Supplemental Material

Effects of Gender on Coronary Microvascular Dysfunction and Cardiac Outcomes

Venkatesh L. Murthy, M.D., Ph.D. (1,2,4); Masanao Naya, M.D., Ph.D. (2); Viviany R. Taqueti, M.D. (2,3); Courtney R. Foster, M.S. (3); Mariya Gaber, M.L.A. (3); Jon Hainer, B.S. (3); Sharmila Dorbala, MD, MPH (2,4); Ron Blankstein, M.D. (2,4); Ornella Rimoldi, M.D. (5); Paolo G. Camici, M.D. (6); and Marcelo F. Di Carli, M.D. (2,3,4)

¹Departments of Internal Medicine (Division of Cardiovascular Medicine) and Radiology (Divisions of Nuclear Medicine and Cardiothoracic Imaging), University of Michigan, Ann Arbor, MI, USA; Noninvasive Cardiovascular Imaging Program, Departments of Internal Medicine and Radiology; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology; Division of Cardiovascular Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA; BFM CNR and Scientific Institute San Raffaele, Milan, Italy; Division of Cardiology, Vita Salute University and Scientific Institute San Raffaele, Milan, Italy.

Correspondence to:
Marcelo F. Di Carli, MD
Brigham & Women's Hospital
ASB-L1 037-C
75 Francis St
Boston, MA 02115

Tel: 617-732-6291 Fax: 617-582-6056

E-mail: mdicarli@partners.org

Table of Contents

Table of Contents	2
Supplemental Methods	3
Sensitivity Analysis for Incomplete Follow-up	3
Subgroup Analysis without Coronary Calcium	3
Subgroup Analysis with Elevated Coronary Calcium	3
Supplemental Tables	4
Table S1: Multivariate Linear Regression for Corrected Coronary Flow Reserve	4
Table S2: Sensitivity Analysis for Incomplete Follow-Up	5
Table S3: Baseline Characteristics of CAC=0 Subgroup	6
Table S4: Predictors of Corrected CFR for CAC=0 Subgroup	8
Table S5: Clinical Outcomes in CAC=0 Subgroup	9
Table S6: Cox Regression Analysis for MACE among CAC=0 Subgroup	10
Table S7: Baseline Characteristics of CAC>200 Subgroup	11
Table S8: Predictors of Corrected CFR for CAC >200 Subgroup	13
Table S9: Clinical Outcomes in CAC >200 Subgroup	14
Table S10: Cox Regression Analysis for MACE among CAC >200 Subgroup	15
Supplemental Figures	16
Figure S1: Distribution of Overt CAD and CMD by Gender	16
Figure S2: Distribution of CFR by Gender for CAC=0 Subgroup	17
Figure S3: Outcomes by Gender and Coronary Flow Reserve for CAC=0 Subgroup	20
Figure S4: Distribution of CFR by Gender for CAC >200 Subgroup	21
Figure S5: Outcomes by Gender and Coronary Flow Reserve for CAC>200 Subgroup	22

Supplemental Methods

Sensitivity Analysis for Incomplete Follow-up

Because complete follow-up data was only obtained in 94% of patients, we conducted several sensitivity analyses to assess the potential impact of incomplete follow-up. Under multiple imputation, outcome (MACE versus no MACE) and time to event or censoring were imputed 25 times for each of the 74 patients with incomplete follow-up using these data and clinical covariates (age, gender, hypertension, dyslipidemia, diabetes, family history of CAD, tobacco use, history of CAD, referral for chest pain and referral for dyspnea). Prior to imputation, time to first event was transformed with the natural logarithm, after adding 1 day, in order increase normality. After imputation, the inverse transform was applied. The relative efficiency of the multiple imputation was 99.7%. Under right point imputation, each patient without complete follow-up was assumed to have no events through the end of the study period.

Regardless of whether only observed data were used or either of the imputation methods were used, similar results were obtained in survival analysis with Cox regression (Table S2). In no case was gender a significant predictor of outcome. Furthermore, no significant interaction between gender and coronary flow reserve (CFR) could be identified, suggesting the relationship between CFR and MACE is consistent, regardless of gender.

Subgroup Analysis without Coronary Calcium

The primary analysis of this manuscript was on a cohort of patients without clinical history of coronary artery disease (CAD) who had visually normal stress myocardial perfusion imaging (MPI). Due to the limitations of stress MPI, a subset of these patients may have severe subclinical CAD. Consequently, we analyzed the subgroup of the primary cohort without any quantifiable coronary calcium (CAC=0), reflecting populations with minimal to no subclinical atherosclerosis. The baseline characteristics of this subgroup by gender are presented in Table S3. Even in this subgroup, CFR was equivalent across genders (Figure S3). Linear regression was performed to confirm that gender was not a significant predictor of coronary flow reserve (CFR) (Table S4). Clinical outcomes are summarized in Table S5. Cox regression was performed to confirm that CFR but not gender was not a significant predictor of MACE (Table S6). Microvascular dysfunction was associated with higher rates of adverse outcomes in both genders (Figure S4). Interaction terms of gender and CFR were non-significant, suggesting the relationship between CFR and outcomes was consistent across genders.

Subgroup Analysis with Elevated Coronary Calcium

The primary analysis of this manuscript was on a cohort of patients without clinical history of coronary artery disease (CAD) who had visually normal stress myocardial perfusion imaging (MPI). Due to the limitations of stress MPI, a subset of these patients may have significant subclinical CAD. Consequently, we analyzed the subgroup of the primary cohort with significant coronary calcium (CAC>100), reflecting populations with potential for subclinical atherosclerosis. The baseline characteristics of this subgroup by gender are presented in Table S7. Even in this subgroup, CFR was equivalent across genders (Figure S5). Linear regression was performed to confirm that gender was not a significant predictor of coronary flow reserve (CFR) (Table S8). Clinical outcomes are summarized in Table S9. Cox regression was performed to confirm that CFR but not gender was not a significant predictor of MACE (Table S10). Microvascular dysfunction was associated with higher rates of adverse outcomes in both genders (Figure S6). Interaction terms of gender and CFR were non-significant, suggesting the relationship between CFR and outcomes was consistent across genders.

Supplemental Tables

Table S1: Multivariable Predictors of Corrected Coronary Flow Reserve

	Model 1		Model 2		
Parameter	Estimate	P-Value	Estimate	P-Value	
R2	0.165		0.166		
AIC	870.4	ref	870.8	1.00	
SBC	-271.0	ref	-265.5	1.00	
Variable	Beta	P-Value	Beta	P-Value	
Intercept	3.53 [3.17-3.90]	<0.0001	3.50 [3.13-3.87]	<0.0001	
Age (y)	-0.01 [-0.020.01]	<0.0001	-0.01 [-0.020.01]	<0.0001	
BMI (kg/m²)	-0.02 [-0.020.01]	<0.0001	-0.02 [-0.020.01]	<0.0001	
Hypertension	-0.20 [-0.320.08]	0.001	-0.20 [-0.320.08]	0.002	
Diabetes Mellitus	-0.24 [-0.350.12]	<0.0001	-0.24 [-0.360.12]	<0.0001	
Dialysis	-0.55 [-0.790.31]	<0.0001	-0.56 [-0.80.32]	<0.0001	
Preoperative Evaluation	-0.25 [-0.390.11]	0.0005	-0.26 [-0.40.12]	0.0004	
EF Reserve >0	0.03 [0.02-0.04]	<0.0001	0.03 [0.02-0.04]	<0.0001	
Male Gender			0.07 [-0.04-0.18]	0.21	

Stepwise multivariable linear regression identified seven independent predictors of corrected coronary flow reserve (Model 1). Addition of gender (Model 2) did not improve the model. AIC = Akaike information criterion. SBC = Schwarz-Bayes criterion.

Table S2: Sensitivity Analysis for Incomplete Follow-Up in Cox Regression for MACE

	•		Multiple Im	Multiple Imputation		mputation
	Hazard Ratio	P-Value	Hazard Ratio	P-Value	Hazard Ratio	P-Value
Model 1						
Clinical Risk Score (per 10% increase)	1.06 [1.03-1.1]	0.0007	1.06 [1.02-1.09]	0.0009	1.06 [1.02-1.09]	0.001
Rest LVEF (per 10% increase)	0.56 [0.44-0.72]	<0.0001	0.57 [0.44-0.73]	<0.0001	0.56 [0.43-0.72]	<0.0001
In(CFR) (per 10% increase)	0.8 [0.75-0.86]	<0.0001	0.81 [0.76-0.87]	<0.0001	0.81 [0.75-0.86]	<0.0001
Model 2						
Clinical Risk Score (per 10% increase)	1.06 [1.03-1.1]	0.0008	1.06 [1.02-1.09]	0.001	1.06 [1.02-1.09]	0.002
Rest LVEF (per 10% increase)	0.57 [0.44-0.74]	<0.0001	0.58 [0.44-0.75]	<0.0001	0.56 [0.44-0.73]	<0.0001
In(CFR) (per 10% increase)	0.8 [0.75-0.86]	<0.0001	0.81 [0.76-0.87]	<0.0001	0.81 [0.75-0.86]	<0.0001
Female Gender	0.9 [0.55-1.45]	0.65	0.89 [0.55-1.44]	0.62	0.93 [0.58-1.5]	0.77
Model 3						
Clinical Risk Score (per 10% increase)	1.06 [1.03-1.1]	0.0008	1.06 [1.02-1.09]	0.001	1.06 [1.02-1.09]	0.002
Rest LVEF (per 10% increase)	0.57 [0.45-0.74]	<0.0001	0.58 [0.45-0.75]	<0.0001	0.57 [0.44-0.73]	<0.0001
In(CFR) (per 10% increase)	0.79 [0.73-0.85]	<0.0001	0.8 [0.74-0.86]	<0.0001	0.8 [0.74-0.86]	<0.0001
In(CFR)*Gender Interaction		0.42		0.38		0.45
In(CFR) (per 10% increase) - Men	0.82 [0.76-0.88]		0.83 [0.76-0.89]		0.82 [0.76-0.89]	
In(CFR) (per 10% increase) - Women	0.79 [0.73-0.85]		0.8 [0.74-0.86]		0.8 [0.74-0.86]	

Table S3: Baseline Characteristics of CAC=0 Subgroup by Gender

		CAC=0	
Variable	Males (N=97)	Females (N=307)	P-Value
Demographics			
Age (y)	53.1 [45.5-59.1]	56.8 [49.2-63.5]	0.001
Hispanic	11 (11.3)	68 (22.2)	0.02
Race			
White	49 (50.5)	133 (43.3)	0.12
Black	29 (29.9)	81 (26.4)	
Other/Unknown	19 (19.6)	93 (30.3)	
Risk Factors			
BMI (kg/m²)	29.4 [25.1-37.6]	31.9 [26.6-40.4]	0.09
BMI \geq 30 kg/m ²	44 (45.4)	177 (57.7)	0.04
Hypertension	58 (59.8)	210 (68.4)	0.14
Dyslipidemia	41 (42.3)	157 (51.1)	0.13
Diabetes Mellitus	24 (24.7)	92 (30)	0.37
Family history of CAD	23 (23.7)	100 (32.6)	0.10
Tobacco Use	19 (19.6)	26 (8.5)	0.005
Modified Duke Clinical Risk (%)	17 [10-27]	24 [12-39]	0.004
Dialysis	4 (4.1)	9 (2.9)	0.52
Medications			
Aspirin	47 (48.5)	134 (43.6)	0.41
β-adrenergic Blockers	26 (26.8)	122 (39.7)	0.02
Cholesterol agents	33 (34.0)	129 (42.0)	0.19
Insulin	8 (8.2)	31 (10.1)	0.7
Oral hypoglycemic	10 (10.3)	40 (13.0)	0.6
Ca-channel blockers	15 (15.5)	48 (15.6)	1.00
ACE inhibitors	29 (29.9)	92 (30.0)	1.00
Nitrates	7 (7.2)	14 (4.6)	0.3
Diuretics	16 (16.5)	80 (26.1)	0.06
Symptoms & Tast Indications			
Symptoms & Test Indications Chest Pain	47 (48.5)	212 (69.0)	0.0004
Dyspnea	22 (22.7)	94 (30.6)	0.0004
Pre-operative	15 (15.5)	31 (10.1)	0.15
Other	6 (6.2)	30 (9.8)	0.13
Other	0 (0.2)	30 (3.0)	0.32

Imaging Findings			
Rest LVEF (%)	58 [52-62]	64 [58-71]	<0.0001
LVEF reserve	91 (93.8)	276 (89.9)	0.31
Stress MBF (ml/g/min)	1.93 [1.35-2.53]	2.36 [1.83-3.32]	<0.0001
Rest MBF (ml/g/min)	0.88 [0.68-1.13]	1.15 [0.91-1.53]	< 0.0001
Corrected Rest MBF (ml/g/min)	0.86 [0.66-1.23]	1.17 [0.84-1.70]	<0.0001
CFR	2.04 [1.58-2.49]	2.05 [1.64-2.57]	0.98
Corrected CFR	1.98 [1.36-2.77]	1.93 [1.42-2.67]	1.00
Coronary Microvascular Dysfunction (CFR<2.0)	43 (44.3)	147 (47.9)	0.56

Clinical and imaging characteristics of patients by gender among the subgroup with zero coronary artery calcium score (CAC=0). Corrected rest myocardial blood flow (MBF) is computed by multiplying by the rest rate-pressure product/10000. Coronary flow reserve (CFR) is computed as the ratio of stress/rest MBF. Continuous variables are presented as median with inter-quartile range. Binary variables are presented as absolute numbers and percentages. Comparisons across gender were performed using Wilcoxon, Fisher exact and chi-square tests for continuous, binary and categorical variables, respectively.

Table S4: Multivariable Predictors of Corrected CFR for CAC=0 Subgroup

	CAC=0					
	Model 1		Model 2			
Parameter	Estimate	P-Value	Estimate	P-Value		
R ²	0.114		0.114	_		
AIC	347.2	ref	349.2	1		
SBC	-20.9	ref	-14.9	1		
Variable	Beta	P-Value	Beta	P-Value		
Intercept	3.04 [2.35-3.73]	<0.0001	3.05 [2.34-3.76]	<0.0001		
Age (y)	-0.01 [-0.02-0.00]	0.11	-0.01 [-0.02-0.00]	0.11		
BMI (kg/m²)	-0.02 [-0.030.01]	0.003	-0.02 [-0.030.01]	0.003		
Hypertension	-0.13 [-0.34-0.07]	0.21	-0.13 [-0.34-0.07]	0.21		
Diabetes Mellitus	-0.2 [-0.42-0.01]	0.07	-0.21 [-0.42-0.01]	0.07		
Dialysis	-0.39 [-0.95-0.17]	0.17	-0.39 [-0.95-0.17]	0.17		
Preoperative Evaluation	-0.35 [-0.640.05]	0.02	-0.34 [-0.640.05]	0.02		
EF Reserve >0	0.04 [0.02-0.05]	<0.0001	0.04 [0.02-0.05]	<0.0001		
Male Gender			-0.02 [-0.24-0.2]	0.88		

Multivariable linear regression using the seven independent predictors of corrected coronary flow reserve identified in the overall cohort (Model 1). Addition of gender (Model 2) did not improve the model. AIC = Akaike information criterion. SBC = Schwarz-Bayes criterion.

Table S5: Clinical Outcomes in CAC=0 Subgroup by CFR

CAC=0

Outcome	CFR <2.0 (N=190)	CFR ≥2.0 (N=214)	All Subjects (N=404)	P-Value
MACE	13 (6.8)	4 (1.9)	17 (4.2)	0.02
Death	6 (3.2)	2 (0.9)	8 (2)	0.16
Cardiac Death	2 (1.1)	0 (0)	2 (0.5)	0.22
Myocardial Infarction	8 (4.2)	0 (0)	8 (2)	0.002
Late Revascularization	1 (0.5)	0 (0)	1 (0.2)	0.47
Heart Failure Admission	5 (2.6)	4 (1.9)	9 (2.2)	0.74

Major adverse cardiac outcomes (MACE) indicates the composite of death resulting from any cardiac cause, myocardial infarction, late revascularization (after 90 days) and admission for congestive heart failure.

Table S6: Multivariable Cox Regression for MACE among CAC=0 Subgroup

			CAC=0					
	Model	1	Model	2	Mode	13	Mode	l 4
Fit Statistic	Estimate	P-Value	Estimate	P-Value	Estimate	P-Value	Estimate	P-Value
Global χ ²	4.9	ref	15.2	0.0001	15.3	0.69	16.1	0.33
AIC	155.7	ref	147.4	0.0004	149.3	1	148.5	1
SBC	157.4	ref	149.9	0.0006	152.6	1	151.8	1
Variable	Hazard Ratio	P-Value	Hazard Ratio	P-Value	Hazard Ratio	P-Value	Hazard Ratio	P-Value
Clinical Risk (per 10% increase)	1.04 [0.98-1.10]	0.24	1.03 [0.97-1.09]	0.39	1.03 [0.97-1.09]	0.38	1.03 [0.97-1.09]	0.37
Rest LVEF (per 10% increase)	0.61 [0.37-1.00]	0.05	0.66 [0.41-1.05]	0.08	0.67 [0.42-1.09]	0.11	0.69 [0.43-1.12]	0.13
In(CFR) (per 10% increase)			0.82 [0.72-0.92]	0.001	0.81 [0.72-0.92]	0.0009	0.80 [0.70-0.91]	0.06
Female Gender					0.78 [0.24- 2.59]	0.69		
Gender*In(CFR) Interaction								
Female (per 10% increase in CFR)							0.80 [0.70-0.91]	0.32
Male (per 10% increase in CFR)							0.86 [0.74-1.01]	(women vs. men)

Values in square brackets indicate 95% confidence intervals. MACE indicates Major Adverse Cardiac Events. SBC indicates Schwarz-Bayes Criteria. AIC indicates Akaike's information criterion. NRI indicates net reclassification improvement. Categorical NRI was computed with threshold rates of 1 and 3% per year to define low, intermediate and high risk categories. IDI indicates integrated discrimination index. NRI, IDI and P-values for fit statistics compare Model 2 vs. Model 1, Model 3 vs. Model 2, Model 4 vs. Model 2, respectively. C-index, NRI and relative IDI are computed at two years. Clinical risk indicates the Duke clinical risk score²¹ modified to be gender neutral. CFR indicates coronary flow reserve without correction for rate-pressure product. LVEF indicates left ventricular ejection fraction.

Table S7: Baseline Characteristics of CAC>100 Subgroup by Gender

	CAC>100					
Variable	Males (N=121)	Females (N=159)	P-Value			
Demographics						
Age (y)	66 [60.1-73]	69.7 [62.4-77.1]	0.008			
Hispanic	8 (6.6)	23 (14.5)	0.05			
Race						
White	85 (53.5)	91 (75.2)	0.0002			
Black	36 (22.6)	9 (7.4)				
Other/Unknown	38 (23.9)	21 (17.4)				
Risk Factors						
BMI (kg/m²)	29.4 [25.7-35.9]	30.2 [25.3-35.5]	0.96			
BMI \geq 30 kg/m ²	58 (47.9)	83 (52.2)	0.55			
Hypertension	92 (76)	148 (93.1)	0.0001			
Dyslipidemia	74 (61.2)	104 (65.4)	0.53			
Diabetes Mellitus	43 (35.5)	57 (35.8)	1			
Family history of CAD	28 (23.1)	31 (19.5)	0.46			
Tobacco Use	16 (13.2)	16 (10.1)	0.45			
Modified Duke Clinical Risk (%)	41 [28-55]	48 [34-63]	0.002			
Dialysis	11 (9.1)	10 (6.3)	0.49			
Medications						
Aspirin	57 (47.1)	81 (50.9)	0.55			
β-adrenergic Blockers	60 (49.6)	85 (53.5)	0.55			
Cholesterol agents	66 (54.5)	88 (55.3)	0.9			
Insulin	14 (11.6)	25 (15.7)	0.38			
Oral hypoglycemic	15 (12.4)	16 (10.1)	0.57			
Ca-channel blockers	24 (19.8)	52 (32.7)	0.02			
ACE inhibitors	46 (38)	68 (42.8)	0.46			
Nitrates	6 (5)	9 (5.7)	1			
Diuretics	32 (26.4)	68 (42.8)	0.006			
Symptoms & Test Indications						
Chest Pain	45 (37.2)	82 (51.6)	0.02			
Dyspnea	33 (27.3)	43 (27)	1			
Pre-operative	27 (22.3)	30 (18.9)	0.55			
Other	10 (8.3)	18 (11.3)	0.43			

Imaging Findings			
Rest LVEF (%)	59 [52-64]	65 [59-72]	<0.0001
LVEF reserve	106 (87.6)	141 (88.7)	0.85
CAC	447 [221-1044]	341 [199-618]	0.02
Stress MBF (ml/g/min)	1.68 [1.21-2.44]	2.2 [1.76-2.83]	<0.0001
Rest MBF (ml/g/min)	0.96 [0.79-1.11]	1.23 [0.94-1.52]	<0.0001
Corrected Rest MBF (ml/g/min)	0.93 [0.71-1.19]	1.3 [0.94-1.78]	<0.0001
CFR	1.86 [1.45-2.27]	1.76 [1.49-2.17]	0.65
Corrected CFR	1.86 [1.42-2.44]	1.63 [1.24-2.19]	0.009
Coronary Microvascular Dysfunction (CFR<2.0)	71 (58.7)	100 (62.9)	0.54

Clinical and imaging characteristics of patients by gender among the subgroup with significant coronary artery calcium (CAC >100). Corrected rest myocardial blood flow (MBF) is computed by multiplying by the rest rate-pressure product/10000. Coronary flow reserve (CFR) is computed as the ratio of stress/rest MBF. Continuous variables are presented as median with inter-quartile range. Binary variables are presented as absolute numbers and percentages. Comparisons across gender were performed using Wilcoxon, Fisher exact and chi-square tests for continuous, binary and categorical variables, respectively.

Male Gender

Table S8: Multivariable Predictors of Corrected CFR for CAC >100 Subgroup

CAC >100 Model 1 Model 2 P-Value **Estimate** P-Value **Estimate Parameter** R^2 0.134 0.158 AIC 144.7 138.8 0.02 ref SBC -99.8 -102 ref 0.14 Variable P-Value Beta P-Value Beta Intercept 3.06 [2.06-4.06] < 0.0001 2.84 [1.85-3.84] <0.0001 Age (y) -0.01 [-0.02-0] 0.04 -0.01 [-0.02-0] 0.13 BMI (kg/m²) -0.01 [-0.02-0.01] 0.33 -0.01 [-0.02-0.01] 0.33 Hypertension -0.18 [-0.44-0.08] 0.18 -0.08 [-0.35-0.19] 0.55 **Diabetes Mellitus** -0.23 [-0.43--0.02] 0.03 -0.21 [-0.41--0.02] 0.04 Dialysis -0.38 [-0.76--0.01] 0.047 -0.36 [-0.73-0.01] 0.06 Preoperative -0.08 [-0.31-0.15] 0.51 -0.1 [-0.33-0.13] 0.40 Evaluation EF Reserve >0 0.04 [0.02-0.06] < 0.0001 0.04 [0.02-0.06] < 0.0001 0.38 -0.07 [-0.18-0.03] In(CAC) -0.05 [-0.15-0.06] 0.16

Multivariable linear regression using the seven independent predictors of corrected coronary flow reserve identified in the overall cohort plus the natural log of coronary artery calcium (CAC) score (Model 1). Addition of gender (Model 2) did not improve the model. AIC = Akaike information criterion. SBC = Schwarz-Bayes criterion.

0.28 [0.08-0.47]

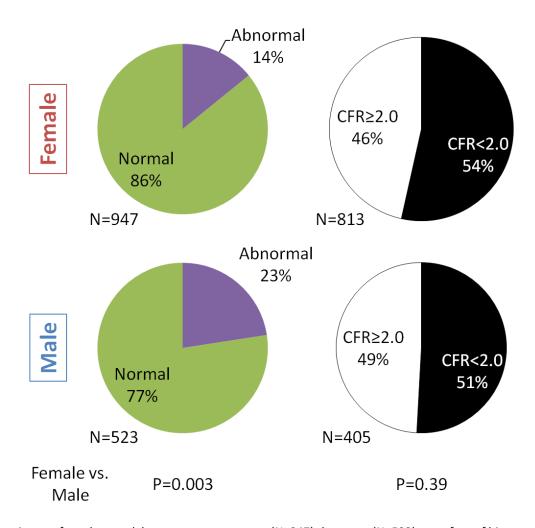
0.006

Table S9: Clinical Outcomes in CAC >100 Subgroup by CFR

CAC >100

Outcome	CFR <2.0 (N=171)	CFR ≥2.0 (N=109)	All Subjects (N=280)	P-Value
MACE	25 (14.6)	7 (6.4)	32 (11.4)	0.05
Death	10 (5.8)	2 (1.8)	12 (4.3)	0.14
Cardiac Death	4 (2.3)	0 (0)	4 (1.4)	0.16
Myocardial Infarction	12 (7)	5 (4.6)	17 (6.1)	0.45
Late Revascularization	8 (4.7)	4 (3.7)	12 (4.3)	0.77
Heart Failure Admission	10 (5.8)	2 (1.8)	12 (4.3)	0.14

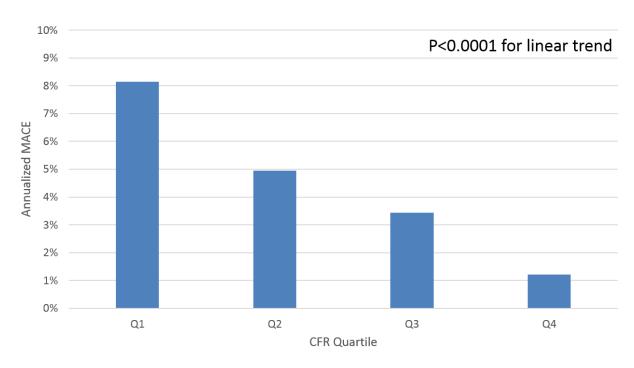
Major adverse cardiac outcomes (MACE) indicates the composite of death resulting from any cardiac cause, myocardial infarction, late revascularization (after 90 days) and admission for congestive heart failure.


Table S10: Multivariable Cox Regression for MACE among CAC >100 Subgroup

			CAC >100					
	Model	1	Model	2	Mode	3	Model 4	
Fit Statistic	Estimate	P-Value	Estimate	P-Value	Estimate	P-Value	Estimate	P-Value
Global χ ²	6.309	ref	14.716	0.004	14.932	0.64	15.967	0.26
AIC	250.851	ref	244.444	0.01	246.227	1.00	245.193	1.00
SBC	255.248	ref	250.306	0.03	253.556	1.00	252.522	1.00
Variable	Hazard Ratio	P-Value						
Clinical Risk (per 10% increase)	1.05 [0.98-1.13]	0.17	1.06 [0.98-1.14]	0.14	1.06 [0.98-1.15]	0.13	1.07 [0.99-1.15]	0.11
Rest LVEF (per 10% increase)	0.73 [0.5-1.06]	0.10	0.66 [0.45-0.97]	0.04	0.68 [0.46-1.01]	0.06	0.67 [0.46-0.99]	0.046
Ln(CAC) (per 10% increase)	1.02 [0.98-1.06]	0.30	1.02 [0.99-1.06]	0.27	1.02 [0.99-1.06]	0.27	1.02 [0.99-1.06]	0.24
In(CFR) (per 10% increase)			0.83 [0.74-0.94]	0.004	0.84 [0.74-0.95]	0.006	0.81 [0.7-0.93]	0.04
Female Gender					0.84 [0.39-1.78]	0.64		
Gender*In(CFR) Interaction								
Female (per 10% increase in CFR)							0.81 [0.7-0.93]	0.26
Male (per 10% increase in CFR)							0.87 [0.76-0.99]	(women vs. men)

Clinical risk indicates the Duke clinical risk score modified to be gender neutral. CFR indicates coronary flow reserve without correction for rate-pressure product. LVEF indicated left ventricular ejection fraction. P-values for fit statistics compare Model 1 vs. Model 2 vs. Model 1 and Model 3 vs. Model 1, respectively.

Supplemental Figures


Figure S1: Proportions of Men and Women with Overt CAD and CMD

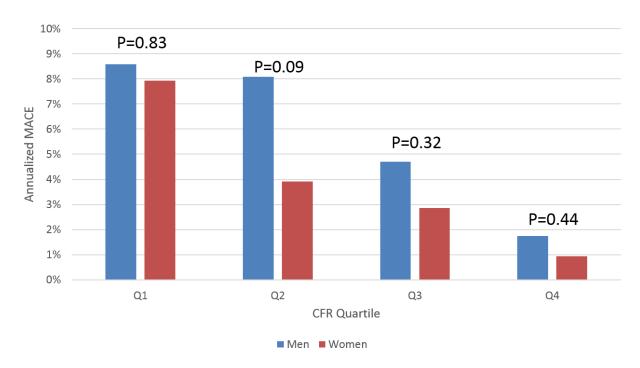

Among patients referred to our laboratory, more women (N=947) than men (N=523) were free of history of coronary artery disease (CAD), myocardial infarction or coronary revascularization. Furthermore, abnormal stress myocardial perfusion imaging (purple) was more common among men (23%) than women (14%, P=0.003). These factors combined to result in a study population dominated by women (N=813 of 1218). Among these patients without history of CAD or visual evidence of myocardial infarction or ischemia, approximately half of both men and women had coronary microvascular dysfunction (CMD), indicated by diminished coronary flow reserve (CFR<2.0, black) (P(Fisher exact test)=0.39; P(equivalence)=0.0002).

Figure S2: Annualized Rate of MACE across Quartiles of CFR

Α

В

Unadjusted annualized rate of major adverse cardiac events (MACE) across quartiles of coronary flow reserve (CFR) (panel A) showing a monotonic trend towards higher rates of adverse events with decreasing CFR. In each quartile

Murthy, et al.

of CFR, no significant differences in annualized MACE were seen across genders (panel B), with only a trend towards worse outcomes in men than women in Quartile 2. Comparisons were performed with Poisson regression.

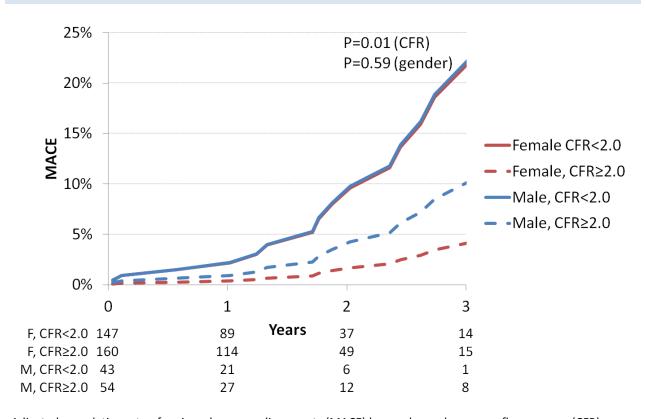
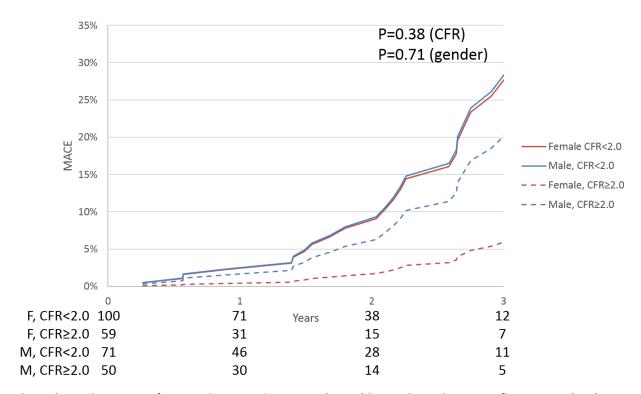

20 -Percent Female Male

Figure S3: Distribution of CFR by Gender for CAC=0 Subgroup

Histograms (top) showing the distribution of coronary flow reserve (CFR) for men (blue) and women (red) among the subgroup with zero coronary artery calcium score (CAC =0). Areas of overlap are shown in purple. Fitted lognormal distribution for men (dashed blue line) and women (dashed red line) are also displayed. Similar data are also shown in box plots (bottom). No statistically significant difference was seen between genders using t-test with log-normal distribution (P=0.93). CFR was equivalent between the genders (P=0.01 for <10% difference) using two one-sided tests and log-normal distribution.

Coronary Flow Reserve

Figure S4: Cumulative Incidence of MACE by Gender and Coronary Flow Reserve for CAC=0 Subgroup


Adjusted cumulative rate of major adverse cardiac events (MACE) by gender and coronary flow reserve (CFR) among subjects with zero coronary artery calcium score (CAC=0). Data are adjusted for the modified Duke clinical risk score and rest LVEF. The curves for women with CFR<2.0 (solid red) and men with CFR<2.0 (solid blue) are nearly overlapping.

■ Female Male Coronary Flow Reserve

Figure S5: Distribution of CFR by Gender for CAC >100 Subgroup

Histograms (top) showing the distribution of coronary flow reserve (CFR) for men (blue) and women (red) among the subgroup with significant coronary artery calcium (CAC >100). Areas of overlap are shown in purple. Fitted lognormal distribution for men (dashed blue line) and women (dashed red line) are also displayed. Similar data are also shown in box plots (bottom). No statistically significant difference was seen between genders using t-test with log-normal distribution (P=0.56). CFR was equivalent between the genders (P=0.037 for <10% difference) using two one-sided tests and log-normal distribution.

Figure S6: Cumulative Incidence of MACE by Gender and Coronary Flow Reserve for CAC>100 Subgroup

Adjusted cumulative rate of major adverse cardiac events (MACE) by gender and coronary flow reserve (CFR) among subjects with significant coronary artery calcium score (CAC>100). Data are adjusted for the modified Duke clinical risk score and rest LVEF. The curves for women with CFR<2.0 (solid red) and men with CFR<2.0 (solid blue) are nearly overlapping.