Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor β/δ (PPAR β/δ)

M. G. Borland, et al

Supplementary materials and methods

Chemicals and Materials

GW0742 was provided by Drs. Andrew Billin and Timothy Willson. B[a]P, DMBA, Nmethyl-N'-nitro-N-nitrosoguanidine (MNNG), and 5-aza-2'-deoxycytidine (5-Aza-dC), and the MISSION[™] shRNA plasmid construct for Non-target (SHC002) and human PPARβ/δ (TRCN0000010647) were purchased from Sigma-Aldrich (St. Louis, MO). 2.3.4.7.8-pentachlorodibenzofuran (PeCDF) was purchased from AccuStandard (New Haven, CT), and β -naphthoflavone (β -NF) was purchased from IndoFine (Hillsborough, NJ). Indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) were provided by Dr. Jan Bergman and Dr. Steven Safe, respectively. 2-Azido-3-¹²⁵I-iodo-7,8dibromodibenzo-p-dioxin (¹²⁵I-N₃Br₂DpD) and 2-¹²⁵I-iodo-7,8-dibromo-p-dioxin (¹²⁵I-Br₂DpD) were synthesized as previously described [1,2]. Lipofectamine® and Plus Reagent® were purchased from Invitrogen (Carlsbad, CA). Protein A/G sepharose resin was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The Wizard® Genomic DNA Purification kit was purchased from Promega (Madison, WI), and puromycin was purchased from EMD Biosciences (Gibbstown, NJ). All primers for quantitative real-time PCR (gPCR) and bisulfite sequencing were purchased from Integrated DNA Technologies (Coralville, IA) and are listed in Supplemental Table 1.

shRNA lentivirus stable HaCaT cells

Briefly, the virus packaging plasmids and non-target or shPPARβ/δ plasmids were cotransfected into HEK293T cells to produce retrovirus using the Lipofectamine® transfection reagent and manufacturer's recommended protocol. Forty-eight hours after transfection, the cellular supernatant containing the retrovirus was filtered and used to spinoculate HaCaT cells [3]. Two days post-infection, HaCaT cells were selected with DMEM supplemented with 1 µg/mL puromycin and cultured below 50% confluency for 4 days to select for stable plasmid integration. Cells were maintained in selection media throughout all experiments. Western blotting to examine expression of PPARβ/δ, AHR, ARNT, HSP90, XAP2, and ACTIN was performed as described above. To characterize the responsiveness of non-target and shPPARβ/δ HaCaT cells to AHR and PPARβ/δ ligands, HaCaT cells were treated with vehicle, 0.2 µM GW0742, or 1 µM B[a]P for 1-24 h. Total RNA was then prepared and qPCR for *PPARβ/δ, ANGPTL4, CYP1A1*, and *CYP1B1* mRNA expression was examined as described above.

In vivo liver analysis and isolation and treatment of primary mouse hepatocytes Wild-type or *Pparβ/δ*-null mice were gavaged with corn oil (control) or β-NF (50 mg/kg) and euthanized 8 h post-treatment. Livers were removed and snap frozen until further analysis. Primary hepatocytes from wild-type and *Pparβ/δ*-null mice were isolated as previously described [4], and cultured in HepatoZYME SFM media (Invitrogen, Carlsbad, CA) supplemented with 2.5% dimethylsulfoxide (DMSO), 10 nM dexamethasone, 1% glutamine, 100 IU/mL penicillin, and 100 µg/mL streptomycin.

Epigenetic studies

To examine whether methylation altered transcriptional regulation mediated by the AHR, the methylation inhibitor 5-Aza-dC was supplemented into the culture media of primary keratinocytes from wild-type, *Ppar* β/δ -null mice and/or HaCaT stable cell lines. Cells were cultured with the inhibitor for 72 h, and then treated with either vehicle or 1 μ M B[a]P and fresh 5-Aza-dC for 8 h.

For bisulfite sequencing, DNA was isolated from primary keratinocytes from wildtype or $Ppar\beta/\delta$ -null mice and bisulfite conversion was completed using the EZ DNA Methylation-Direct kit (Zymo Research, Orange, CA) and the manufacturer's recommended protocol. A total of 2 x 10^5 cells per genotype were utilized for bisulfite conversion. The promoter of the Cyp1a1 gene was analyzed by PCR amplification using primers designed for cytosine-phosphate-guanine (CpG) islands in the Cyp1a1 promoter using MethylPrimer Expression (Applied Biosystems, Foster City, CA). Primers for amplification were 5'-GTTTTGGTTATAGAGTAGATATTAATG-3' (forward) and 5'-TTAAACTAACTCTATACCCCACAAATT-3' (reverse). The bisulfite converted promoter of Cyp1a1 was amplified using the following protocol: 95°C for 1 min, 60°C for 1 min, and 72°C for 2.5 min, repeated for 35 cycles. The appropriately amplified amplicon was cloned in a sequencing vector using the TOPO TA Cloning® kit (Invitrogen, Carlsbad, CA) and the manufacturer's recommended protocol. Plasmids containing the amplicon were sequenced at the Penn State University Nucleic Acid Facility, and five sequencing plasmid amplicons were analyzed from wild-type and $Ppar\beta/\delta$ -null keratinocyte bisulfite-converted DNA using the CyMATE program [5] to identify the patterns of DNA methylation in the two genotypes.

Supplementary Information

Fig. S1. Activation of the AHR is not influenced by PPARβ/δ in hepatocytes or liver. Primary hepatocytes from wild-type (+/+) or *Pparβ/*δ-null (–/–) mice were treated with or without B[*a*]P and used to quantify mRNA encoding the AHR target genes (**A**) *Cyp1a1* or (**B**) *Cyp1a2* by qPCR. mRNA was isolated from liver of (+/+) or (–/–) mice treated with or without β-naphthaflavone (β-NF) and used to quantify mRNA encoding the AHR target genes (**C**) *Cyp1a1* or (**D**) *Cyp1a2* by qPCR. Values with different letters are significantly different than control, $P \le 0.05$.

Fig. S2. Modulation of AHR-dependent signaling by PPARβ/δ is conserved in mouse and human keratinocytes and could be due in part to altered methylation of the *Cyp1a1* promoter. qPCR was performed using total RNA isolated from the HaCaT shRNA stable cell lines to quantify the mRNA expression of (**A**) *CYP1B1* in response to B[*a*]P. qPCR was performed using total RNA isolated from the HaCaT shRNA stable cell lines to quantify temporal mRNA expression of (**B**) *CYP1B1* in response to B[*a*]P. Wild-type (+/+) and *Pparβ/δ*-null (–/–) primary keratinocytes as well as HaCaT shRNA cell lines were treated with 5 µM 5-Aza-dC for 72 h prior to an 8 h 1 µM B[*a*]P treatment. qPCR was performed using total RNA to quantify the expression of *Cyp1b1/CYP1B1* mRNA in (**C**) primary keratinocytes or (**D**) HaCaT shRNA cell lines. Values were normalized to

the respective genotype or stable cell line vehicle control and represents the mean \pm

S.E.M. of N = 4 biological replicates. Values with different letters are significantly

different than control ($P \le 0.05$). *significantly different than control ($P \le 0.05$). (**E**)

Bisulfite converted DNA from (+/+) and (-/-) primary keratinocytes was used to amplify

a putative methylation region within the Cyp1a1 promoter. Five plasmids containing the

promoter region were sequenced for each genotype to map and examine the

methylation patterns. Percent (%) methylation indicates the incidence of methylation at

a particular cytosine residue.

References

- 1. Bradfield, C.A., Kende, A.S. and Poland, A. (1988) Kinetic and equilibrium studies of Ah receptor-ligand binding: use of [125I]2-iodo-7,8-dibromodibenzo-p-dioxin. *Mol Pharmacol*, **34**, 229-37.
- 2. Poland, A., Glover, E., Ebetino, H. and Kende, A. (1986) Photoaffinity labelling of the Ah receptor. *Food and Chemical Toxicology*, **24**, 781-787.
- Pear, W.S., Miller, J.P., Xu, L., Pui, J.C., Soffer, B., Quackenbush, R.C., Pendergast, A.M., Bronson, R., Aster, J.C., Scott, M.L. and Baltimore, D. (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. *Blood*, **92**, 3780-92.
- 4. Stoehr, S.A. and Isom, H.C. (2003) Gap junction-mediated intercellular communication in a long-term primary mouse hepatocyte culture system. *Hepatology*, **38**, 1125-35.
- 5. Hetzl, J., Foerster, A.M., Raidl, G. and Mittelsten Scheid, O. (2007) CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. *Plant J*, **51**, 526-36.

Supplementary Table 1. Primers used for qPCR

Species	Gene	Genbank	Forward Primer (5'-3')	Reverse Primer (5'-3')		
		Accession				
Mouse						
	Atf3	NM_007498	TCAAGGAAGAGCTGAGATTCGCCA	GTTTCGACACTTGCGAGCAGCAAT		
	Cox2	NM_011198	TTGCTGTACAAGCAGTGGCAAAGG	TGCAGCCATTTCCTTCTCTCTGT		
	Cyp1a1	NM_009992	AGGTTAACCATGACCGGGAACTGT	TTCGCTTGCCCAAACCAAAGAGAG		
	Cyp1a2	NM_009993	ACATTCCCAAGGAGCGCTGTATCT	GTCGATGGCCGAGTTGTTATTGGT		
	Cyp1b1	NM_009994	GCTAGCCAGCAGTGTGATGATATT	GGTTAGCCTTGAAATTGCACTGAT		
	Gapdh	NM_008084	AAATGGTGAAGGTCGGTGTGAACG	TGGCAACAATCTCCACTTTGCCAC		
	Gsta1	NM_008181	ACTAGACCGTGAACCACAGTTGCT	ACCATGGGCACTTGGTCAAACATC		
	Hox1	NM_010442	CCTCACTGGCAGGAAATCATC	CCTCGTGGAGACGCTTTACATA		
	Nqo1	NM_008706	AGATGGCATCCAGTCCTCCAT	TTAGTCCCTCGGCCATTGTT		
	Nrf2	NM_010902	AGCACTCGCTGGAGTCTTCCATTT	TGTGCTTTAGGGCCGTTCTGTTTG		
	p53	NM_001127233	AAAGGATGCCCATGCTACAGAGGA	GCAGTTTGGGCTTTCCTCCTTGAT		
	Ugt1a2	NM_013701	AAGGCTTTCTGACCAACTGGA	GGCAAATGTACTTCAGGACCAGAT		
Human						
	ANGPTL4	NM_139314	TCACAGCCTGCAGACACAACTCAA	CCAAACTGGCTTTGCAGATGCTGA		
	CYP1A1	NM_000499	AGTGGCAGATCAACCATGACCAGA	CCGCTTGCCCATGCCAAAGATAAT		
	CYP1B1	NM_000104	CATGCGCTTCTCCAGCTTTGT	GGCCACTTCACTGGGTCATGA		
	GAPDH	NM_002046	TGCACCACCACCTGCTTAGC	GGCATGGACTGTGGTCATGAG		

	Complete Car	cinogen Bioassay		Two-Stage Carcinogen Bioassay				
Chemical carcinogen ^a	AHR- dependent bio- activation of carcinogen?	Chemical carcinogen application	Tumor promoter application ^b	Chemical carcinogen ^a	AHR-dependent bio-activation of carcinogen?	Chemical carcinogen application	Tumor promoter application ^d	
B[a]P	Yes	Weekly (34 wks)	None	B[a]P	Yes	Once ^c	Weekly	
DMBA	Yes	Weekly (27 wks)	None	DMBA	Yes	Once ^c	Weekly	
MNNG	No	Weekly (25 wks)	None	_	-	-	_	

Supplementary Table 2. Comparison of Complete Carcinogen Bioassay and Two-Stage Skin Cancer Bioassay

^aB[a]P and DMBA cause DNA damage after bio-activation to reactive intermediates that is mediated primarily by the AHR in the Complete Carcinogen Bioassay and the Two-Stage Carcinogen Bioassay. B[a]P and DMBA are two of the most common chemical carcinogens used for both the Complete Carcinogen Bioassay and the Two-Stage Skin Cancer Bioassay. By contrast, MNNG does not require bio-activation by the AHR and served as a control for these studies. ^bThe only chemical applied weekly is the chemical carcinogen, no tumor promoter is applied in the Complete Carcinogen Bioassay. The tumor promoting activity/activities in the Complete Carcinogen is applied once at the start of the experiment. One week after topical application of the chemical carcinogen, the tumor promoter is applied 1-3X per week. ^dThere are a number of different tumor promoters used for the Two-Stage Carcinogen Bioassay with phorbol ester being the most common. The tumor promoter is applied weekly in this bioassay as compared to the complete carcinogenesis bioassay.