Supplementary Material to:

Inositol-1,4,5-trisphosphate (IP₃)-mediated STIM1 oligomerization requires intact mitochondrial

Ca²⁺ uptake

A. T. Deak¹, S. Blass¹, M. J. Khan¹, L. N. Groschner¹, M. Waldeck-Weiermair¹, S. Hallström², W. F. Graier¹, R. Malli¹*

Affiliations:

¹From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria.

²From the Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010-Graz, Austria.

*To whom correspondence should be addressed: Roland Malli, Institute of Molecular Biology and Biochemistry, Molecular and Cellular Physiology Research Unit, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, Graz, Austria. Phone: +43-316-380-7565; Fax: +43-316-380-9615; E-mail: roland.malli@medunigraz.at

Supplementary Material Content

Supplementary Figure Legends (Figs. S1 and S2)

Fig. S1. Characterization of $[Ca^{2+}]_{mito}$, metabolic status and organelle morphology in MCU^{KD} and UCP2^{KD} cells

Fig. S2. Characterization of histamine-evoked cytosolic Ca²⁺ signals in MCU^{KD} and UCP2^{KD} cells

Supplementary Figure Legends

Figure S1. Characterization of $[Ca^{2+}]$ mito, the metabolic status, and the organelle morphology in MCU^{KD} and $UCP2^{KD}$ cells

(A) Knock-down efficiency of MCU and UCP2 was validated with qPCR in the SilenceX knockdown HeLa cell lines (n=9 for each samples). *p<0.05 vs. Control. (B) Mitochondrial Ca²⁺ signals upon stimulation with 100 μ M histamine in the absence of extracellular Ca²⁺ were measured in Control (black, n=21), MCU^{KD} (red, n=19) and UCP2^{KD} (blue, n=19) cells expressing 4mtD3CPV. Curves indicate mean ± s.e.m. *p<0.05 vs. Control. (C) Mitochondrial Ca^{2+} signals upon Ca^{2+} re-addition following 1 µM thapsigargin treatment in the absence of extracellular Ca^{2+} were measured in the same cells shown in (B). Curves indicate mean \pm s.e.m. *p<0.05 vs. Control (**D**) Mitochondrial membrane potential was measured using the ratiometric dye JC-1 (n=3 for each cell line). The basal fluorescence ratio was normalized to the ratio after 10 µM FCCP addition. (E) The oxygen consumption rate in control (white column; n=30 wells), MCU^{KD} (red column; n=32 wells) and UCP2^{KD} (blue column; n=30 wells) were measured using the Seahorse technology. (F) Columns represent the whole cellular ATP content of Control (white column, n=4), MCU^{KD} (red column, n=6) and $UCP2^{KD}$ (blue column, n=5) cells. The grey column represents the ATP content of control cells that were kept for 30 minutes in glucose-free medium (n=4). (G)-(I) Confocal analysis of mitochondrial and ER structures in HeLa cells expressing mtDsRed (red) and D1ER (green). (G) Images are representative for Control (top image), MCU^{KD} (middle image) and UCP2^{KD} (bottom image). Scale bar is 10 μ m. (H) Quantitative mitochondrial shape analysis based on shape factor values corresponding to mitochondrial morphology in Control (white columns, n=13), MCU^{KD} (red columns, n=14) and UCP2^{KD} (blue columns, n=16) cells. Bar charts show distribution (mean \pm s.e.m.) of mitochondrial shape factors calculated for all mitochondria within the middle plane of individual cells. (I) Co-localisation between ER and mitochondria in the different cell types (Control, MCU^{KD} and UCP2^{KD}) were defined as the percentage values of pixels that contain both fluorophores.

Figure S2. Characterization of histamine-evoked cytosolic Ca^{2+} signals in MCU^{KD} and $UCP2^{KD}$ cells

(A)-(C) Curves indicate single-cell cytosolic Ca^{2+} signals (thin curves) and their respective mean \pm s.e.m. (thick curves) upon 100 μ M histamine addition in fura-2/am loaded Control (left panels,) MCU^{KD} (left middle panels) and UCP2^{KD} (right middle panels). Right panels summarize Ca^{2+} responses of different cells (mean \pm s.e.m.). (A) Cell stimulation in a Ca^{2+} -free (EGTA) extracellular medium in Control/MCU^{KD}/UCP2^{KD} cells (n=76/76/65) (B) Cytosolic Ca²⁺ signals of Control/MCU^{KD}/UCP2^{KD} cells (n=43/39/36) expressing Orai(E106Q)-YFP (C) Control/MCU^{KD}/UCP2^{KD} cells were pretreated with FCCP/Oligomycin (2 μ M each) prior to stimulation (n=54/40/56)

Figure S1

Journal of Cell Science | Supplementary Material

Figure S2

