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Supplementary material

S1: Model derivations

Transmission model

A susceptible-infected-removed (SIR) model with fixed population size and frequency-dependent trans-

mission term is postulated to depict the childhood disease dynamics. Let S, I and R be the proportions

of the susceptible, infected and recovered individuals in the population. The SIR model is given by

dS

dt
= µ (1− x)− β S I − µS

dI

dt
= β S I − (µ+ γ) I

dR

dt
= µx+ γ I − µR


(1)

where µ is the birth (death) rate, β is the disease transmission rate, γ is the recovery rate and x is

the proportion of vaccinated newborn (assumed to be equal to vaccinators by birth uniformity in the

population). Since S + I + R = 1, then the third equation of dR
dt follows from the first two equations in

(1) and so it is removed.

Behaviour model

Imitation dynamics description Parents adopt one of two strategies: vaccination V or no-vaccination

N . Let pV := x and pN := 1−pV be the proportion of vaccinators and non-vaccinators in the population.

People sample one another or seek sources of information (people are also sources of information) at a

rate of κ. Thus, a parent following strategy Θ (Θ = V,N) samples a strategy Θ′ (in the form of adopter
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of or promoter for Θ′) with rate κ pΘ′ . Then that individual compares between the payoffs of the current

strategy π(Θ) and the other strategy π(Θ′). The parent, afterwards, switches to the new strategy only

if π(Θ′) > π(Θ) according to a probability given as c′ (π(Θ′) − π(Θ))+; where c′ is a proportionality

constant and z+ = z if z ∈ R+ and zero otherwise. Accordingly, the larger is the difference between the

two payoffs, the larger is the probability of switching strategies.

The imitation dynamics can be described by

dx

dt
= κx (1− x) (c′ (π(V )− π(N))+ − c′ (π(N)− π(V ))+) (2)

where, again, c′ (π(V )−π(N))+ is the probability that a non-vaccinator switches to a vaccinator (inflow)

and c′ (π(N)− π(V ))+ is the probability that a vaccinator switches to a non-vaccinator (outflow). Thus,

equation (2) can be rewritten as

dx

dt
= κ c′ x (1− x) (π(V )− π(N)) (3)

Payoff function Each of the two groups adopting one of the strategies imposes, uniformly, a social

group pressure δ0 on its members. Hence, a parent adopting strategy Θ experiences an average group

pressure of δ0 pΘ. The average group pressure is comprised of the injunctive norm component δ0 and the

descriptive norm component pΘ. See also the introduction and [1].

Therefore, the payoff of any strategy Θ is defined by the gain of full health due to applying that

strategy, in one’s own perspective, and the pressure (reward) imposed by the group adopting strategy Θ

minus the perceived risks the strategy imposes. That is, the payoff of vaccination is given by

ev = −rv + δ0 pV

where rv is the perceived risk of vaccination’s side effects which we posit, based on [2], to be of the

form rv(t) = m + m(σ − 1)(1 − (t − ts)/D) 1[ts,ts+D](t); where m is the perceived magnitude of risk

before the year ts, σ is the relative risk at the scare, D is the number of years of decay for the risk

perception (representing memory loss effect or vividness of the information), and 1[ts,ts+D](t) is the

Heaviside function that is equal to one if ts ≤ t ≤ ts+D and zero otherwise. The payoff of no-vaccination
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is given by

en = −ri + δ0 pN

where ri is the perceived risk of infection. The perceived risk of infection ri is given by c I where I

is the actual prevalence given via equation (1) and the parameter c is the multiplicative product of

three quantities: the proportionality constant of the probability of catching the disease, the reporting

probability (assumed to be constant over time), and the cost/consequence of infection. Let κ′ = κ c′ c,

δ =
δ0
c

and

ω(t) :=
1

c
rv(t) = m′ +m′(σ − 1)(1− (t− ts)/D) 1[ts,ts+D](t) (4)

Therefore, equation (3) becomes

dx

dt
= κ′ x (1− x) (−ω(t) + I + δ (2x− 1)) (5)

In the main part of the paper, we will drop the prime in the parameters’ notation for brevity and as they

will be irrelevant to the results.

S2: Pertussis vaccine coverage and incidence in the UK
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Table 1. Pertussis vaccine coverage and disease incidence in the UK in the period 1967-2010.

Year Coverage Incidence Year Coverage Incidence
1967 0.78 0.065702282 1989 0.84 0.02205659
1968 0.78 0.034970569 1990 0.88 0.029764297
1969 0.78 0.011656856 1991 0.92 0.011260422
1970 0.78 0.033910855 1992 0.93 0.004929348
1971 0.78 0.033910855 1993 0.93 0.008456968
1972 0.78 0.004238857 1994 0.94 0.008670274
1973 0.77 0.005298571 1995 0.94 0.004300184
1974 0.59 0.032071056 1996 0.92 0.004882743
1975 0.38 0.0195433 1997 0.91 0.006576646
1976 0.39 0.010022205 1998 0.92 0
1977 0.31 0.033073277 1999 0.91 0
1978 0.35 0.129286446 2000 0.91 0.001552296
1979 0.41 0.05913101 2001 0.91 0.001880322
1980 0.46 0.041091041 2002 0.91 0.001889284
1981 0.53 0.038468628 2003 0.92 0.000933887
1982 0.59 0.127137732 2004 0.91 0.000302931
1983 0.65 0.038698067 2005 0.92 0.000641711
1984 0.65 0.011505993 2006 0.92 0.00085681
1985 0.67 0.043457128 2007 0.92 0.002084666
1986 0.73 0.071590259 2008 0.93 0.00184268
1987 0.75 0.0300977 2009 0.94 0.001516447
1988 0.78 0.009810298 2010 0.95 0.00092851



5

S3: Model extension

This extension owes to the fact that there is another group that do not vaccinate at all–we call them

all-time nonvaccinators–due to religious or alternative medicine reasons [3, 4, 5]. Let q be the proportion

of all-time nonvaccintors such that q + pV + pN = 1 and 0 < q < 1 is constant. Then the coupled

incidence-behaviour model (equation (4) in main text) will be given by

dS

dt
= µ (1− x)− β S I − µS

dI

dt
= β S I − (µ+ γ) I

dx

dt
= κx (1− x− q) (−ω(t) + I + δ (2x− 1))


(6)

where x = pV ; under the assumption that all-time nonvaccinators are also invoking a pressure. The

equilibrium points of (equation (4) in main text) and (6) are the same except for the first one E1; instead

we have E ′1 = ( 1
R0
, µ
µ+γ (q − 1

R0
), 1 − q) as another equilibrium point for the model (6). Hence, we can

have a below full vaccine coverage as an equilibrium if R0 >
1

q
which is stable if and only if

m < δ (1− 2q) +
µ

µ+ γ
(q − 1

R0
) (7)

The model can possess from one to two bistability regions depending on the proportion of all-time non-

vaccinators q, Figure FS3 (c). E ′1 can be the only stable fixed point with less then 100% vaccine coverage

rate and extremely reduced incidence, Figure FS3 (a) and (b).
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Figure FS3. Simulation of vaccination rate and incidence (panels (a) and (b)) without vaccine scare
when proportion of all-time nonvaccinators q = .06 for (δ,m) = (.0005, .00025). (c) δ −m parameter
diagram for stability of the equilibrium points for the model (6). E ′1 is stable below each line
corresponding to the values of q = 1/R0, .2, .5 and 1. The equilibrium point E4 is stable in the red
colored region. E5 is stable in the yellow colored region.

A further extension to model (6) is to incorporate p (0 ≤ p < 1) the proportion of parents who

vaccinate all the time. Under the assumption that the all-time vaccinators are also invoking a pressure

δ, the third equation in the model becomes

dx

dt
= κ (x− p) (1− x− q) (−ω(t) + I + δ (2x− 1)) (8)

where x = p + pV . The equilibrium points of the new model are the same as of (6) except E2 and E4

which become E ′2 = (1−p, 0, p) and E ′4 = ( 1
R0
, µ
µ+γ (1−p− 1

R0
), p), respectively. The endemic equilibrium
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point E ′4 exists if and only if R0 >
1

1− p
and is stable when

m > (2p− 1) δ +
µ

µ+ γ
(1− p− 1

R0
) (9)

The disease-free equilibrium E ′2 is stable if R0 <
1

1− p
and m > (2p − 1) δ. This time a large

proportion of all-time vaccinators insures the first condition for many childhood diseases while small

pressure is needed for the second condition so as to insure disease eradication stability.
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S4: Parameter estimates

Table 2 shows the estimates of the parameters in the main model (equation (4) in main text) with and

without group pressure. Apparently, there is no significant difference between estimates.

Table 2. Parameters’ estimated values for the model without and with pressure.

Parameters Without pressure Without pressure With pressure
in the period 1971-1988 in the period 1967-2010 in the period 1967-2010

κ 1.48 2.49 1.69
m 8.41× 10−5 4.21× 10−5 8.43× 10−5

σ 27 33.59 26.1
D (years) 5.85 9.1 5.89

δ – – 1.95× 10−4

RSS1 .0098 .0748 .0487
AICc −73.17 −144.14 −160.32

1RSS: residuals sum of squares.
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S5: The equilibrium point E5

The last equilibrium E5 exists in two regions depending on whether δ is less or greater than
1

2

µ

µ+ γ
. The

two regions are

R1 =

{
(δ,m) ∈ R2

+ : δ <
1

2

µ

µ+ γ
and δ (1− 2

R0
) < m < −δ +

µ

µ+ γ
(1− 1

R0
)

}

and

R2 =

{
(δ,m) ∈ R2

+ : δ >
1

2

µ

µ+ γ
and δ (1− 2

R0
) > m > −δ +

µ

µ+ γ
(1− 1

R0
)

}
Using the necessary and sufficient condition of the Routh-Hurwitz criterion, the disease endemic

equilibrium E5 is stable if and only if ai > 0 for i = 1, 2, 3 and a1 a2 − a3 > 0 where

a1 = µ+ β I5 − 2κδ x5(1− x5)

a2 = β I5(µ+ γ)− 2κδ x5(1− x5) (µ+ β I5)

a3 = κx5 (1− x5)β I5(µ− 2δ(µ+ γ))

(10)

Clearly, the condition a3 > 0 can be only valid in the region R1 which is the dark grey region in Figure

2. We have found in the numerical solutions below that E5 is stable in the region R1.

The reason that simulation show large oscillations where E5 should be stable is the very small value

of the real eigenvalue of the Jacobian matrix of the system (6) at the fixed point E5 (Figure FS5.1).

Choosing other pairs like (δ,m) = (1.5 × 10−5, .00067) would result in a better numerical simulation of

the vaccine coverage convergence to E5 (Figure FS5.2) even if it is very slow.
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Figure FS5.1. (a) The real part of the two conjugate complex eigenvalues of the Jacobian matrix of
the system (equation (4) in main text) at the fixed point E5 shown in its stability region. (b) The third
eigenvalue of the Jacobian matrix of the system (equation (4) in main text) at the fixed point E5 shown
in its stability region.
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Figure FS5.2. Simulation of vaccine coverage rate and incidence without vaccine scare for
(δ,m) = (1.5× 10−5, .00067) (panels (a) and (b)). (c) Phase diagram for the last few years of the
simulation showing that the convergence is slow.
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