Magnetically Actuatable Polymeric Nanoparticles for On-Demand Drug Release

Seong Deok Kong¹, Marta Sartor¹, Che-Ming Jack Hu², Weizhou Zhang³, Liangfang Zhang²*, and Sungho Jin^{1,4}*

¹Materials Science & Engineering, UC San Diego, La Jolla, CA 92093.
²Department of Nanoengineering, UC San Diego, La Jolla, CA 92093.
³Department of Pharmacology, School of Medicine, UC San Diego, La Jolla, CA 92093.
⁴Department of Mechanical & Aerospace Engineering, UC San Diego, La Jolla, CA 92093.

Figure S1. TEM micrograph of spherical PLGA nanoparticles (a) urenyl acetate stained lipid-PLGA hybrid nanoparticles which contain magnetic nanoparticles (b) trapped magnetic nanoparticles in lipid-PLGA hybrid nanoparticles (without urenyl acetate staining).

