Supporting Information

## The formal reduction potential of 3,5-difluorotyrosine in a structured protein: Insight into multistep radical transfer

Kanchana R. Ravichandran,<sup>†</sup> Li Liang,<sup>§</sup> JoAnne Stubbe,<sup>†</sup> and Cecilia Tommos<sup>§,\*</sup>

<sup>†</sup>Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

<sup>§</sup>Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059

Corresponding author: tommos@mail.med.upenn.edu

| Index                                                                                                          | page       |
|----------------------------------------------------------------------------------------------------------------|------------|
| <b>Figure S1.</b> SDS-PAGE analysis of $\alpha_3(3,5)F_2Y$ expression                                          | S2         |
| <b>Figure S2.</b> Analytical HPLC and MALDI-TOF evaluation of purified $\alpha_3(3,5)F_2Y$                     | S2         |
| <b>Figure S3.</b> Fitting the UV-Vis pH-titration curve of $\alpha_3(3,5)F_2Y$                                 | <b>S</b> 3 |
| <b>Figure S4.</b> Chemical denaturation of $\alpha_3$ Y and $\alpha_3(3,5)$ F <sub>2</sub> Y at pH 5.0 and 5.5 | <b>S</b> 3 |
| <b>Figure S5.</b> $I_{\text{net}}$ of $\alpha_3(3,5)F_2Y$ as a function of the square-wave amplitude           | <b>S</b> 4 |



**Figure S1.** SDS-PAGE analysis of  $\alpha_3(3,5)F_2Y$  expression in E. coli BL21(DE3). The SDS-PAGE (15%) gel displays in lane (1) molecular weight markers, lane (2) pre-induction sample, lane (7) post-induction sample of a culture to which no 3,5- $F_2Y$  addition was made, and in lane (3-6) expression of  $\alpha_3(3,5)F_2Y$  in cultures containing 0.5, 1.0, 1.5 and 2.0 mM 3,5- $F_2Y$  respectively. The  $\alpha_3X$  protein is expressed as a thioredoxin fusion. The calculated molecular weights of the truncated thioredoxin- $\alpha_3$ (residue 1-31) and full-length thioredoxin- $\alpha_3(3,5)F_2Y$  fusions are 17370 Da and 21348 Da, respectively. The band consistent with full-length thioredoxin  $\alpha_3(3,5)F_2Y$  fusion protein is indicated with an arrow.



**Figure S2.** Analytical HPLC and mass spectrometry evaluation of purified  $\alpha_3(3,5)F_2Y$ . Panel (A) displays a typical analytical C18 reversed-phase chromatogram of purified  $\alpha_3(3,5)F_2Y$ . The freeze-dried protein was dissolved in 20 mM sodium acetate, pH 5.8, and eluted with a linear 20-70% acetonitrile gradient over 50 min. Panel (B) shows MALDI-TOF traces of purified  $\alpha_3(3,5)F_2Y$  (blue) and  $\alpha_3Y$  (red). Each trace displays a single major peak, whose maxima are separated by  $35 \pm 1$  Da (insert). This is consistent with the exchange of  $Y_{32}$  to 3,5- $F_2Y_{32}$  (calculated  $\Delta m/z = 36$  Da).



**Figure S3.** Fitting the UV-Vis pH-titration curve of  $\alpha_3(3,5)F_2Y_{32}$ . The p $K_{app}$  of  $(3,5)F_2Y_{32}$  was estimated by fitting the raw absorption (measured at 280 and 277 nm) and baseline-subtracted (baseline points measured at 328 and 400 nm) absorption of  $(3,5)F_2Y_{32}$ -O<sup>-</sup> as a function of pH to a single p $K_a$ . The nonlinear curve fitting routines in KaleidaGraph (www.synergy.com) were used for the data fitting. Panel (A) (delta 280 – 328 nm absorption) and panel (B) (delta 277 – 328 nm absorption) display two examples from the fitting analysis. No significant difference was found in the estimated p $K_{app}$  value from the 280 or 277 nm ± baseline fits (average p $K_{app}$  of 7.98 with an average fitting standard error of 0.06).



*Figure S4.* Chemical denaturation of  $\alpha_3 Y$  and  $\alpha_3(3,5)F_2 Y$ . The figure displays urea-induced unfolding/folding transitions of  $\alpha_3(3,5)F_2 Y$  (blue) and  $\alpha_3 Y$  (red) obtained at (A) pH 5.0 and (B) pH 5.5, respectively. The grey lines represent nonlinear curve fits to determine the stability of the protein in the absence of denaturant.<sup>1</sup> Fitting standard error <  $\pm 0.03$  kcal mol<sup>-1</sup>.

(1) Santoro , M. M., and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl  $\alpha$ -chymotrypsin using different denaturants. Biochemistry 27, 8063–8068.).



*Figure S5.*  $I_{net}$  of  $\alpha_3(3,5)F_2Y$  as a function of the square-wave pulse amplitude. The traces were recorded using a SW frequency of 120 Hz and a pulse amplitude ( $E_{SW}$ ) of 25 (black), 50 (blue) and 75 (light blue) mV. The insensitivity in the  $I_{net}$  lineshape to the pulse amplitude is consistent with diffusion-controlled electrode kinetics.<sup>2,3</sup> SWV settings: 90  $\mu$ M  $\alpha_3(3,5)F_2Y$  in 20 mM sodium acetate, 20 mM potassium phosphate, 20 mM sodium borate, 75 mM KCl, pH 5.70; PGE working electrode, temperature 25° C, step potential 0.15 mV, and SW frequency 120 Hz.

(2) Jeuken, L. J. C., McEvoy, J. P., and Armstrong, F. A. (2002) Insights into Gated Electron-Transfer Kinetics at the Electrode-Protein Interface: A Square Wave Voltammetry Study of the Blue Copper Protein Azurin. *J. Phys. Chem. B* 106, 2304–2313.

(3) Mirčeski, V., Komorsky-Lovrić, Š., and Lovrić, M. (2007) Square-wave voltammetry: Theory and applications. In Scholz F (ed) Monographs in electrochemistry (Springer-Verlag, Berlin, Germany).