Supporting Information

DNA Dendrimer: An Efficient Nanocarrier of Functional Nucleic Acids for Intracellular Molecular Sensing

Hong-Min Meng, Xiaobing Zhang^{*}, Yifan Lv, Zilong Zhao, Nan-Nan Wang, Ting Fu, Huanhuan Fan, Hao Liang, Liping Qiu, Guizhi Zhu, and Weihong Tan^{*}

Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China

Corresponding Authors

tan@chem.ufl.edu; xbzhang@hnu.edu.cn

ADDITIONAL EXPERIMENTAL DETAILS

Dynamic light scattering characterization of DNA dendrimer

The hydrodynamic diameters of the DNA dendrimer under investigation were measured using a Zetasizer Nano ZS90 DLS system equipped with a red (633 nm) laser and an Avalanche photodiode

detector (APD) (quantum efficiency > 50% at 633 nm) (Malvern Instruments Ltd., Worcestershire, England). A Kuvetten cuvette (10 mm) was used as a sample container. DLS measurements were performed at room temperature at a fixed scattering angle of 90° .

AFM imaging

Atomic force microscopy of samples was observed on a Multimode 8 (Bruker/USA) using ScanAsyst mode in ambient air. A 5 μ L DNA sample was placed onto the surface of freshly cleaved mica and allowed to adsorb to the mica surface for approximately 30 minutes. The mica was then rinsed in Milli-Q water and dried with compressed air.

Oligonucleotide	Sequences (from 5' to 3')
Y _{0a}	GAC CGA TGG ATG ACC TGT CTG CCT AAT GTG CGT CGT
	AAG
Y _{0b}	GAC CGA TGG ATG ACT TAC GAC GCA CAA GGA GAT CAT
	GAG'
Y _{0c}	GAC CGA TGG ATG ACT CAT GAT CTC CTT TAG GCA GAC
	AGG
Y _{1a}	GAA GCC ACT CTG ACC TGT CTG ACT AAT GTG CGT CGT
	AAG
Y _{1b}	GAA GCC ACT CTG ACT TAC GAC GCA CAA GGA GAT CAT
	GAG-BHQ1
Y _{1c-L-histidine}	TCA TCC ATC GGT C CAC GTG CTC GT T AAC GGG GCT

Table S1. Sequences of Oligonucleotides Used in This Work

	GTG CGG CTA GGA AGT A GGA GGA G CT CAT GAT CTC CT
	T TAG TCA GAC AGG
Y _{1c-L-histidine-R}	TCA TCC ATC GGT CCA CGT GCT CGT GAA GTA GCG
	CCG CCG TGG AGG AGC TCA TGA TCT CCT TTA GTC AGA
	CAGG
X _L -histidine(6)	FAM-GTA AT rA GGA AGA GAT GAT GTG A
X _{L-histidine(8)}	FAM-CTC CTC C rA GGA ACG AGC ACG TG
Y _{1c-ATP} (9)	TCA TCC ATC GGT CCC CCC AGG TCT CAT GAT CTC CTT
	TAG TCA GAC AGG
Y _{1c-ATP} (11)	TCA TCC ATC GGT CTC CCC CAG GTC TCA TGA TCT CCT
	TTA GTC AGA CAG G
Y _{1c-ATP} (12)	TCA TCC ATC GGT CAC TCC CCC AGG TCT CAT GAT CTC
	CTT TAG TCA GAC AGG
Y _{1c-ATP} (13)	TCA TCC ATC GGT CTA CTC CCC CAG GTC TCA TGA TCT
	CCT TTA GTC AGA CAG G
X _{ATP}	FAM/Cy3-ACC TGG GGG AGT ATT GCG GAG GAA GGT
X _{ATP-R}	FAM-ACC TGG GGG AGT AAA AAA AAA AAA AAA
Y _{2a}	CTG TCA TCG GTC ACC TGT CTG CCT AAT GTG CGT CGT
	AAG
Y _{2b}	CTG TCA TCG GTC ACT TAC GAC GCA CAA GGA GAT CAT

	GAG
Y _{2c}	TCA GAG TGG CTT CCT CAT GAT CTC CT T TAG GCA GAC
	AGG'
Y _{3a}	GAC ACA CTG AGG TCC TGT CTG CCT AAT GTG CGT CGT
	AAG'
Y _{3b}	GAC ACA CTG AGG TCT TAC GAC GCA CAA GGA GAT CAT
	GAG'
Y _{3c}	TGA CCG ATG ACA GCT CAT GAT CTC CTT TAG GCA GAC
	AGG'
Y _{4a}	TGC TGT CTG TCC ACC TGT CTG CCT AAT GTG CGT CGT
	AAG'
Y _{4b}	TGC TGT CTG TCC ACT TAC GAC GCA CAA GGA GAT CAT
	GAG
Y _{4c}	ACC TCA GTG TGT CCT CAT GAT CTC CT T TAG GCA GAC
	AGG

Figure S1. Agarose gel electrophoresis of Y_0-Y_4 , (a) $Y_{-L-histidine}$, (b) Y_{-ATP} .

Figure S2. The fluorescent signal-enhanced ratio of $G_{4-L-histidine}$ with substrate strand X containing a different number of bases. The concentration of $G_{4-L-histidine}$ was fixed at 10 nM. The X-6 and X-8 denote FAM-labeled ssDNA containing 6 and 8 bases, respectively.

Figure S3. Comparison of the fluorescent signal-enhanced ratio of G_{4-ATP} with Y_{1c-ATP} containing a different number of bases. The concentration of G_{4-ATP} was fixed at 10 nM. The $Y_{1c-ATP9}$, $Y_{1c-ATP11}$, $Y_{1c-ATP12}$, and $Y_{1c-ATP13}$ denote FAM-labeled ssDNA containing 9, 11, 12, and 13 bases, respectively.

Figure S4. Time-dependent fluorescence response with low, intermediate, and high concentrations of L-histidine, the concentration for $G_{4-L-histidine}$ is 10 nM.

Figure S5. The fluorescence emission spectra of the sensing system upon the addition of ATP at different concentrations.

Figure S6.Change in fluorescence intensity based on different concentrations of ATP. Inset shows the responses of sensing system to ATP at low concentration.

Figure S7. a). Selectivity of the DNAzyme-based assay for L-histidine over other potential interferences; the concentration for $G_{4-L-histidine}$ is 10 nM. b). Fluorescence kinetics spectroscopy of G_{4-ATP} and Y_{1-ATP} treated with 1U/mL DNase I.

Figure S8. Selectivity of the aptamer-based assay for ATP compared to its analogues. The concentration for G_{4-ATP} is 10 nM. F_0 and F are the fluorescence intensity of the sensor in the absence and presence of target, respectively.

Figure S9. Fluorescence kinetics spectroscopy of G_{4-ATP} treated with more than 5-hour incubation in cell lysate.

Figure S10. Fluorescence spectroscopy of a, $Y_{1-L-histidine}$, b, $G_{4-L-histidine}$, c, Y_{1-ATP} , and d, G_{4-ATP} treated with buffer, RPMI 1640 medium, and 10% FBS RPMI 1640 medium, respectively.

Figure S11. Change in fluorescence intensity based on L-histidine concentration in cell lysate samples.

Figure S12. Z-stack images of cells with L-histidine, K^+ and active $G_{4-L-histidine}$. The green channel is FAM fluorescence from activated $G_{4-L-histidine}$, Scale bar = 20 μ m.

Figure S13. Flow cytometric quantification of cell associated fluorescence Cells a) active $G_{4-L-histidine}$. b) L-histidine and active $G_{4-L-histidine}$. c) K^+ and active $G_{4-L-histidine}$. d) L-histidine, K^+ and inactive $G_{4-L-histidine-R}$. e) random $G_{4-ATP-R}$. f) L-histidine, K^+ and active $G_{4-L-histidine}$. g) active G_{4-ATP} were measured.

Figure S14. Co-localization assay of G_{4-ATP} with Lysotracker. Left panels are fluorescence from Lysotracker Green staining, middle panels are Cy3 fluorescence from the G_{4-ATP} probe, and right panels are the overlay of Cy3 and Lysotracker Green fluorescence. Scale bars: 10 µm.

Figure S15. Cytotoxicity assay of MCF-7 cells treated with G₄ DNA dendrimers.

References:

(S1) Lu, L.M.; Zhang, X. B.; Kong, R. M.; Yang, B.; Tan, W. H. A Ligation-Triggered DNAzyme Cascade for Amplified Fluorescence Detection of Biological Small Molecules with Zero-Background Signal. *J. Am. Chem. Soc.* 2011, 133, 11686-11691.

(S2) Zhou, T.; Chen, P.; Niu, L.; Jin, J.; Liang, D. H.; Li, Z. B.; Yang, Z. Q.; Liu, D. S. pH-Responsive Size-Tunable Self-Assembled DNA Dendrimers. *Angew. Chem. Int. Ed.* 2012, 124, 11433-11436.