Supplementary Information for

Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase

Megan L Matthews, Wei-chen Chang, Andrew P Layne, Linde A Miles, Carsten Krebs, J Martin Bollinger Jr

SUPPLEMENTARY RESULTS

Supplementary Table 1. Parameters derived from titrations monitoring binding of anions to the SyrB2•Fe(II)• α KG and SyrB2-A118G•Fe(II)• α KG complexes. K_D values were determined by plotting Δ Abs at the wavelength of maximum change versus [Y⁻] and applying a hyperbolic or quadratic fit, as appropriate for the weak- and tight-binding regimes, respectively (See Supplementary Figs. 4, 5, 10, 11).

Anion	Formula	K _D (mM) WT SyrB2	λ (nm)	Number of Trials ^b	<i>K</i> _D (mM) A118G	λ (nm)	Number of Trials ^{b}
chloride	Cl	0.05 ± 0.025	530	6	43 ± 15	530	3
cyanide	CN^{-}	0.14 ± 0.05	515	2	С	С	3
sulfide	HS^{-}	0.47 ± 0.012	540	3	а	а	3
cyanate	OCN ⁻	0.2 ± 0.14	540	2	0.030 ± 0.015	540	3
azide	N_3^-	0.12 ± 0.005	545	2	0.15 ± 0.03	540	3
bromide	Br ⁻	0.47 ± 0.15	525	3	20 ± 7	520	2
formate	HCO_2^-	~ 3	530	1	а	а	1
nitrite	NO_2^-	~ 0.072	460	1	С	С	1
thiocyanate	SCN^{-}	а	а	2	0.34 ± 0.18	515	2

^{*a*} No evidence for binding.

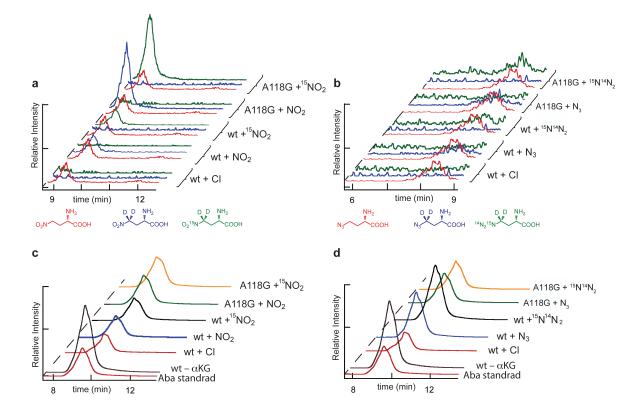
^{*b*} In some trials, the [α KG] was 1.5 mM rather than 5 mM. This difference had no effect on the anion affinity.

^{*c*} Titration spectra were anomalous as a consequence of features either inherent to the anion (NO_2^-) or that developed upon interaction with components in the solution [likely between the anion and free Fe(II) ions].

re(iv) complexes formed in SyrB2 in the presence of various substrates and amons.								
Substrate	Anion/Enzyme	Total	δ_1	$\Delta E_{Q,1}$	δ_2	$\Delta E_{Q,2}$	$\Gamma_{1,2}$	Fraction
Substrate		Fe(IV)	(mm/s)	(mm/s)	(mm/s)	(mm/s)	(mm/s)	Fe(IV) ₁ :Fe(IV) ₂
Thr-S-SyrB1 ^a	Cl ⁻ /SyrB2	-	0.30	1.09	0.23	0.76	0.22	4:1
Thr-S-SyrB1	N ₃ ^{-/} SyrB2	0.78	-	-	0.20	0.77	0.40	-
d ₅ -Thr-S-SyrB1	HS ⁻ /SyrB2	0.43	-	-	0.25	1.14	0.23	-
d ₅ -Thr-S-SyrB1	CN ⁻ /SyrB2	0.41	-	-	0.22	0.99	0.40	-
d ₅ -Thr-S-SyrB1	NO2 ^{-/} SyrB2	0.37	-	-	0.32	1.20	0.25	-
d ₅ -Nva-S-SyrB1	Cl ⁻ /SyrB2	0.49	0.25	1.19	0.23	0.74	0.27	0.33:0.66

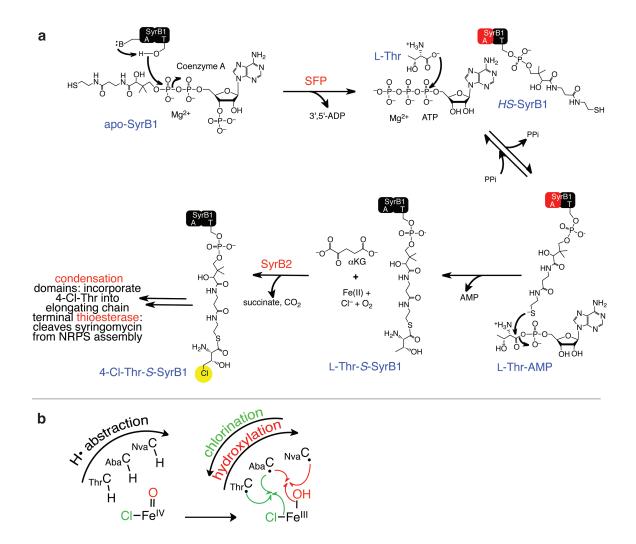
Supplementary Table 2. Comparison of Mössbauer parameters of quadrupole doublets associated with Fe(IV) complexes formed in SyrB2 in the presence of various substrates and anions.

^{*a*} ref. ¹

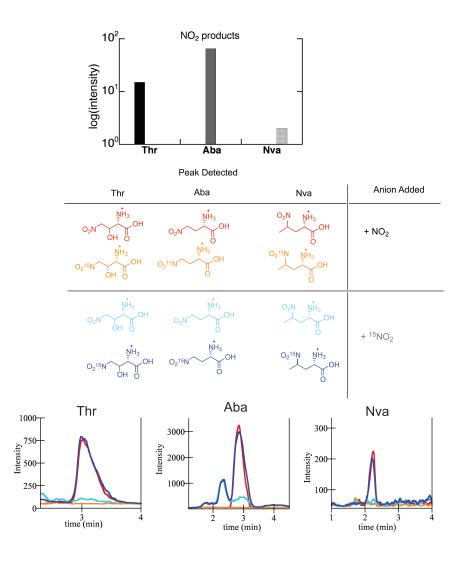

Supplementary Table 3. Comparison of Mössbauer parameters of quadrupole doublets associated with the Fe(II) starting complexes formed in SyrB2 in the presence of various substrates and anions.

() $()$,						
Substrate	Anion/Enzyme	δ_1 (mm/s)	ΔE _{Q,1} (mm/s)	δ_2 (mm/s)	$\Delta E_{Q,2}$ (mm/s)	Γ _{1,2} (mm/s)	Ratio Fe(II) ₁ :Fe(II) ₂
Thr-S-SyrB1 ^a	Cl ⁻ /SyrB2	1.22	2.87	1.07	2.62	0.26	7:1
d ₅ -Thr-S-SyrB1	no Y ^{-/} SyrB2	1.25	2.95	1.18	2.30	0.37	0.95:0.10
Thr-S-SyrB1	N ₃ ^{-/} SyrB2	1.22	2.93	1.12	1.95	0.32	0.90:0.10
d ₅ -Thr-S-SyrB1	HS ⁻ /SyrB2	1.17	3.15	1.03	2.79	0.26	0.72:0.28
d ₅ -Thr-S-SyrB1	CN ⁻ /SyrB2	1.23	2.87	1.14	3.20	0.38	0.65:0.35
d ₅ -Thr-S-SyrB1	NO2 ⁻ /SyrB2	1.15	2.35	1.32	2.95	0.40	0.86:0.14
d ₅ -Thr-S-SyrB1	Cl ⁻ /SyrB2	1.27	2.77	1.06	2.51	0.27	0.40:0.60

^aref¹

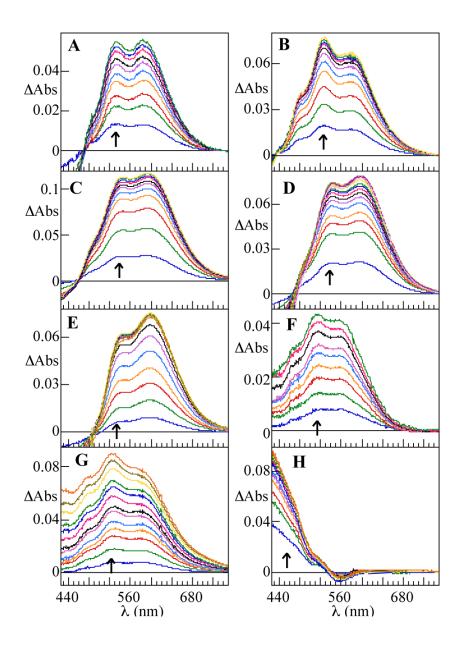

Product	Parent m/z	Daughter m/z
L-glycine	76.1	30.1
Aba	104.1	58.1
3,3- <i>d</i> ₂ -Aba	106.1	60.1
4-N ₃ -Aba	145.1	99.1
3,3- <i>d</i> ₂ -4-N ₃ -Aba	147.1	101.1
$3,3-d_2-4-^{15}NN_2$ -Aba	148.1	102.1
4-NO ₂ -Aba	149.1	103.1
3,3- <i>d</i> ₂ -4-NO ₂ -Aba	151.1	105.1
$3,3-d_2-4-^{15}NO_2$ -Aba	152.1	106.1

Supplementary Table 4. MS fragmentations corresponding to relevant parent ions and iminium daughter ions of Aba-derived substrates and products in the reaction with SyrB2.

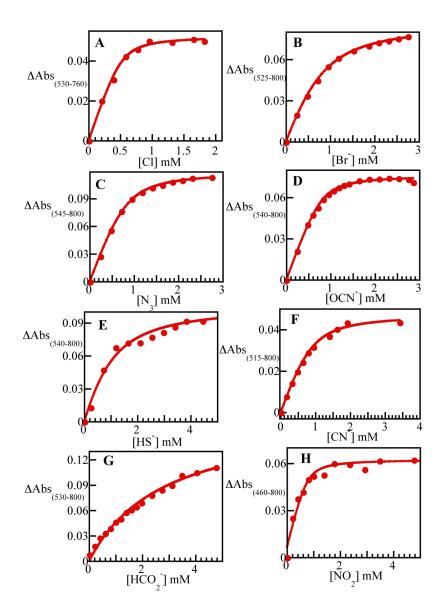


Supplementary Figure 1. LC-MS/MS chromatograms comparing yields of the C–N coupling products and substrate consumption in the reactions of the wild-type SyrB2 and A118G variant. Panel *a* illustrates detection of the nitration product and *b* the azidation product. Panels *c* and *d* illustrate the 3-*d*₂-Aba recovered after hydrolysis of the substrate in reactions of *a* and *b*, respectively. For each reaction condition in *a* and *b* along the *z*-axis, defined by the enzyme (wild-type vs. A118G) and anion added, parent-to-daughter ion transitions (*Supplementary Table 4*) for the unlabeled nitrogenous product standard added to the reaction sample (*red*) and the authentic products formed from the 3-*d*₂-Aba-*S*-SyrB1 substrate with either natural abundance (*blue*) or isotopically enriched (+1) NO₂⁻/N₃⁻ (*green*) anion were monitored. Only the transition for the standard is observed for reactions with the wild-type enzyme in the presence of Cl⁻ (*first condition along z-axis in a and b*, the transition for 3-*d*₂-Aba is compared to that for both an unlabeled

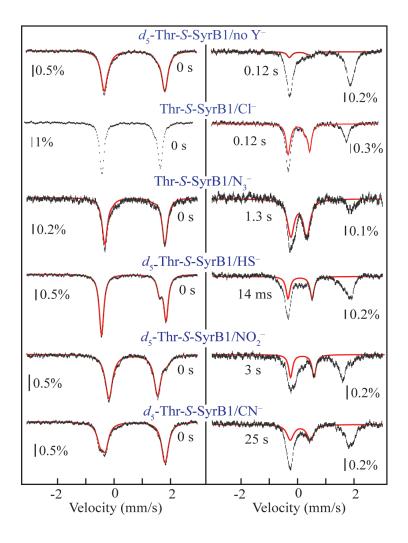
Aba standard and 3- d_2 -Aba recovered in the control reaction lacking α KG. The reactions were performed as described in *Online Methods*, with the following exceptions. The final concentrations of the reactants were 0.25 mM Fe(II), 0.25 mM SyrB2, 0.325 mM α KG, 0.090 mM 3- d_2 -Aba-S-SyrB1 and 1.25 mM NO₂⁻ (*a* and *c*) or N₃⁻ (*b* and *d*). The 3 d_2 -Aba-S-SyrB1 substrate was assembled by incubation of 0.18 mM holo-SyrB1, 0.11 mM 3- d_2 -Aba, 2.2 mM ATP, and 2.2 mM MgSO₄ for 30 min at ambient temperature and was used without desalting. Note that differences in the reaction conditions used here (specifically, greater α KG and N₃⁻ concentrations) with respect to those used in the experiment of *Figure 5* result in a lesser enhancement of azidation by the A118G variant relative to the wild-type enzyme and a greater enhancement of nitration. The figure depicts a single trial, which is one of several replicates.

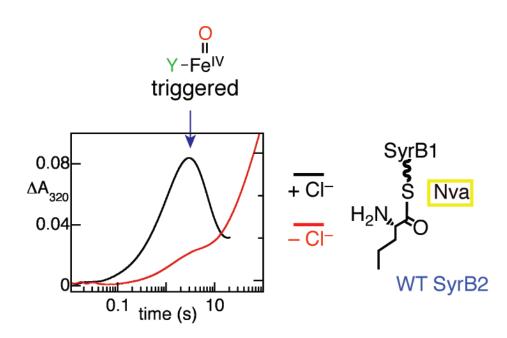


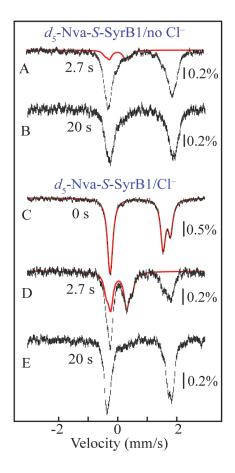
Supplementary Figure 2. (*a*) Assembly and chlorination of the native SyrB2 substrate, Lthreonine appended to the phosphopantetheine cofactor of SyrB1 (abbreviated Thr-*S*-SyrB1). In the Syr halogenation system, the amino-acid-charging (adenylation) function and carrier protein are fused in a single polypeptide, SyrB1. (*b*) Enhanced hydrogen abstraction in Aba-*S*-SyrB1, and even more so in the L-norvalinyl-*S*-SyrB1 substrate, Nva-*S*-SyrB1, is correlated with enhanced hydroxylation².

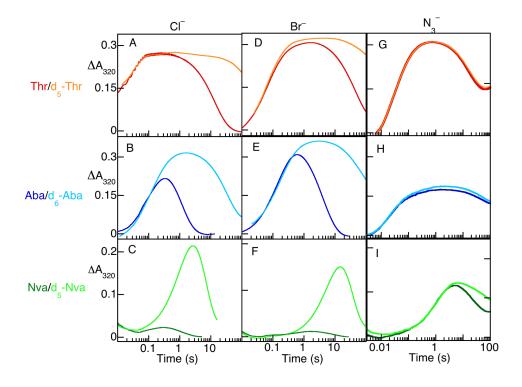


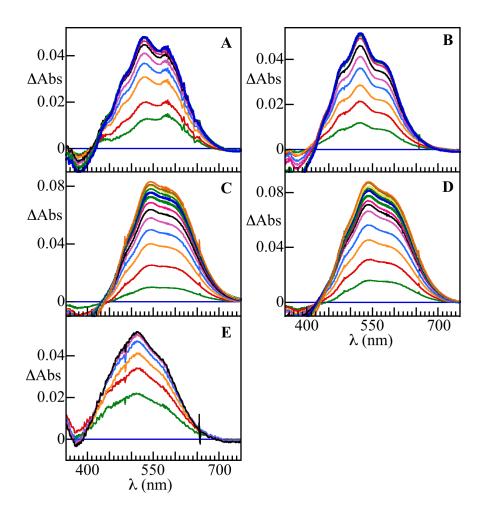
Supplementary Figure 3. Analysis of relative nitration yields in the reactions with the native, chlorination-predominant Thr-*S*-SyrB1 substrate, the ambivalent Aba-*S*-SyrB1 substrate, and the hydroxylation-predominant Nva-*S*-SyrB1 substrate. *Top*: bar graph showing intensities of the peaks for the nitration products of the three substrates. *Middle*: color key for the chromatograms at bottom. Note that the structure of the detected nitro-Nva product (specifically, the carbon to which the nitro group is attached) is not known but is assumed on the basis of published results². *Bottom*: LC-MS SIM chromatograms for the nitration products of the three substrates of the presence of ${}^{14}NO_{2}^{-}$ or ${}^{15}NO_{2}^{-}$. The reactions were carried out with 0.6 mM of each reaction

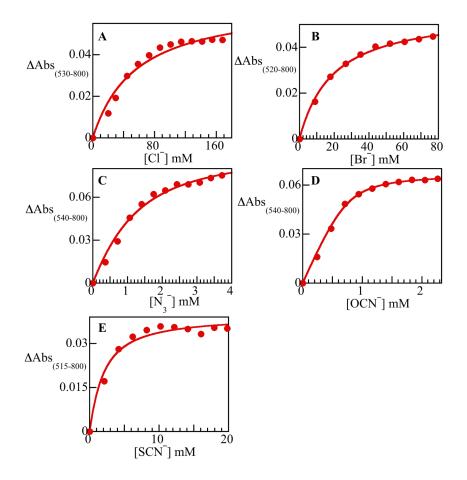

component [SyrB2, Fe(II), \alpha KG, aminoacyl-S-SyrB1 (Thr-S-SyrB1, Aba-S-SyrB1, or Nva-S-SyrB1), and $^{14}NO_2^-$ or $^{15}NO_2^-$]. Subsequent to initiation by addition of the Thr-S-SyrB1, Aba-S-SyrB1, or Nva-S-SyrB1 substrate, O₂-saturated reaction buffer was added to bring $[O_2]$ to ~ 0.6 mM. L-glycine, an amino acid that SyrB1 cannot append to its carrier domain, was added as normalization standard to 0.6 mM. The products and the remaining SyrB1-appended d_2 -Aba were released from the carrier protein by treatment with KOH (0.25 M). After a 1 min incubation at room temperature, an approximately equal volume of 1.5 % HClO₄ (in water) sufficient to achieve pH neutrality was added, and the neutral solution was stored at -20 °C for 1 h to permit precipitation of KClO₄. Protein was removed from the samples by using a Microcon centrifugal filter unit (Millipore) with a 10-kDa molecular mass cut-off filter. The chromatography was performed as previously described², with the exception that the ZIC-HILIC column was developed isocratically at 0.3 mL/min with a 70%/30% acetonitrile/20 mM ammonium formate (pH 6) mobile phase. In each acquisition method, parent amino acid cations and iminium daughter ions produced from a neutral loss of CO₂ and H₂ (a combined mass of 46 atomic mass units) were selectively monitored (see *Supplementary Table 4* for MS fragmentations). The results are from a single trial.

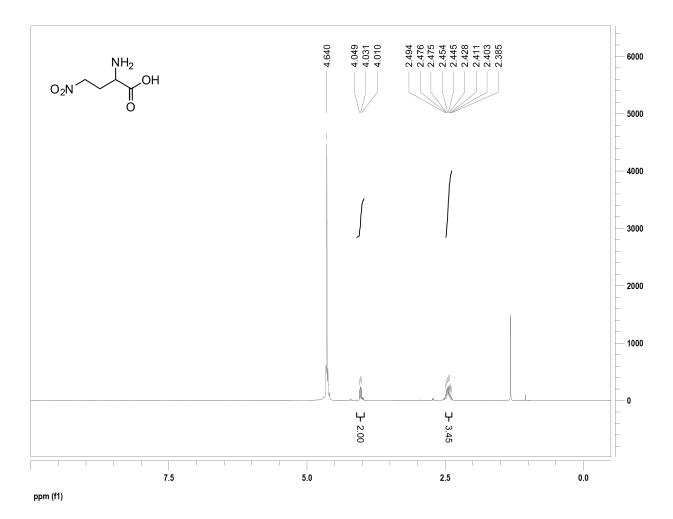

Supplementary Figure 4. Effect of anion binding on the MLCT absorption band during titration of (a) Cl⁻, (b) Br⁻, (c) N₃⁻, (d) OCN⁻, (e) HS⁻, (f) CN⁻, (g) HCO₂⁻, or (h) NO₂⁻ into a solution of 0.75 mM Fe(II), 5 mM α KG, and 1 mM SyrB2. *a*, *c*, and *h* are duplicated from *Figure 3* in the main manuscript to facilitate comparison. The anion concentrations after each addition are shown as the x-axes in *Supplementary Figure 5*. Each panel represents a single trial.

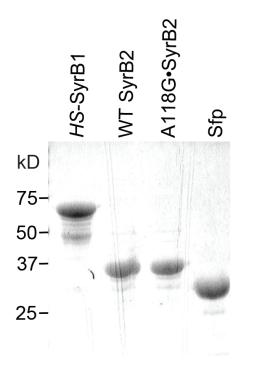

Supplementary Figure 5. Plots of the change in absorbance versus $[Y^-]$ obtained from the titrations depicted in Supplementary Figure 4. Anion K_D values (summarized in Supplementary Table 1) were determined by fitting the data to a hyperbolic binding equation (if in the weak-binding regime, as in g and h) or the quadratic binding equation (if in the tight-binding regime, as in a-f). Each panel represents a single trial.


Supplementary Figure 6. Mössbauer spectra of selected samples prepared by reacting the SyrB2•Fe(II)• α KG• d_5 -Thr-S-SyrB1 complex (unlabeled Thr-S-SyrB1 in the case of the reactions with N₃⁻and Cl⁻) in the presence of the indicated anion at 5 °C with O₂-saturated buffer. Reaction times are indicated. A doublet indicative of Fe(IV) is absent in the sample for which no anion was intentionally added. Solid lines (in red) are simulations of the summation of the Fe(II) components (*left panel*) or Fe(IV) component(s) (*right panel*). Supplementary Tables 2 and 3 summarize the isomer shifts, quadrupole splittings, line widths, and fractional intensities assumed in each simulation. Each spectrum represents a single trial.


Supplementary Figure 7. Demonstration of aminoacyl-S-SyrB1-dependent chloride triggering in SyrB2 with the substrate previously shown to undergo primarily hydroxylation (Nva-S-SyrB1). Absorbance (320 nm)-versus-time traces obtained in stopped-flow experiments are analogous to those in *Figure 4*. An O₂-saturated buffer solution was mixed with an equal volume of an O₂-free solution containing Fe(II), α KG, WT-SyrB2, and Nva-S-SyrB1 in the absence (*red trace*) or presence (*black trace*) of excess Cl⁻ (50 mM). Each trace is an average of at least three trials (stopped-flow "shots").


Supplementary Figure 8. Mössbauer spectra of selected samples prepared by mixing the SyrB2•Fe(II)• α KG• d_5 -Nva-S-SyrB1 complex, in the absence or presence of added Cl⁻, with O₂-saturated buffer and freeze-quenching at the indicated reaction times, which were chosen on the basis of the kinetic traces in *Supplementary Figure 7*. Solid red lines are simulations of the summation of the Fe(II) components (in the 0-s sample) or Fe(IV) components of the Cl–Fe(IV)=O states (in the 2.7-s samples) with parameters reported in *Supplementary Tables 2* and *3*. The upper limit for the intensity that can be attributed to Fe(IV) in *a* is ~ 20% of the corresponding intensity in *d* (red line). This intensity corresponds to just ~ 10% of the total iron content, or ~ 40 µM of the Fe(IV) complex, and is attributed to the Cl–Fe(IV)=O intermediate generated from contaminating Cl⁻. Each spectrum represents a single trial.


Supplementary Figure 9. ²H-KIE observed on decay of chloro-, bromo- and azido-ferryl complexes formed with deuterated Thr-S-SyrB1, Aba-S-SyrB1, and Nva-S-SyrB1 substrates. Absorbance-versus-time traces (320 nm) obtained after O₂-saturated buffer was mixed with an equal volume of an O₂-free solution of Fe(II), SyrB2, α KG, and either Cl⁻ (*a*-*c*)¹, Br⁻ (*d*-*f*), or N₃⁻ (*g*-*i*) and either Thr-S-SyrB1 (*red traces*), *d*₅-Thr-S-SyrB1 (*orange traces*), Aba-S-SyrB1 (*dark blue traces*), *d*₅-Aba-S-SyrB1 (*light blue traces*), Nva-S-SyrB1 (*dark green traces*) or *d*₅-Nva-S-SyrB1 (*light green traces*). The absence of a ²H-KIE in the SyrB2 reaction with N₃⁻ and the poorest H•-donating substrate, Thr-S-SyrB1, and the onset of a detectable effect upon use of the better H• donors (Aba-S-SyrB1 and Nva-S-SyrB1) suggests that at least a fraction of the intermediate decays productively via H• abstraction from the substrate. Note that the red trace in *g* was scaled by a factor of 1.2 to adjust for amplitude variation. All traces are averages of at least three trials (stopped-flow "shots").


Supplementary Figure 10. Effect of anion binding to the Fe(II)• α KG•SyrB2-A118G complex on the absorption spectrum arising from the MLCT during titration of (*a*) Cl⁻, (*b*) Br⁻, (*c*) N₃⁻ (*d*) OCN⁻, and (*e*) SCN⁻. The method of spectral processing is summarized in *Figure 3*, and the spectra are analogous to those in *Supplementary Figure 4* for the wild-type SyrB2 protein. Each panel represents a single trial.

Supplementary Figure 11. Absorbance-versus-[anion] plots obtained from the difference spectra shown in Supplementary Figure 10. The K_D values for the anions reported in Supplementary Table 1 were determined from fitting the hyperbolic binding equation (if in the weak binding regime, as in *a* and *b*) or the quadratic binding equation (if in the tight binding regime, as in *c*, *d*, and *e*) to the data. Each panel represents a single trial.

Supplementary Figure 12. ¹H-NMR spectrum of the synthetic 4-NO₂-Aba standard.

Supplementary Figure 13. Analysis of the protein preparations employed in this study by SDS-PAGE.

REFERENCES

- 1. Matthews, M. L. *et al.* Substrate-triggered formation and remarkable stability of the C-H bondcleaving chloroferryl intermediate in the aliphatic halogenase, SyrB2. *Biochemistry.* **48**, 4331-4343 (2009).
- 2. Matthews, M. L. *et al.* Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 17723-17728 (2009).