#### **Supporting Information**

for

# Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

Hongwang Wang<sup>\*1</sup>, Jim Hodgson<sup>1</sup>, Tej B. Shrestha<sup>2</sup>, Prem S. Thapa<sup>3</sup>, David Moore<sup>3</sup>, Xiaorong Wu<sup>4</sup>, Myles Ikenberry<sup>5</sup>, Deryl L. Troyer<sup>2</sup>, Donghai Wang<sup>4</sup>, Keith L. Hohn<sup>5</sup> and Stefan H. Bossmann<sup>\*1</sup>

Address: <sup>1</sup>Kansas State University, Department of Chemistry, 201CBC Building, Manhattan, KS 66506, USA, 001-785-532-6817; <sup>2</sup>Kansas State University, Department of Anatomy & Physiology, 130 Coles Hall, Manhattan, KS 66506, USA; <sup>3</sup>University of Kansas, Microscopy and Analytical Imaging Laboratory, 1043 Haworth, Lawrence, KS 66045, USA; <sup>4</sup>Kansas State University, Department of Biological and Agricultural Engineering, 150 Seaton Hall, Manhattan, KS 66506, USA and <sup>5</sup>Kansas State University, Department of Chemical Engineering, 1016 Durland Hall, Manhattan, KS 66506, USA

Email: Hongwang Wang\* - hongwang@ksu.edu; Stefan H. Bossmann\* - sbossman@ksu.edu \*Corresponding author

### Additional experimental data

## **Reaction kinetics**



**Figure S1:** Consumption of  $CO_2$  at 400 °C. A:  $CO_2$  peak as a function of reaction time, as recorded by GC–MS. B: The reaction is a heterogeneous first order kinetics, as the plot ln(signal intensity) vs t indicates.



## Additional GC–MS chromatograms and mass spectra

Figure S2: GC–MS chromatogram showing the major reaction intermediates that are formed at 400 °C.



**Figure S3:** Mass spectrum of carbon suboxide  $(C_3O_2)$ .



Figure S4: Mass spectrum of 3-oxoacrylaldehyde (C<sub>3</sub>H<sub>2</sub>O<sub>2</sub>).



Figure S5: GC–MS chromatogram showing the major reaction products that are formed at 500 °C.



**Figure S6:** Mass spectrum of propionaldehyde (C<sub>3</sub>H<sub>5</sub>O).



Figure S7: Mass spectrum of benzene (C<sub>6</sub>H<sub>6</sub>).



**Figure S8:** Mass spectrum of toluene (C<sub>7</sub>H<sub>8</sub>).



**Figure S9:** Mass spectrum of *meta*-xylene ( $C_8H_{10}$ ).



**Figure S10:** Mass spectrum of *para*-xylene ( $C_8H_{10}$ ).



Figure S11: Mass spectrum of *ortho*-xylene (C<sub>8</sub>H<sub>10</sub>).



Figure S12: Mass spectrum of mesitylene (C<sub>9</sub>H<sub>12</sub>).

# **Additional XRD Spectra**



Figure S13: X-ray diffractogram of the Fe/Fe<sub>3</sub>O<sub>4</sub>-catalyst after 5 catalytic runs (2 h each).



