
Two-state Markov chain approach

1 Derivation of the number of “burn-in” it-

erations

Let {Zt}t≥0 be a discrete-time two-state Markov chain as given in Figure 1. Zt
has the value 0 or 1 if the system is in state 0 or state 1 at time t, respectively.
The transition probabilities satisfy 0 < α, β < 1 and the transition matrix
for this chain has the following form

P =

[
1− α α
β 1− β

]
.

The chain is ergodic and the steady-state distribution is π = [π0 π1] =
[ β
α+β

α
α+β

]. Let Eπ(Zn) denote the expected value of Zn, with respect to the

steady-state distribution π. Then, Eπ(Zn) = α
α+β

.
The l-step transition matrix can be written, as can be checked by induc-

tion, in the form

P l =

[
π0 π1

π0 π1

]
+

λl

α + β
·
[

α −α
−β β

]
,

10

Figure 1: Two-state ergodic Markov chain.
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where λ = (1− α− β). Matrix P has two distinct eigenvalues: 1 and λ, and
|λ| < 1.

Suppose we require m to be such that the following condition is satisfied∣∣∣∣∣
[
P [Zm = 0 |Z0 = j]
P [Zm = 1 |Z0 = j]

]
−
[
π0

π1

] ∣∣∣∣∣ <
[
ε
ε

]
for some ε > 0. If e0 = [1 0] and e1 = [0 1], then for j = 0, 1 we have that[

P [Zm = 0 |Z0 = j]
P [Zm = 1 |Z0 = j]

]
= ejP

m.

With this, the above requirement can be written as∣∣∣∣∣ej
([

π0 π1

π0 π1

]
+

λm

α + β
·
[

α −α
−β β

])
−
[
π0

π1

] ∣∣∣∣∣ <
[
ε
ε

]
.

For j = 0 the above simplifies to∣∣∣∣∣ λm

α + β
·
[

α
−α

] ∣∣∣∣∣ <
[
ε
ε

]
and for j = 1 we have ∣∣∣∣∣ λm

α + β
·
[
−β
β

] ∣∣∣∣∣ <
[
ε
ε

]
.

It is enough to consider the following two inequalities∣∣∣∣ λmαα + β

∣∣∣∣ < ε and

∣∣∣∣ λmβα + β

∣∣∣∣ < ε,

which, since α, β > 0, can be rewritten as

|λm| < ε(α + β)

α
and |λm| < ε(α + β)

β
.

Equivalently, m has to satisfy

|λm| < ε(α + β)

max(α, β)
.
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By the fact that |λm| = |λ|m this can be expressed as

|λ|m <
ε(α + β)

max(α, β)
.

Then, by taking the logarithm to base 10 on both sides1, we have that

m · log (|λ|) < log

(
ε(α + β)

max(α, β)

)
and in consequence, since |λ| < 1 and log |λ| < 0,

m >
log
(

ε(α+β)
max(α,β)

)
log (|λ|)

.

2 Derivation of the sample size

To determine the sample size N , we note first that the estimate of π1 =
Eπ(Zn) is Z̄n = 1

n

∑n
t=1 Zt. This holds by the Law of Large Numbers for

stationary stochastic processes (often called the Birkhoff ergodic theorem).
Under the condition of “ergodicity” it has exactly the same conclusion as the
Strong Law of Large Numbers for i. i. d. sequences. Now, by a variant of the
Central Limit Theorem for non-independent random variables2, for n large,
Z̄n is approximately normally distributed with mean π1 = α

α+β
and variance

1
n
αβ(2−α−β)

(α+β)3
, see Section 3. Let σ2 = αβ(2−α−β)

(α+β)3
and let X be the standardised

Z̄n, i.e.,

X =
Z̄n − π1

σ/
√
n
.

If follows that X is normally distributed with mean 0 and variance 1, i.e.,
X ∼ N(0, 1). The requirement that P [π1 − r ≤ Z̄n ≤ π1 + r] = s can be
rewritten as

P [−r ≤ Z̄n − π1 ≤ r] = s,

1In fact, by the formula for change of base for logarithms, the natural logarithm (ln)
or logarithm to base 2 (log2) or to any other base could be used to calculate m instead of
log. Notice that m does not depend on the choice of the base of the logarithm!

2Notice that the random variables Zt, Zt+1 which values are consecutive states of
a trajectory are correlated and are not independent.
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and further as

P [−r ·
√
n

σ
≤ Z̄n − π1

σ/
√
n
≤ r ·

√
n

σ
] = s,

which is

P [−r ·
√
n

σ
≤ X ≤ r ·

√
n

σ
] = s.

Since X ∼ N(0, 1) and N(0, 1) is symmetric around 0, it follows that

P [0 ≤ X ≤ r ·
√
n

σ
] =

s

2

and

P [X ≤ r ·
√
n

σ
] =

1

2
+
s

2
=

1

2
(1 + s).

Let Φ(·) be the standard normal cumulative distribution function. Then the
above can be rewritten as

Φ(r ·
√
n

σ
) =

1

2
(1 + s).

Therefore, if we denote the inverse of the standard normal cumulative distri-
bution function with Φ−1(·), then we have that

r ·
√
n

σ
= Φ−1(

1

2
(1 + s)).

In consequence,

n =
σ2{
r

Φ−1( 1
2

(1+s))

}2 =

αβ(2−α−β)
(α+β)3{
r

Φ−1( 1
2

(1+s))

}2 .

3 Derivation of the asymptotic variance

By the Central Limit Theorem for stationary stochastic processes
√
n(Z̄n −

Eπ(Zn))
d−→ N(0, σ2

as) as n → ∞, where σ2
as is the so-called asymptotic vari-

ance given by

σ2
as = Varπ(Zj) + 2

∞∑
k=1

Covπ(Zj, Zj+k) (3.1)
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and Varπ(·) and Covπ(·) denote the variance and covariance with respect to
the steady-state distribution π, respectively. We proceed to calculate σ2

as.
First, observe that Eπ(ZnZn+1) = α

α+β
(1 − β): ZnZn+1 6= 0 if and only if

the chain is state 1 at time n and remains in 1 at time n + 1, i.e., Zn =
Zn+1 = 1. The probability of this event at steady state is α

α+β
(1− β). Then,

by the definition of covariance, we have that the steady-state covariance
between consecutive random variables of the two-state Markov chain, i.e.,
Covπ(Zn, Zn+1) is

Covπ(Zn, Zn+1) = Eπ [(Zn − Eπ(Zn))(Zn+1 − Eπ(Zn+1))]

= Eπ
[
(Zn −

α

α + β
)(Zn+1 −

α

α + β
)

]
= Eπ

[
ZnZn+1 −

α

α + β
(Zn + Zn+1) +

α2

(α + β)2

]
= Eπ(ZnZn+1)− α

α + β
(Eπ(Zn) + Eπ(Zn+1)) +

α2

(α + β)2

=
α(1− β)

α + β
− 2

α2

(α + β)2
+

α2

(α + β)2

=
αβ(1− α− β)

(α + β)2
.

Further, we have that Varπ(Zn) = π0 · π1 = αβ
(α+β)2

(variance of the Bernoulli

distribution) and it can be shown that Covπ(Zn, Zn+k) = (1 − α − β)k ·
Varπ(Zn) for any k ≥ 1. Now, according to Equation (3.1), we have

σ2
as = Varπ(Xj) + 2

∞∑
k=1

Covπ(Xj, Xj+k)

=
αβ

(α + β)2
+ 2

∞∑
k=1

(1− α− β)k · αβ

(α + β)2

=
αβ

(α + β)2
+

2αβ

(α + β)2
·
∞∑
k=1

(1− α− β)k

=
αβ

(α + β)2
+

2αβ

(α + β)2
· 1− α− β

α + β

=
αβ(2− α− β)

(α + β)3
.
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In consequence, Z̄n is approximately normally distributed with mean α
α+β

and variance 1
n
αβ(2−α−β)

(α+β)3
.
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