int::pUC8/his3+/RTS1(A2)/ade6-L469 tRNA:nmt41:rtf1+ rad17::HygMX exo1::NATMX	This study