

Supplemental Figure 1: Hierarchic clustering of metabolite changes between *atg* mutants and controls show salicylic dependence of metabolite classes.

Metabolite relative contents in the rosettes of atq5, atq5.sid2, atq5.NahG, Col, NahG and sid2 genotypes, grown under low nitrate conditions for 60 days after sowing are analysed using hierarchic clustering tool (MEV4.0). Clusters show gradation for salicylic acid genotype dependencies. Metabolites that accumulate in *atg5* mutants whatever Col wild type, NahG and sid2 genetic background are salycilic acid independent (deep green cluster). Metabolites that accumulate in *atg5* mutants but not in atg5.sid2, atg5.NahG, are salycilic acid dependent (deep red cluster). The two other clusters (light green and light red) are in between.

В

AGI	Name and Function	atg5 lowN 30DAS	atg5 lowN 60DAS	atg5 highN 60DAS
AT2G45220	pectinesterase	3.55	8.14	6.14
AT5G14650	polygalacturonase, putative	1.59	2.45	1.27
AT3G57510	ADPG1; polygalacturonase	0.86	8.73	5.49
AT3G59850	polygalacturonase, putative	-2.23	3.06	-0.52
AT5G17200	polygalacturonase	-0.48	0.10	1.25
AT1G02790	PGA4 (POLYGALACTURONASE 4); polygalacturonase	0.51	2.64	0.40
AT5G49180	pectinesterase family protein	-1.07	-1.30	-0.47

Supplemental Figure 2: Genes involved in galacturonate biosynthesis are up-regulated in *atg5.* (A) D-galacturonate pathway was adapted from the KEGG galacturonate pathway available online (<u>http://www.genome.jp/kegg/pathway.html</u>). Most of the genes identified on KEGG as coding for the pectine esterases (EC.3.1.1.11) and polygalacturonases (EC.3.2.1.67 and EC.3.2.1.15) involved in the galacturonate pathway are up-regulated (pink boxes) in *atg5* relative to wild type as shown in (B). Relative gene expression in *atg5* compared to wild type is presented as Log2(fold change) Significant up- or down-regulations (FDR%<10⁻⁵) are indicated by yellow or blue colored cells respectively.

		atg5 lowN 30DAS	atg5 lowN 60DAS	atg5 highN 60DAS
AT1G76090	SMT3 (STEROL METHYLTRANSFERASE 3)	-0.441	1.187	0.450
AT3G02590	delta 7-sterol-C5-desaturase, putative	-1.151	1.627	0.608
AT2G34500	CYP710A1 (cytochrome P450, family 710,	0.998	3.991	2.936

Supplemental Figure 3: Phytosterol pathway is up-regulated in *atg5.* (A) Phytosterol pathway was adapted from the KEGG (

http://www.genome.jp/kegg/

pathway.html). Genes coding for SMT2, STE1 and CYP710A enzymes (pink boxes) are upregulated in *atg5* relative to wild type (B): the relative expressions of SMT2, STE1 and CYP710A genes in *atg5* are presented as Log2(fold change). Significant up- or downregulations (FDR%<10⁻⁵) are indicated by yellow or blue colored cells respectively.

B P1: 5'-TGAGACTTTTCAACAAAGGG-3'
P2: 5'-ACG GAA TAT CTG GAC AGC CGG A-3'
P3: 5'-ACG GAA TAT CTG GAC AGC CGG A-3'
P4: 5'-TGC AGA GAC TAC TCC CTC GTG C-3'

P3P4 amplification reveals *PAP1* wild type allele P1P2 amplification reveals *pap1-D* dominant allele

Supplemental Figure 4: PCR genotyping of *atg5.pap1-D* double mutant. A: PCR products on gel. B: Primers used to amplify wild type *PAP1* (P3 and P4) and *pap1-D* (P1 and P2) alleles.

Supplemental Figure 5: Overexpression of isochorismate synthase (ICS) 1 and PBS3 genes in *atg5* relative to wild type explain SA accumulation in autophagy mutants. A: SA biosynthesis pathway showing steps catalysed by ICS and PBS3. B: Genes involved in SA biosynthesis are up-regulated in *atg5* relative to wild type; relative gene expressions in *atg5* compared to wild type are presented as Log2(fold change) Significant up-regulation (FDR%<10⁻⁵) is indicated by red cells. C: Relative SA concentrations in Col wild type, *atg* mutants and RNAI line grown under low nitrate supply for 60 and 75 days after sowing.

	AGI	function or name	atg5 & atg9 30DAS LowN	atg5 & atg9 60DAS LowN	atg5 60DAS HighN
R	at1g74710	isochorismate synthase 1 (ICS1) / isochorismate mutase	-0.106	2.197	1.131
U	at5g13320	PBS3 (AVRPPHB SUSCEPTIBLE 3)	3.759	4.058	2.899

Supplemental Figure 6: Cell death area on leaves of autophagy mutants. Cell death regions were revealed after boiling leaves in trypan blue staining solution (glycerol 10 mL, lactic acid 10 mL, phenol 9.5 mL and trypan blue 10 mg) for 1 min and incubating at room temperature for 24 h afterward. Destaining was performed by transfering samples into chloral hydrate (1 g.ml⁻¹). A: Col, *atg5*, *atg9* leaves of plants grown under low nitrate conditions for 60 days. B: Col and *atg5* leaves of plants grown under high nitrate conditions for 75 days. Dead cells appear as black clouds in leaf blades.

Supplemental Table 1: Flavonoid compounds identified and quantified using LC-MS.

Compound name (other name)	Ion molecular mass (g.mol-1)	fragment mass (g.mol-1)	retension time (min)
		535.2 [Cy + Glc + Mal]+	
		727.2 [Cy + Glc + Xyl + Cou]+	
Cyanidin 3-O-[2"-O-(xylosyl)-6"-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside (A974)	975	975.2 [Cy + 2Glc + Xyl + Cou + Mal]+	20
		535 2 [Cv + Glc + Mal]+	
		889.2 [Cy + 2Glc + Xy] + Cou]+	
Cvanidin 3-O- [2"-O-(xvlosyl) 6" -O- (p-O- (glucosyl) p-coumaroyl) glucoside] 5-O- [6""-O- (malonyl) glucoside] (A1136)	1137	1137.2[Cv + 3Glc + Xv] + Cou + Mal]+	16
	_		-
		535.2 [Cy + Glc + Mal]+	
		933.2 [Cy + Glc + Xyl + Sin + Cou]+	
Cyanidin 3-O-[2"-O-(2 ^m -O-(sinapoyl) xylosyl) 6"-O-(p-O-coumaroyl) glucoside] 5-O-[6 ^m -O-(malonyl) glucoside] (A1182)	1183	1183.2 [Cy + 2Glc + Xyl + Sin + Cou + Mal]+	23
		1095.2 [Cy + 2Glc + Xyl + Cou + Sin]+	
Cyanidin 3-O-[2"-O-(2"'-O-(synapoyl) xylosyl) 6"-O-(p-O-(glucosyl) p-coumaroyl) glucoside] 5-O-glucoside (A1256)	1257	1257.2 [Cy + 3Glc + Xyl + Cou + Sin]+	17
		535.2 [Cy + Glc + Mal]+	
		1095.2 [Cy + 2Glc + Xyl + Cou + Sin]+	17 and
Cyanidin 3-O-[2"-O-(6""-O-(sinapoyl) xylosyl) 6"-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O- (6"" -O- malonyl) glucoside (A1342)	1343	1343.2 [Cy + 3Glc + Xyl + Cou + Sin + Mal]+	20 for isomer
		287.2 [Km + H]+	
		433.2 [Km + Rha + H]+	
Km-3,7-di-O-Rha	579	579. 2 [Km + 2Rha + H]+	21
		287. 2 [Km + H]+	
		433.2 [Km + Rha + H]+	
Km-3-O-Glc-7-O-Rha	595	595.2 [Km + Rha + Glc + H]+	19
		287.2 [Km + H]+	
		433.2 [Km + Rha + H]+	
Km-3-O-Rha(1-2)Glc-7-O-Rha	741	741.2 [Km + 2Rha + Glc + H]+	15
Qr-3,7-di-Rha	303		19
		202 2 [Or + H]+	
		303.2 [Q] + H] +	
Or 2-O Glo 7-O-Pha	611	449.2 [QI + KIId + H]+ 611 2 [Or + Pha + Glc + H]+	17
	011		17
		303.2 [Qr + H]+	
		449.2 [Qr + Rha + H]+	
Qr-3-O-Rha(1-2)Glc-7-O-Rha	757	757.2 [Qr + 2Rha + Glc + H]+	6
		317.2 [I + H]+	
		463.2 [I + Rha + H]+	
I-GIC-Rha	625	625.2 [I + Rha + Glc + H]+	19
Isomère Cyanidin 3-O-[2"-O-(6" -O-(sinapoyl) xylosyl) 6"-O-(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O- (6" -O- malonyl) glucoside	A1342 2		

Supplemental Table 2: Metabolites significantly more or less concentrated in *atg5, atg5.sid2, atg5.*NahG compared to Col, *sid2*, or NahG controls are listed. Plants were grown under low or high nitrate conditions for 60 days after sowing.

Significant differences were tested using T-tests (n=3) and probability is presented (*Pr*). Fold changes are also presented (FC). Yellow cells indicate increased concentrations in *atg5*. Blue cells indicate decreased concentrations in *atg5*. Black cells indicate non significant difference. Deep and light purple cells indicate metabolite on which differences that have been previously found between wild type and *atg5*, *atg9* and *RNAi18*.

Deep purple indicates difference that are nitrate condition independent.

			Low Nitra	te (2 mM)						High Nitrate	e (10 mM)		
	ata	5/Col	ata5-3.	sid2/sid2	ata5.NahG	/NahG		ata5	/Col	ata5-3.si	d2/sid2	ata5.NahG/	NahG
Matabolites	Pr	FC	Pr	FC	Pr	FC	Metabolites	Pr F	C	Pr I	FC	Pr F	C
Glycosylsalicylate	0.000	15.587	0.006	2.000		-	Melibiose	0.0086	0.277	0.009	0.394	0.017	0.374
γ-tocopherol	0.000	4.230	0.018	4.416		-	Galactosylglycerol	0.0064	0.671	0.031	0.667	0.031	0.622
myo-Inositol	0.000	1.277	0.021	1.158		-	Xylose	0.0230	0.777	-		0.029	0.743
Campesterol	0.001	1.303	0.015	1.191		-	Campesterol	0.0115	1.3	0.025	1.2	-	
Aspartate	0.000	2.189	0.046	1.232	0.001	1.859	Monopalmitine	0.0231	1.4	0.014	1.2	-	
Rhamnose	0.001	1.918	0.004	1.364	0.032	1.443	Glutamate	0.0107	1.4	0.026	1.3	-	
Glycerol-3-P	0.000	1.471	0.021	1.364	0.002	1.735	β-Sitosterol	0.0005	1.4	0.004	1.4	-	
β-Sitosterol	0.000	1.428	0.004	1.365	0.003	1.356	Glycosylsalicylate	0.0158	2.3	0.022	1.5	-	
Ascorbate/Dehydro	0.002	1.507	0.005	1.383	0.006	1.672	Homoserine	0.0011	1.5	0.043	1.7	-	
Tryptophan	0.002	1.656	0.034	1.387	0.040	1.258	Raffinose	0.0434	1.9	0.001	2.2	-	
Fructose-6-P	0.003	1.632	0.026	1.405	0.002	1.837	Shikimate	0.0002	1.5	0.001	1.7	0.047	1.3
α -Tocopherol	0.019	1.315	0.042	1.427	0.002	1.331	Sinapinate-cis	0.0173	1.1	-	-	0.047	1.2
Shikimate	0.000	2.247	0.003	1.445	0.004	1.929	Threonine	0.0135	1.3	-	-	0.022	1.2
Methionine	0.000	2.275	0.011	1.459	0.003	1.994	Pipecolate	0.0005	6.9	-	-	0.005	2.3
Linoleic acid	0.017	1.323	0.002	1.514	0.001	1.363		1				_	
Digalactosylglycerol	0.001	1.781	0.002	1.564	0.000	1.893							
Ribonate	0.000	1.857	0.000	1.637	0.002	1.607							
Glutamate	0.000	1.623	0.000	1.698	0.001	1.716							
Sucrose	0.023	1.634	0.018	2.490	0.019	1.711							
Raffinose	0.000	2.805	0.000	2.850	0.000	3.398							
Pipecolate	0.000	49.057	0.001	14.446	0.001	41.247							
Fumarate	0.004	0.601		-	0.024	0.659							
Threonine	0.001	1.498		-	0.041	1.266							
Monopalmitine	0.004	1.252		-	0.001	1.414							
Salicylate	0.000	2.707		-	0.009	1.455							
Asparagine	0.001	1.864		-	0.019	1.483							
Ethanolamine	0.000	2.146		-	0.007	1.597							
Glucose-6-P	0.002	1.639		-	0.003	1.679							
Arginine	0.003	1.255		-	0.018	1.788							
Stigmasterol	0.000	4.777		-	0.003	1.909							
GABA	0.021	1.709		-	0.008	1.912							
Galactonate	0.003	1.624		-	0.000	2.159							
Galactinol	0.000	1.944		-	0.000	2.253							
myo-Inositol-1-P	0.040	1.791		-	0.002	3.461							

Supplemental Data. Masclaux-Daubresse et al. Plant Cell (2014) 10.1105/tpc.114.124677 Supplemental Table 3: List of the 86 genes significantly up regulated (see Figure 1A) in *atg5* and *atg9* relative to wild type under low nitrate conditions 30 and 60 days after sowing and under high nitrate conditions 60 days after sowing.

AGI	Annotation	has/involved in/located in	Function	ates & ateg 30DAS ates & ateg	60DAS at g5 60DAS 10mM	References
At3g28580	P-loop containing nucleoside triphosphate bydrolases	ATPase activity	hydrolase activity/ stress response	2 19	2.86 2.72	
At2g22300	AGP2 arabinogalactan protein 2	anchored to membrane	other membranes/cell wall	3.48	3.05 1.40	
AL2g22470				3.48	3.05 1.45	
At1g35230	AGPS, arabinogalactan protein 5	innate immune response	response to stress/ cell wall	3.06	4.88 2.99	
At1g33960	AIG1 ATPase	response to bacterium	response to abiotic or biotic stimulus	4.00	5.75 1.88	
At1g79450	ALIS5, ALA-interacting subunit 5	amino acid transport	transport	2.20	3.25 1.98	
At1g02220	ANAC003	protein desumoylation	other metabolic processes	3.48	4.09 2.71	
At2g17040	ANAC036	leaf morphogenesis	developmental processes	2.67	2.24 1.95	Slocombe et al. 2009
At3g44350	ANAC061	DNA binding	DNA or RNA binding	2.76	2.32 2.25	
At5g22380	ANAC090	nucleus	nucleus	3.06	1.69 1.51	
At5g20230	ATBCB, SAG14, blue-copper-binding protein	response to fungus/ senescence	response to abiotic or biotic stimulus	2.42	3.65 2.99	
At1g01340	ACBK1. CNGC10. cvclic nucleotide gated channel 10	plasma membrane	CA2+ and Mg2+ transport	3.38	2.06 1.71	Guo et al. 2010
At3g54420	ATCHITIV. chitinase	chitin binding	other binding	3.79	2.12 2.23	
At1g07000	EXO70B2 exocyst subunit	cell wall apposition	respond to chitine and FR stress	2 72	1 64 1 30	Pecenkova et al. 2011
At4g25110	AtMC2 MC2 metacaspase 2	custeine-type endonentidase activity	hydrolase activity	3.36	2.02 2.53	
A+2a12100	ATMPR7 multidrug resistance-associated protein 7	topoplast /plasma membrane	ABC transporter/ cadmium	2.42	2.53 2.53	Woiss at al. 2000
AL3g13100	TIM17.1. translasses inner membrane subunit 17.1			3.42	3.32 2.13	
Atig20350	TIMIT/-1, transiocase inner membrane subunit 1/-1	mitochondriai inner membrane presequence transio	stress response	4.00	4.95 3.66	Oggalia et al. 2009
At3g01290	SPFH memorane-associated protein family	mitochondrion	mitochondria	2.68	3.18 2.5	
At1g11190	BFN1, ENDO1, bifunctional nuclease 1	senescent leaf/ abscission zone	nuclease	2.13	3.52 4.14	Farage-Barhom et al. 2008
At5g56870	BGAL4, beta-galactosidase 4	lactose catabolic process via UDP-galactose	other metabolic processes	2.84	3.71 4.45	
At3g22910	ATPase E1-E2 type family protein	ATP biosynthetic process	other cellular processes	2.85	2.70 2.29	
At3g01830	Calcium-binding EF-hand family protein	salicylic acid mediated signaling pathway	signal transduction	6.30	4.58 3.43	
At5g47850	CCR4, CRINKLY4 related 4	protein phosphorylation	cell division/pericycle/lateral roots	2.82	4.00 3.45	Smet et al. 2008
At2g43570	CHI, chitinase, putative	chitinase activity	hydrolase activity	2.39	5.00 2.82	
At1g09500	NAD(P)-binding Rossmann-fold superfamily protein	cellular metabolic process	other cellular processes	3.22	4.27 5.73	
At5g42380	CML37, CML39, calmodulin like 37	endoplasmic reticulum unfolded protein response	signal transduction	6.69	3.48 2.72	
At5g50260	CEP1 KDEL-tailed cystein endopeptidase	endoderm lateral roots	endopeptidase/ PCD/cell wall	2.32	2.49 2.19	Helm et al. 2008
At3g49620	DIN11, 2-oxoglutarate (20G) and Fe(II)-dependent oxy	cellular response to starvation	dark induced	2.68	3.44 1.63	
At3g60140	BGIII30 DIN2 SBG2 Glycosyl hydrolase	response to sucrose stimulus	dark induced	2 91	7 35 6 6	
At1g57630	Toll-Interleukin-Resistance (TIR) domain family protein	response to molecule of bacterial origin	response to abiotic or biotic stimulus	5 35	4.34 2.46	
At1g37030	DND A plant patriuratic pontide A	response to indeclar of bacterial origin	regulator loof dark respiration	3.33	4.34 2.40	Purvideo et al. 2011 Wang et al. 2011
AL2g18000	FAD binding Derbering family protein		the second second second second second	3.62	5.24 2.50	Nuzviuzo et al. 2011, Walig et al. 2011
At1g26420	FAD-binding Berberine family protein	ODP-N-acetyInfurantate denydrogenase activity	other enzyme activity	3.07	6.32 2.05	
ALIG50700	ATCA2OVC with a rallin 2 avideos C		other cellular processes	2.92	0.22 9.10	
At1g02400	CLDD, commin like metain 0	GA Inactivation/ oxidoreductase activity	induced by low temperature and ABA	1.69	1.46 1.05	Kendali et al. 2011
At4g14630	GLP9, germin-like protein 9	response to sait stress	response to stress	2.28	4.63 6.63	
At3g62950		cytoplasm	other cytoplasmic components	5.18	2.31 2.84	
At4g37900	Protein of unknown function	biological_process	response to salt stress	3.21	2.74 4.74	
At2g35710	Nucleotide-dipnospho-sugar transferases	biosynthetic process	other metabolic processes	2.87	3.74 2.34	
At4g39670	Glycolipid transfer protein (GLTP) family protein	cytoplasm	acyl lipid metabolism	3.36	4.80 3.18	
At5g64790	O-Glycosyl hydrolases family 17 protein	anchored to membrane	other membranes	2.87	1.31 2.16	
At5g52760	Copper transport protein family	regulation of hydrogen peroxide metabolic process	МАРК	2.77	4.10 2.46	
At3g50480	HR4, homolog of RPW8 4	response to other organism	interaction with beneficial microbes	2.44	2.81 2.06	Saenz-Mata et al. 2012
At1g68620	alpha/beta-Hydrolases superfamily protein	toxin catabolic process	other cellular processes	4.24	3.89 4.52	
At2g34600	JAZ7, jasmonate-zim-domain protein 7	jasmonic acid mediated signaling pathway	cambium regulator	2.80	2.53 2.07	Sehr et al. 2010
At1g16420	MC8, metacaspase 8	hydrogen peroxide-mediated programmed cell deat	response to UV	3.38	2.90 1.79	He et al. 2008
At1g62490	mTERF	mTERF	unknown molecular functions	3.24	2.47 2.52	Kleine 2012
At3g23250	MYB15, myb domain protein 15	sequence-specific DNA binding transcription factor	Cold stress	4.37	4.33 2.66	Chen et al. 2010
At2g47190	MYB2, myb domain protein 2	transcription factor	Plant senescence/ Cytokinin/ IPT/ resp	2.23	2.16 2.65	Guo and Gan, 2011
At3g26830	CYP71B15, PAD3, Cytochrome P450	defense response to bacterium	camalexin production	2.15	3.56 2.09	Beets et al. 2012
At3g52430	ATPAD4, PAD4, alpha/beta-Hydrolases	detection of external stimulus	lipase/ SA signalling	2.51	2.80 2.27	Jirage et al. 1999
At5g13320	PBS3	GH3 amino acid conjugase	SA metabolism	3.76	4.06 2.90	Okrent and Wildermuth, 2011
At2g26560	PLA2A, phospholipase A 2A	response to ethylene stimulus	Phospholipase A/ water loss	3.54	1.65 2.15	Yang et al. 2012
At2g14610	PR1, pathogenesis-related gene 1	regulation of plant-type hypersensitive response	other cellular processes	2.42	5.02 2.17	Glazebrook et al. 1996
At5g25440	Protein kinase superfamily protein	regulation of plant-type hypersensitive response	other cellular processes	2.39	2.41 1.83	
At1g72540	Protein kinase superfamily protein	plasma membrane	plasma membrane	1.78	5.36 1.11	
At3g48650	pseudogene. At14a-related protein	#N/A	#N/A	3.45	2.69 3.32	
At4g02380	SAG21 senescence-associated gene 21	cellular response to water deprivation	response to abiotic or biotic stimulus	3.43	1.83 2.22	
A+E #42E 90	IIPI Serine protesse inhibitor	LIPI Lipusual soring protocos inhibitor	response to abiotic of biotic stimulas	3.45	7.02 5.7	Laluk and Mongisto 2011
At1g49210	Protein kinase	protoin kinaso activity	kinaso activity	2.20	1 50 2 20	Laiuk and Wengiste 2011
At1g40210	SDP2 NAD(P) binding Possmann fold superfamily prot			2.50	2.44	
At3g51080	ATCALA TCH2 Calcium-binding EE band family protein		other membranes	1.97	1.92 1.47	,
Δ+2σ22140	transmembrane recentors	ethylene higsynthetic process	other cellular processes	2.86	3.24 2.66	<u> </u>
At4e04200	transposable element gene	±	±	A 11	3.42 2.66	<u> </u>
Δt2σ12210	transposable element gene	#N/A	#N/A	2.42	4.70 4.10	
At2g15510	LIGT76B1 LIDB-Glycosyltransferase	TIN/A	conjugator Icoloucie acid/IA and SA re	2.91	4.70 4.1-	von Saint Baul et al. 2011
Δt3g521E0	LIGT73D1 LIDP-glucosyl transferase	metabolic process	other metabolic processos	2.01	4.52 1.00	Son Sumer dur et di. 2011
AL3g33130	LIGT74E2 LIDE-glucosyltransferase 74E2	honzoata matabalis process	coronatino signalling	2.50	2.65 2.27	Uppalapati at al. 2010
At2g43820	unknown protoin	melacular function	unknown malagular functions	2.05	4.24 2.05	
At1g20180	unknown protein	defense response to fungue	response to objetic or biotic stimulus	3.27	4.24 3.65	
AL3g13950	unknown protein	defense response to fungus	response to abiotic or biotic stimulus	2.99	4.40 3.40	
AL3g48040	unknown protein	outropollular region	extracellular	3.41	2.30	
A14g28460	unknown protein	extracellular region	extracellular	2.15	3.60 2.03	
At1g13340	unknown protein		other cytoplasmic components	3.39	3.26 2.83	
AL18/0230		mological_process		1.88	4.14 4.93	
AL3812510		molecular_function	unknown molecular functions	3.81	2.78 2.58	
At2g04025		growth factor activity	receptor binding or activity	3.33	2.46 3.50	
AL4832870	VO motif containing protoin		unknown molecular functions	2.69	2.95	
At2g22880	vo motif-containing protein	response to UV-B	response to abiotic or biotic stimulus	4.35	2.99 3.76	<u> </u>
At1g78410	vu motif-containing protein	response to chitin	other biological processes	4.22	1.75 1.76	
At1g21240	WANS (Wall associated Kinase 3)	protein phosphorylation	wall associated kinase	4.25	3.55 2.60	He et al. 1999
At4g31800	WRKT18; transcription factor	transcription factor	pacterial volatile response	2.30	2.56 1.87	wenkeet al. 2012
At5g22570	WKKY38; transcription factor	detense response to bacterium	response to abiotic or biotic stimulus	4.40	5.58 2.22	kim et al. 2008
At1g04600	IVITAZ XIA (IVIYUSIN XI A); motor/ protein binding	myosin complex	transport peroxisomes, mitochondria,	4.29	2.02 1.46	waiter and Holweg, 2008
At5g57550	XTR3 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 3)	xyloglucan:xyloglucosyl transferase activity	transferase activity	2.04	3.38 3.42	
At1g59590		mitochondrion	mitochondria	3.64	2.41 2.16	<u> </u>
At5g04390	zinc tinger (C2H2 type)	zinc ion binding	other binding	2.56	2.18 2.29	
At1g08050	zinc tinger (C3HC4-type RING finger)	systemic acquired resistance, salicylic acid mediated	other cellular processes	1.58	2.53 2.78	<u> </u>
At4g14365	zing tinger (C3HC4-type RING finger)	iasmonic acid mediated signaling pathway	signal transduction	2.29	2 95 1 97	4

REFERENCES

Beets, C.A., Huang, J.-C., Madala, N.E., and Dubery, I. (2012). Activation of camalexin biosynthesis in Arabidopsis thaliana in response to perception of bacterial lipopolysaccharides: a gene-to-metabolite study. Planta **236**, 261-272.

Chen, C.-C., Liang, C.-S., Kao, A.-L., and Yang, C.-C. (2010). HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. Journal of Experimental Botany 61, 3305-3320.

De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., Van Noorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., Wang, J.Y., Meuli, N., Vanneste, S., Friml, J., Hilson, P., Juergens, G., Ingram, G.C., Inze, D., Benfey, P.N., and Beeckman, T. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594-597.

Farage-Barhom, S., Burd, S., Sonego, L., Mett, A., Belausov, E., Gidoni, D., and Lers, A. (2011). Localization of the Arabidopsis Senescence- and Cell Death-Associated BFN1 Nuclease: From the ER to Fragmented Nuclei. Molecular Plant 4, 1062-1073.

Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973-982. Guo, K.M., Babourina, O., Christopher, D.A., Borsic, T., and Rengel, Z. (2010). The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+and Mg2+in Arabidopsis. Physiologia Plantarum 139, 303-312.

Guo, Y., and Gan, S. (2011). AtMYB2 Regulates Whole Plant Senescence by Inhibiting Cytokinin-Mediated Branching at Late Stages of Development in Arabidopsis. Plant Physiology 156, 1612-1619.

He, R., Drury, G.E., Rotari, V.I., Gordon, A., Willer, M., Farzaneh, T., Woltering, E.J., and Gallois, P. (2008). Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. Journal of Biological Chemistry 283, 774-783.

Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M.J., and Gietl, C. (2008). KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. American Journal of Botany 95, 1049-1062.

Jirage, D., Tootle, T.L., Reuber, T.L., Frost, L.N., Feys, B.J., Parker, J.E., Ausubel, F.M., and Glazebrook, J. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid s

ignaling. Proceedings of the National Academy of Sciences of the United States of America 96, 13583-13588.

Kato, H., Motomura, T., Komeda, Y., Saito, T., and Kato, A. (2010). Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. Journal of Plant Physiology 167, 571-577.

Kendall, S.L., Hellwege, A., Marriot, P., Whalley, C., Graham, I.A., and Penfield, S. (2011). Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. Plant Cell 23, 2568-2580.

Kim, K.-C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. Plant Cell 20, 2357-2371. Laluk, K., and Mengiste, T. (2011). The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. Plant Journal 8, 480-494.

Okr6ent, R.A., and Wildermuth, M.C. (2011). Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Molecular Biology 76, 489-505.

Pecenkova, T., Hala, M., Kulich, I., Kocourkova, D., Drdova, E., Fendrych, M., Toupalova, H., and Zarsky, V. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. Journal of Experimental Botany 62, 2107-2116.

Ruzvidzo, O., Donaldson, L., Valentine, A., and Gehring, C. (2011). The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem. Journal of Plant Physiology 168, 1710-1714.

Saenz-Mata, J., and Francisco Jimenez-Bremont, J. (2012). HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction. International Journal of Molecular Sciences 13, 9110-9128.

Sehr, E.M., Agusti, J., Lehner, R., Farmer, E.E., Schwarz, M., and Greb, T. (2010). Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal 63, 811-822.

Uppalapati, S.R., Ishiga, Y., Ryu, C.-M., Ishiga, T., Wang, K., Noel, L.D., Parker, J.E., and Mysore, K.S. (2011). SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytologist 189, 83-93.

von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., Faus-Kessler, T., Schmitt-Kopplin, P., and Schaeffner, A.R. (2011). The Arabidopsis Glucosyltransferase UGT76B1 Conjugates Isoleucic Acid and Modulates Plant Defense and Senescence. Plant Cell 23, 4124-4145.

Walter, N., and Holweg, C.L. (2008). Head-neck domain of Arabidopsis myosin XI, MYA2, fused with GFP produces F-actin patterns that coincide with fast organelle streaming in different plant cells. Bmc Plant Biology 8.

Wang, Y.H., Gehring, C., and Irving, H.R. (2011). Plant Natriuretic Peptides are Apoplastic and Paracrine Stress Response Molecules. Plant and Cell Physiology 52, 837-850.

Wenke, K., Wanke, D., Kilian, J., Berendzen, K., Harter, K., and Piechulla, B. (2012). Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. Plant Journal 70, 445-459.

Wojas, S., Hennig, J., Plaza, S., Geisler, M., Siemianowski, O., Sklodowska, A., Ruszczynska, A., Bulska, E., and Antosiewicz, D.M. (2009). Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environmental Pollution **157**, 2781-2789.

Yang, W.-Y., Zheng, Y., Bahn, S.C., Pan, X.-Q., Li, M.-Y., Vu, H.S., Roth, M.R., Scheu, B., Welti, R., Hong, Y.-Y., and Wang, X.-M. (2012). The Patatin-Containing Phospholipase A pPLAII alpha Modulates Oxylipin Formation and Water Loss in Arabidopsis thaliana. Molecular Plant 5, 452-460.

Supplemental Table 4: Frequency of Gene Ontology terms (GO) represented in the 86 genes (see Table 4) up regulated in both atg5 and atg9 independently of nitrate conditions or plant age. Below is AGRIGO representation of the GO terms.

	Term	Observed Frequency	Expected Frequency	p-value
GO:0050896	response to stimulus	30 out of 81 genes, 37%	3498 out of 27870 genes, 12.6%	9.77E-06
GO:0006950	response to stress	20 out of 81 genes, 24.7%	2058 out of 27870 genes, 7.4%	0.000235
GO:0042221	response to chemical stimulus	19 out of 81 genes, 23.5%	1824 out of 27870 genes, 6.5%	0.000235
GO:0051707	response to other organism	10 out of 81 genes, 12.3%	551 out of 27870 genes, 2%	0.000652
GO:0006952	defense response	11 out of 81 genes, 13.6%	734 out of 27870 genes, 2.6%	0.000722
GO:0006955	immune response	7 out of 81 genes, 8.6%	260 out of 27870 genes, 0.9%	0.000722
GO:0009607	response to biotic stimulus	10 out of 81 genes, 12.3%	603 out of 27870 genes, 2.2%	0.000722
GO:0045087	innate immune response	7 out of 81 genes, 8.6%	256 out of 27870 genes, 0.9%	0.000722
GO:0051704	multi-organism process	10 out of 81 genes, 12.3%	581 out of 27870 genes, 2.1%	0.000722
GO:0002376	immune system process	7 out of 81 genes, 8.6%	292 out of 27870 genes, 1%	0.00134
GO:0010200	response to chitin	5 out of 81 genes, 6.2%	127 out of 27870 genes, 0.5%	0.00194
GO:0009751	response to salicylic acid stimulus	5 out of 81 genes, 6.2%	144 out of 27870 genes, 0.5%	0.00316
GO:0009617	response to bacterium	6 out of 81 genes, 7.4%	251 out of 27870 genes, 0.9%	0.00371
GO:0009863	salicylic acid mediated signaling pathway	3 out of 81 genes, 3.7%	29 out of 27870 genes, 0.1%	0.00371
CO:0071446	NA	2 out of 91 gapper 2 7%	20 out of 27970 genos 0.1%	0.00271

Level9	\rightarrow	is_a
– Level8	\longrightarrow	part_of
– Level7	\rightarrow	positive_regulate
_ Level6	\longrightarrow	regulate
_ Level5	\longrightarrow	negative_regulate
_ Level4		two significant nodes
Level3	••••	one significant node
Level2		
Lavalt		

Supplemental Table 5: Gene Ontology terms (GO) represented in the list of genes significantly up regulated in (i) atg5 and atg9 [atg5&atg9] grown under low nitrate conditions for 30 DAS, (ii) atg5 and atg9 [atg5&atg9] grown under low nitrate conditions for 60 DAS and (iii) atg5 grown under high nitrate conditions for 60 DAS. Only GO terms with high significance (FDR<10-5) in at least one of the three gene lists are presented. Yellow to Orange colour intensities are relative to significance and inversely proportional to the FDR values.

GO Informatio	n	atg5&atg9 30DAS lowN	atg5&atg9 60DAS lowN	atg5 60DAS highN
GO Term	Description	FDR	FDR	FDR
GO:0006952	defense response	1.10E-09	3.10E-26	1.80E-20
GO:0009607	response to biotic stimulus	4.40E-07	8.90E-18	7.40E-15
GO:0051707	response to other organism	9.30E-06	3.20E-17	1.00E-13
GO:0050896	response to stimulus	1.70E-07	1.70E-15	3.50E-14
GO:0006950	response to stress	3.10E-06	5.10E-15	2.90E-15
GO:0006955	immune response	6.80E-06	5.10E-15	5.30E-10
GO:0002376	immune system process	7.10E-06	5.10E-15	5.40E-10
GO:0045087	innate immune response	9.90E-06	3.10E-14	7.00E-09
GO:0051704	multi-organism process	7.30E-06	4.10E-14	6.40E-13
GO:0009617	response to bacterium	0.00086	1.20E-13	1.40E-11
GO:0010200	response to chitin	3.30E-08	2.20E-13	1.50E-17
GO:0031347	regulation of defense response	0.033	7.50E-12	0.0001
GO:0042221	response to chemical stimulus	3.20E-05	2.70E-11	2.40E-10
GO:0042742	defense response to bacterium	0.0018	5.40E-10	5.10E-09
GO:0080134	regulation of response to stress		6.90E-10	7.50E-05
GO:0010033	response to organic substance	2.70E-07	1.80E-09	2.20E-08
GO:0009620	response to fungus		5.00E-09	7.50E-05
GO:0009743	response to carbohydrate stimulus	3.20E-05	9.30E-09	2.80E-13
GO:0050832	defense response to fungus		1.30E-08	9.00E-06
GO:0003824	catalytic activity	3.20E-06	2.60E-07	1.20E-06
GO:0016798	hydrolase activity, acting on glycosyl bonds		1.70E-06	0.00021
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compo		1.70E-06	0.00055
GO:0009814	defense response, incompatible interaction		2.30E-06	4.60E-06
GO:0016787	hydrolase activity	0.022	8.40F-06	0.00055
GO:0016301	kinase activity	5 80F-08	1 60E-05	1 20F-06
GO:0016265	death		2 50E-05	0.031
GO:0008219	cell death		2 50E-05	0.031
GO:0009751	response to salicylic acid stimulus		4 30E-05	4 50E-05
GO:0019825	oxygen hinding		4 70E-05	0.0015
GO:0019623	regulation of response to stimulus		5 30E-05	
GO:0006979	response to oxidative stress		0.00014	2 30F-05
GO:0009816	defense response to bacterium incompatible int	·	0.00014	2.30E 05
GO:0016740	transferase activity	1 70E-06	0.00011	5.40E-06
GO:0016740	protein amino acid phosphorylation	1.70E-00	0.00020	8.40E-08
GO:0009605	response to external stimulus		0.00048	5 70E-05
GO:0005005	transferase activity transferring phosphorus-cor	7 90F-07	0.00040	7.40E-05
GO:0019748	secondary metabolic process		0.001	6 60E-06
GO:0006793	nhosphorus metabolic process	5 10F-08	0.0011	4 80E-06
60:0043687	nost-translational protein modification	1 50E-08	0.002	9.005-06
GO:0009611	response to wounding		0.0021	1 10E-05
GO:0006796	nbosnhate metabolic process	5 10F-08	0.0020	7.80E-06
GO:0016310	nhosphorylation	3.10E-00	0.0025	4.40E-06
GO:0010310	linid localization	7 20E-14	0.0037	7 20E-14
GO:0016676	nrotein modification process	7.305-08	0.0047	0.0015
GO:0000404	nurine nucleoside hinding	6 10E-09		0.0013
GO:0001883		6 10E-09		0.0017
GO:0001082	adapyl pucloatida binding	6 10E 09		0.0017
GO:0030334	puring purcleotide binding	1 205 08		0.0017
GO:0017070		1.201-08		0.011
GO:0000100		1.70E-08		
GO:0003524	adaput ribaputaatida hinding	7.50E-08		0.012
GO:0032559	adenyi hibohucleotide binding	9.50E-06 2 E0E 07		0.015
GO.0032555	ribonucleotide binding	2.50E-07		0.046
GO:00022553	noonucleotide binding	2.50E-07		0.046
GO:0009791		2.80E-07		
GU:0043412	macromolecule modification	9.10E-07		0.027
GO:0003700	transcription factor activity	3.20E-06		0.033
GO:00036//	Dive binding	6.90E-06		
GO:0004674	protein serine/threonine kinase activity	7.90E-05		
GO:0004672	protein kinase activity	7.90E-05		
GO:0030528	transcription regulator activity	7.90E-05		
GO:0005488	binding	9.10E-05		

Supplemental Table 6: Gene Ontology terms (GO) represented in the list of genes significantly down regulated in (i) *atg5* and *atg9* [*atg5*&atg9] grown under low nitrate conditions for 30 DAS, (ii) *atg5* and *atg9* [*atg5*&atg9] grown under low nitrate conditions for 60 DAS and (iii) *atg5* grown under high nitrate conditions for 60 DAS. Blue colour shows GO terms represented in at least two of these lists.

GO Information		atg5&atg9 30DAS lowN	atg5&atg9 60DAS lowN	atg5 60DAS highN
GO Term	Description	FDR	FDR	FDR
GO:0010876	lipid localization	0.00025		0.0055
GO:0005199	structural constituent of cell wall	0.0038		
GO:0003700	transcription factor activity	0.016		
GO:0004091	carboxylesterase activity	0.029		
GO:0030528	transcription regulator activity	0.035		
GO:0012505	endomembrane system	0.0072		0.048
GO:0031225	anchored to membrane	0.023		
GO:0042545	cell wall modification		0.0097	
GO:0042547	cell wall modification during multidimensional cell growth		0.025	
GO:0009831	plant-type cell wall modification during multidimensional cell growth		0.025	
GO:0009631	cold acclimation		0.025	
GO:0009828	plant-type cell wall loosening		0.025	
GO:0009827	plant-type cell wall modification		0.035	
GO:0009698	phenylpropanoid metabolic process			0.001
GO:0009699	phenylpropanoid biosynthetic process			0.0034
GO:0010584	pollen exine formation			0.0093
GO:0019748	secondary metabolic process			0.01
GO:0008299	isoprenoid biosynthetic process			0.015
GO:0010927	cellular component assembly involved in morphogenesis			0.02
GO:0042398	cellular amino acid derivative biosynthetic process			0.02
GO:0010208	pollen wall assembly			0.02
GO:0006575	cellular amino acid derivative metabolic process			0.02
GO:0009813	flavonoid biosynthetic process			0.02
GO:0005982	starch metabolic process			0.033
GO:0019438	aromatic compound biosynthetic process			0.04
GO:0009812	flavonoid metabolic process			0.04
GO:0006720	isoprenoid metabolic process			0.046
GO:0016798	hydrolase activity, acting on glycosyl bonds			0.0054
GO:0016746	transferase activity, transferring acyl groups			0.017
GO:0016747	transferase activity, transferring acyl groups other than amino-acyl groups			0.017
GO:0004553	hydrolase activity, hydrolyzing O-glycosyl compounds			0.025
GO:0019825	oxygen binding			0.034
GO:0046527	glucosyltransferase activity			0.034

Supplemental Table 7: Differential expression in atg5 and atg9 relative to wild type of genes involved in the nitrogen assimilation pathway and in aspartate and glutamate metabolism. The Log2(fold change) values of the significantly differentially expressed genes are presented (FDR%<10.5). Comparisons are in atg5 and atg9 relative to wild type under Low nitrate (LowN) conditions, 30 and 60 days after sowing (DAS) and under High nitrate (HighN) conditions 60 days after sowing. ns is non significant.

		atg5 & atg9	atg5 & atg9	atg5
		LowN 30DAS	LowN 60DAS	HighN 60DAS
AT1G77760	NIA1 (NITRATE REDUCTASE 1)	ns	1.19	ns
AT1G37130	NIA2 (NITRATE REDUCTASE 2)	ns	ns	ns
AT2G15620	NIR1 (NITRITE REDUCTASE 1)	ns	ns	ns
AT5G04140	GLU1 (Fd-GLUTAMATE SYNTHASE)	ns	ns	ns
AT2G41220	GLU2 (Fd-GLUTAMATE SYNTHASE)	2.30	ns	ns
AT5G53460	GLT1 (NADH-GLUTAMATE SYNTHASE)	ns	ns	ns
AT5G35630	GS2 (chloroplast GLUTAMINE SYNTHETASE 2)	ns	ns	ns
AT5G37600	GLN1;1 (cytosol GLUTAMINE SYNTHETASE)	ns	ns	1.34
AT1G66200	GLN1;2 (cytosol GLUTAMINE SYNTHETASE)	ns	ns	ns
AT3G17820	GLN1;3 (cytosol GLUTAMINE SYNTHETASE)	ns	ns	ns
AT5G16570	GLN1;4 (cytosol GLUTAMINE SYNTHETASE)	ns	ns	1.71
AT1G48470	GLN1;5 (cytosol GLUTAMINE SYNTHETASE)	ns	ns	ns
AT5G18170	GDH1 (GLUTAMATE DEHYDROGENASE 1)	ns	ns	ns
AT5G07440	GDH2 (GLUTAMATE DEHYDROGENASE 2)	ns	2.12	ns
AT3G03910	GDH3 (GLUTAMATE DEHYDROGENASE 3)	ns	0.98	ns
AT1G51720	glutamate dehydrogenase, putative	ns	0.27	ns
AT3G47340	ASN1 (ASPARAGINE SYNTHASE 1)	ns	2.73	ns
AT5G65010	ASN2 (ASPARAGINE SYNTHETASE 2)	ns	ns	ns
AT5G10240	ASN3 (ASPARAGINE SYNTHETASE 3)	ns	ns	ns
AT2G30970	ASP1 (ASPARTATE AMINOTRANSFERASE 1)	ns	ns	ns
AT5G19550	ASP2 (ASPARTATE AMINOTRANSFERASE 2)	ns	ns	ns
AT5G11520	ASP3 (ASPARTATE AMINOTRANSFERASE 3)	ns	1.33	1.25
AT1G62800	ASP4 (ASPARTATE AMINOTRANSFERASE 4)	ns	-1.13	ns
AT4G31990	ASP5 (ASPARTATE AMINOTRANSFERASE 5)	ns	ns	ns

Supplemental Table 8: Differential expression in *atg5* relative to wild type of genes involved in the shikimate and flavonoid pathways and reported by Lillo et al. (2008). The Log2(fold change) values of the differentially expressed genes are presented (FDR%<10-5). Yellow and blue colours indicate significant up and down regulations, respectively.

Shikimate pat	hway	atg5 lowN 30DAS	atg5 lowN 60DAS	atg5 highN 60DAS
AT4G39980	DHS1	-0.020	-0.532	-0.417
AT4G33510	DHS2	0.516	0.236	-0.218
AT1G22410	DHS3	0 166	1 132	0 382
ATECEGIO	2 debudroquinate auntheas	0.114	0.060	0.322
AT3000120	MEEOO O debuderouis etc. debudertese	0.114	-0.000	-0.222
AT3G06350	MEE32 3-denydroquinate denydratase	0.260	-0.012	-0.099
A12G35500	shikimate kinase-related	0.454	-0.541	-0.597
AT2G21940	shikimate kinase, putative	1.970	-0.520	-0.328
AT4G39540	shikimate kinase family protein	0.119	-0.433	-0.374
AT2G16790	shikimate kinase family protein	0.166	1.169	0.465
AT3G26900	shikimate kinase family protein	0.186	0.303	0.044
AT5G47050	protein binding / zinc ion binding	0.098	-0.387	0.045
AT1G06890	transporter-related	0.413	-0.656	-0.258
AT2G45300:A	3-phosphoshikimate 1-carboxyvinyltransferase / 5-enolpyruyylshikimate-3-pho	-0.219	-0.232	-0.061
AT1G48850	EMB1144 chorismate synthase	0.083	-0.172	-0.292
AT3G29200	CM1 (CHORISMATE MUTASE 1)	-0.373	0.197	0.227
AT5G10870	ATCM2 (chorismate mutase 2)	-0 103	-0 304	-0.090
AT3C 20610	SUD1 S alluthishudravimeta lugas/ aarban sulfur lugas/ transaminasa	-0.105	0.304	0.050
AT2020010		-0.335	-0.335	-0.137
AT2G38400	AGT3 (ALANINE:GLY OXYLATE AMINUTRANSFERASE 3)	0.549	2.727	2.103
A15G22630	AD15 (arogenate dehydratase 5)	0.201	0.407	0.328
AT1G11790	ADT1 (arogenate dehydratase 1)	-0.029	-0.066	-0.172
AT3G07630	ADT2 (arogenate dehydratase 2)	1.328	0.296	-0.083
AT3G44720	ADT4 (arogenate dehydratase 4)	0.430	1.298	1.172
AT1G08250	ADT6 (arogenate dehydratase 6)	0.615	0.020	-0.159
AT2G27820	PD1 (PREPHENATE DEHYDRATASE 1)	-0.415	-0.441	-0.571
Flavonoid pa	thway	atg5 lowN 30DAS	atg5 lowN 60DAS	atg5 highN 60DAS
AT3G10340	PAL4 (Phenylalanine ammonia-lyase 4)	-0.122	0.574	0.762
AT5G04230	PAL3 (PHENYL ALANINE AMMONIA-LYASE 3): nhenvlalanine ammonia-lyase	-0.796	-0.900	-0.116
AT3G53260	PAI 2: phenylalanine ammonia-lyase	-0 104	-0 270	-1.053
AT3C37040	nal1 (Dha ammania lugas 1)	-0.104	0.270	1.031
AT2037040		0.004	0.337	0.254
AT2G30490		0.155	-0.005	-0.254
AI1G51680	4CL1 (4-COUMARATE:COA LIGASE 1)	0.017	-0.040	-0.051
AI1G65060	4CL3; 4-coumarate-CoA ligase	0.361	-0.541	-1.475
AT3G21230	4CL4 4CL5 (4-coumarate:COA ligase 5)	-0.145	-0.191	-0.137
AT3G21240	4CL2 (4-COUMARATE:COA LIGASE 2)	-0.818	-0.333	-0.074
AT1G20490	4CL AMP-dependent synthetase and ligase family protein	-0.336	-1.412	-1.554
AT5G13930	TT4 (TRANSPARENT TESTA 4)	0.101	-1.103	-1.012
AT3G55120	TT5 (TRANSPARENT TESTA 5)	-0.056	-1.060	-1.836
AT3G51240	TT6 F3H (FLAVANONE 3-HYDROXYLASE)	0.370	-0.479	-1.509
AT5G07990	TT7 (TRANSPARENT TESTA 7)	-0.278	-1.982	-3.424
AT5G08640	FLS (FLAVONOL SYNTHASE)	0.205	-0.468	-0.983
AT3G50210	FLS 2-oxoacid-dependent oxidase, putative	-0.290	-0.304	-0.173
AT5G63580	FLS2 (FLAVONOL SYNTHASE 2)	-0.466	-0.778	-0.462
AT5G63590	FLS3 (FLAVONOL SYNTHASE 3)	0.778	1.384	0.922
AT5G63600	ELS5 (ELAVONOL SYNTHASE 5)	1,929	0.988	2,287
AT1G06000	EGT UDP-glucoronosyl/UDP-glucosyl transferase family protein	0.411	0 111	-0 179
AT1G30530	FGT LIGT78D1 (UDP-GLUCOSYLTRANSFERASE 78D1)	-0.058	-0.827	-0.369
at2a22500	FGT transferase, transferring divosvil groups	0.000	0.027	0.124
at2y22390		-0.038	0.202	0.124
at4915460		2.550	2.142	0.408
at5g17030	FGT UG176D3 (UDP-GLUCOSTL TRANSFERASE 76D3)	-0.897	-0.850	-0.239
at5g17050	FGT UG178D2 (UDP-GLUGUSTL TRANSFERASE 78D2)	-0.295	-0.301	-1.580
at5g42800	DFR (TT3, DIHYDROFLAVONOL 4-REDUCTASE)	-0.157	-1.598	-2.842
AT4G22870;A	LDOX, ANS [AT4G22870, leucoanthocyanidin dioxygenase, putative / anthocy	-0.331	-1.331	-2.684
at5g17050	AGT UGT78D2 (UDP-GLUCOSYL TRANSFERASE 78D2)	-0.295	-0.301	-1.580
at4g14090	AGT UDP-glucoronosyl/UDP-glucosyl transferase family protein	0.130	-1.699	-2.729
at5g54060	AGT UF3GT (udp-glucose:flavonoid 3-O-glucosyltransferase)	-0.440	-2.162	-2.874
at3g21560	AGT UGT84A2; UDP-glycosyltransferase/ sinapate 1-glucosyltransferase	0.170	-0.673	-0.888
at2g29750	AGT UGT71C1 (UDP-GLUCOSYL TRANSFERASE 71C1); UDP-glycosyltrans	2.307	-0.525	0.690
at4g01070	AGT GT72B1; UDP-glucosyltransferase	-0.042	-0.288	-0.134
at1g22370	AGT AtUGT85A5 (UDP-glucosyl transferase 85A5)	0.668	-0.002	-0.431
at3q29590	AAT AT5MAT; O-malonyltransferase/ transferase	0.002	-1.457	-2.547
AT1G03940 A	transferase/ transferase, transferring acvl groups other than amino-acvl groups	-0.195	-1.137	-2.740
at5g17220	GST ATGSTF12 (ARABIDOPSIS THAI IANA GI LITATHIONE S-TRANSFERAS	-0.086	-2.032	-2.997
at1002940	GSTE5 (GLUTATHIONE S-TRANSFERASE (CLASS PHI) 5)	-1.204	-1.067	-0.893
AT5G61160	AACT1 (anthocyanin 5-aromatic acyltransferase 1)	-2 025	-4 154	2 105
Flavonoid Rev	nulation	ata5 lowN 30DAS	ata5 lowN 60DAS	ata5 highN 60DAS
AT1C12010		0.211	0.441	0.074
ATIGIZ910		-0.311	0.441	0.074
AT1056650		-0.162	-1.559	-2.094
A14G00730	ANLZ (ANTHOLYANINLESS Z)	0.243	-0.805	-0.097
AT5G24520	IIG1 (IRANSPARENT TESTA GLABRA 1)	-0.026	0.251	0.561
AT5G40330	MYB23 (MYB DOMAIN PROTEIN 23)	0.999	-0.402	-0.187
AT1G66370	MYB113 (myb domain protein 113)	-0.120	-0.825	-0.358
AT1G66380	MYB114 (myb domain protein 114)	3.171	-1.216	-0.914
AT4G09820	TT8 (TRANSPARENT TESTA 8)	1.525	-2.672	-3.381
AT1G66390	PAP2 MYB90 (MYB DOMAIN PROTEIN 90)	3.377	-1.472	-1.309
AT1G63650	EGL3 (ENHANCER OF GLABRA 3)	-0.467	-0.416	-1.153
AT3G27920	GL1 ATMYB0 (MYB DOMAIN PROTEIN 0)	0.260	-0.180	-3.016
AT5G14750	WER ATMYB66 (MYB DOMAIN PROTEIN 66)	0.769	-0.150	1.734
AT1G61720	BAN (BANYULS)	-0.544	-0.411	-0.200

Supplemental Table 9: Differential expression in *atg5* & *atg9* relative to wild type of senescence associated genes (SAG). The Log2(fold change) values of the differentially expressed genes are presented (FDR%<10⁻⁵). Yellow and blue colours indicate significant up and down regulations respectively. Yellow and blue colours indicate significant up and down regulations respectively.

	atg5&atg9 lowN 30DAS	atg5&atg9 lowN 60DAS	atg5 highN 60DAS
AT4G35770 SEN1 (SENESCENCE 1)	1.2109	4.5786	2.8685
AT2G29350 SAG13	1.1511	4.4036	3.0423
AT3G02040 SRG3	2.3063	2.7765	0.1033
AT1G19200 senescence-associated protein	-0.2973	2.8885	2.1315
AT5G13170 SAG29	2.9157	2.0904	1.1636
AT1G17020 SRG1 (SENESCENCE-RELATED GENE	1.5573	2.1439	1.7822
AT5G45890 SAG12 (SENESCENCE-ASSOCIATED	3.8548	3.8737	6.6250
AT4G02380 SAG21 (SENESCENCE-ASSOCIATED	3.4321	1.8345	2.2178
AT3G10985 SAG20 (SENESCENCE ASSOCIATED	1.8256	0.7924	0.6194
AT3G51250 senescence/dehydration-associated	-0.0972	0.4199	0.2193
AT3G48140 senescence-associated protein	0.0231	0.3727	0.3074
AT1G66330 senescence-associated family	-0.0382	0.0985	-0.1359
AT5G14930 SAG101 (SENESCENCE-ASSOCIATED	0.4348	0.7193	0.6426
AT4G35985 senescence/dehydration-associated	0.9390	0.3842	0.1568
AT1G20780 SAUL1 (SENESCENCE-ASSOCIATED	0.8330	0.3910	1.7061
AT1G71190 SAG18 (SENESCENCE ASSOCIATED	0.0263	-0.2102	-0.0385
AT2G25690 senescence-associated protein-relat	-0.7395	-0.3859	-0.7205
AT5G49120 senescence-associated protein-relat	-0.0494	-0.6251	-0.2357
AT3G21600 senescence/dehydration-associated	-0.7806	-0.7152	-0.2542
AT5G47060 senescence-associated protein-relat	0.2747	-0.4382	-0.3322
AT2G44670 senescence-associated protein-relat	0.2771	-0.3222	-0.0042
AT1G78020 senescence-associated protein-relat	-0.4244	-0.6136	-0.1015
AT1G74940 senescence-associated protein-relat	-0.0313	-0.3845	-0.2532
AT4G17670 senescence-associated protein-relat	-0.3637	0.3240	0.5174
AT5G11460 senescence-associated protein-relat	-0.4533	-0.7064	-0.5761
AT5G65040 senescence-associated protein-relat	-0.2106	-0.9072	-0.3758
AT3G22550 senescence-associated protein-relat	-0.3742	-1.1482	-0.6552
AT1G22160 senescence-associated protein-relat	0.2276	-0.7947	-0.1513
AT5G20700 senescence-associated protein-relat	0.5614	-0.9248	-0.3382

Supplemental Table 10: Differential expression (in atg5 and atg9 relative to wild type) of genes reponding to salicylic acid (SA), jasmonic acid (JA), pathogen/wounding/ethylen or involved in camalexin biosynthesis

in rosettes grown under low (lown) or high (highN) nitrate conditions for 30 (30DAS) or 60 (60DAS) days after sowing.

The log2(fold change) values of the differentially expressed genes are presented, yellow and blue colours indicate significant up and down regulations, respectively (FDR%<10-5).

Adapted from Leeuwen et al. 2007 Plant Cell

Gene Name ^a	AGI code	log2(FC) atg5 and atg9 lowN 30DAS atg5 and atg9	9 lowN 60DAS atg5 hig	N 60DAS
EDS1	At3g48090	0.76	1.77	1.37 SA regulated
PAD4	At3g52430	2.51	2.80	2.27 SA regulated
AtWRKY18	At4g31800	2.30	2.56	1.87 SA regulated
EDS5 (SID1)	At4g39030	0.30	1.98	1.33 SA regulated
PR1	At2g14610	2.42	5.02	2.17 SA regulated
PLDgamma1	At4g11850	0.45	0.95	1.41 SA regulated
WAK1	At1g21250	0.91	1.72	1.46 SA regulated
AtERF1	At4g17500	1.65	2.00	2.56 SA regulated
PR5	At1g75040	0.39	4.04	1.64 SA regulated
PAD3	At3g26830	2.15	3.56	2.09 SA regulated
RAR047	At2g03760	1.11	1.84	1.25 SA regulated
ap4.3a	At2g32800	0.73	0.89	0.77 SA regulated
PR2 (BGL2)	At3g57260	2.55	3.35	1.76 SA regulated
HEL (PR4)	At3g04720	0.75	0.00	0.37 SA regulated
NHL3	At5g06320	0.60	1.17	1.63 SA regulated
PDF1.2	At5g44420	2.08	-0.03	1.96 JA regulated
AtERT13	At2g44840	2.08	0.23	3.70 JA regulated
LOX1	At1g55020	-0.18	2.15	1.17 JA regulated
THI2.1	At1g72260	-0.95	-1.00	-1.18 JA regulated
LOX2	At3g45140	0.49	-0.34	-0.53 JA regulated
PLDbeta	At2g42010	0.97	-0.04	0.32 pathogen/wouding/ethylen
bg3	At3g57240	1.58	3.22	3.09 pathogen/wouding/ethylen
PR3 (CHIA4)	At3g54420	3.79	2.12	2.23 pathogen/wouding/ethylen
PAL2	At3g53260	-0.14	-0.30	-1.05 pathogen/wouding/ethylen
PAL1	At2g37040	0.57	0.22	-1.02 pathogen/wouding/ethylen
ECS1 (CXc750)	At1g31580	0.21	0.07	0.13 pathogen/wouding/ethylen
NPR1/NIM1	At1g64280	0.04	1.14	0.99 pathogen/wouding/ethylen
4CL	At1g51680	-0.13	-0.27	-0.05 pathogen/wouding/ethylen
ELI3	At4g37980	0.12	-0.65	-0.32 pathogen/wouding/ethylen
ASA1	At5g05730	0.16	1.13	0.99 pathogen/wouding/ethylen
AtCMPG1	At1g66160	2.04	1.78	1.17 pathogen/wouding/ethylen
PLDalpha1	At3g15730	-0.02	-0.39	-0.16 pathogen/wouding/ethylen
ap3.3a	At3g50360	0.52	-0.61	-0.33 pathogen/wouding/ethylen
DHS1	At4g39980	-0.03	-0.50	-0.42 pathogen/wouding/ethylen
CYP79B2; electron ca	ar AT4G39950	0.00	1.99	1.97 camalexin biosynthesis
CYP79B3; electron ca	ar AT2G22330	0.63	-0.38	-0.02 camalexin biosynthesis
CYP71A16; electron	ci AT5G42590	-0.91	-0.02	0.62 camalexin biosynthesis
CYP71A13 (cytochro	n AT2G30770	0.00	3.08	1.75 camalexin biosynthesis
cytochrome P450	AT4G13310;AT4	1.05	1.85	0.97 camalexin biosynthesis
WRKY33; transcriptio	oi AT2G38470	1.49	1.17	1.19 camalexin biosynthesis
PAD3 (PHYTOALEXIN	I AT3G26830	2.15	3.56	2.09 camalexin biosynthesis

Supplemental Table 11: Differential expression of WRKY genes in rosettes of atg5 relative to wild type, grown under low (lown) or high (highN) nitrate conditions for 30 (30DAS) or 60 (60DAS) days after sowing.

The log2(fold change) values of the differentially expressed genes are presented, Yellow and blue colours indicate significant up and down regulations. respectively (FDR%<10-5). Breeze et al. 2011

AGI	name	atg5&atg9 lowN 30DAS	atg5&atg9 lowN 60DAS	atg5 hidhN 60DAS	senescence related*
AT5G22570	WRKY38	4.40	5.58	2.22	no
AT5G13080	WRKY75	-0.24	5.67	4.74	yes
AT5G24110	WRKY30	1.08	5.21	3.24	yes
AT1G18860	WRKY61	-0.06	4.98	2.90	yes
AT3G01080	WRKY58	1.29	3.34	3.62	no
AT4G31800	WRKY18	2.30	2.56	1.87	no
AT3G01970	WRKY45	1.17	2.31	5.51	yes
AT2G46400	WRKY46	1.34	2.48	1.90	no
AT2G40750	WRKY54	1.78	2.67	1.46	no
AT3G56400	WRKY70	1.13	2.45	1.36	no
AT2G40740	WRKY55	0.21	2.16	1.97	ves
AT4G23810	WRKY53	1.25	2.06	2.24	no
AT1G80840	WRKY40	2.27	1.87	1.48	ves
AT5G15130	WRKY72	1.44	1.96	1.20	ves
AT1G64000	WRKY56	-0.43	2.20	-0.58	, no
AT2G30250	WRKY25	0.54	1.86	1.69	ves
AT2G23320	WRKY15	0.38	1.81	1.72	ves
AT2G25000	WRKY60	-0.42	1.27	1.14	no
AT2G38470	WRKY33	1.49	1.17	1.19	ves
AT1G62300	WRKY6	1.28	0.96	1.37	ves
AT5G49520	WRKY48	1.60	0.87	1 02	ves
AT1G55600	WRKY10	-1.07	0.52	1.28	no
AT1G69810	WRKY36	-1.70	0.89	2.05	ves
AT4G01720	WRKY47	0.77	1.05	1 19	ves
AT4G04450	WRKY42	0.56	0.44	-0.41	no
AT5G46350	WRKY8	0.20	0.44	0.41	no
AT2G24570	WRKY17	1 23	0.32	1 13	no
AT4G18170	WRKY28	1.23	0.52	1.15	ves
AT3G04670	WRKY39	-0.42	0.46	0.71	no
AT1G66550	WRKY67	0.15	0.18	-0.58	no
AT1G29860	WRKY71	-0.34	0.25	1 10	no
AT4G12020	WRKY19	0.12	0.14	0.31	no
AT5G07100	WRKY26	2 32	0.33	1.05	ves
AT1G13960	WRKY4	0.45	-0.06	-0.02	ves
AT4G01250	WRKY22	1 10	-0.03	0.52	no
AT1G69310	WRKY57	1.10	-0.05	0.02	no
AT4G24240	WRKY7	-0.43	0.00	-0.10	no
AT5G28650	WRKY74	-1 38	0.38	0.35	no
AT2G30590	WRKY21	-0.21	-0.15	-0.21	no
AT4G31550	WRKY11	0.17	-0.16	0.25	no
AT1G68150	WRKY9	1 45	-0.88	1.63	no
AT3G58710	WRKY69	-0 42	-0.22	-0 21	Vec
AT1G29280	WRKY65	0.42	-0.20	-0.35	ves
AT4G26640	WRKY20	-0.47	-0.47	0.03	no
AT4G26040	WRKY34	-0.46	0.47	-1 23	Ves
AT4G22070	WRKY31	0.42	-0.32	0.54	no
AT4G39410	WRKY13	0.42	-0.32	0.54	no
AT4G30935	WRKY32	-0 37	-0.60	-0.46	no
AT1G80590	WRKY66	-1 15	-0 51	0.02	no
AT2G03340	WRKY3	0.24	-0 30	-0.24	Ves
AT5656270	WRKV2	-0 42	-0.47	-0.24	,c.,
AT2G47260	WRKY23	0.42	-0.45	-0.06	no
AT5652820	WRKY27	0.11	-0.45	0.00	no
AT2G/6120	W/RKY/2	-0.10	-0.07	-1 52	no
AT1G20650	W/RKY1/	-1 77	-0.78	0.15	no
AT2G24820	WRKY35	-0.94	-1 75	0.13	no
		0.04	±./J	0.75	1 10

* according to Supplemental Dataset 1. Genes differentially expressed during senescence. Breeze et al. (2011) PLANTCELL 10.1105/tpc.111.083345

Supplemental Table 12: Differential expression (in atg5 & atg9 relative to wild type) of NAC genes in rosettes grown under low (lown) or high (highN) nitrate conditions for 30 (30DAS) or 60 (60DAS) days after sowing. The log2(fold change) values of the differentially expressed genes are presented, yellow and blue colours indicate significant up a

nd down regulations, respectively (FDR%<10Breeze et al. 2011.5).

AGI	NAC gene name	atg5 & atg9 lowN 30DAS	atg5 & atg9 lowN 60DAS	atg5 highN 60DAS	senescence related*
AT3G15500	ANAC055 (ARABIDOPSIS NAC	-1.37	4.79	4.35	yes
AT4G29230	anac075 (Arabidopsis NAC do	0.04	4.19	4.60	no
AT1G02220	ANAC003 (Arabidopsis NAC do	3.48	4.09	2.71	yes
AT2G17040	anac036 (Arabidopsis NAC do	2.67	2.24	1.95	no
AT1G52890	ANAC019 (Arabidopsis NAC do	0.34	2.29	2.29	yes
AT3G04060	anac046 (Arabidopsis NAC do	0.56	2.12	2.27	yes
AT3G61910	ANAC066 (ARABIDOPSIS NAC	0.93	2.04	-0.63	no
AT3G44350	anac061 (Arabidopsis NAC do	2.76	2.32	2.25	no
AT5G14000	anac084 (Arabidopsis NAC do	-0.61	2.01	2.98	ves
AT5G18270	ANAC087; transcription factor	0.87	2.16	1.43	yes
AT5G39610	ATNAC6 (ARABIDOPSIS NAC D	0.32	2.04	2.22	yes
AT3G04070	anac047 (Arabidopsis NAC do	0.74	2.07	1.66	ves
AT3G17730	anac057 (Arabidopsis NAC do	1.52	1.80	0.74	no
AT2G43000	anac042 (Arabidopsis NAC do	-0.90	1.60	1.51	yes
AT5G22380	anac090 (Arabidopsis NAC do	3.06	1.69	1.51	no
AT1G69490	NAP (NAC-like, activated by A	1.75	1.63	2.34	yes
AT1G34180	anac016 (Arabidopsis NAC do	0.02	1.38	1.56	yes
AT5G56620	anac099 (Arabidopsis NAC do	0.77	1.50	-0.46	no
AT5G63790	ANAC102 (ARABIDOPSIS NAC	0.38	1.06	1.24	yes
AT3G29035	ATNAC3 (ARABIDOPSIS NAC D	0.19	0.94	0.94	yes
AT5G62380	ANAC101 (ARABIDOPSIS NAC-	0.69	0.80	1.22	no
AT4G17980	anac071 (Arabidopsis NAC do	-1.52	0.64	0.74	no
AT1G01010	ANAC001 (Arabidopsis NAC do	1.27	0.75	0.42	no
AT1G28470	ANACO10 (ARABIDOPSIS NAC	-1.06	0.64	-0.16	no
AT1G32870	ANAC13 (Arabidopsis thaliana	1.18	0.69	0.39	ves
AT5G64060	anac103 (Arabidopsis NAC do	0.12	0.93	1.02	yes
AT1G02250	anac005 (Arabidopsis NAC do	-0.01	0.60	-0.73	ves
AT5G07680	ANACO80 (ARABIDOPSIS NAC	2.24	0.73	2.01	yes
AT3G10500	anac053 (Arabidopsis NAC do	-0.10	0.67	0.72	yes
AT5G61430	ANAC100 (ARABIDOPSIS NAC	-0.22	1.00	0.71	yes
AT5G09330	anac082 (Arabidopsis NAC do	-0.25	0.66	0.22	no
AT2G33480	ANAC041 (Arabidopsis NAC do	0.24	0.73	0.85	yes
AT1G77450	anac032 (Arabidopsis NAC do	0.28	0.49	0.52	yes
AT1G25580	ANAC008 (Arabidopsis NAC do	1.26	0.66	0.61	no
AT1G33280	ANAC015 (Arabidopsis NAC do	-0.10	0.78	1.25	no
AT1G56010	NAC1; transcription factor	2.10	0.43	0.03	yes
AT5G41090	anac095 (Arabidopsis NAC do	-0.99	0.15	0.37	no
AT3G03200	anac045 (Arabidopsis NAC do	-0.04	0.49	-1.59	no
AT5G04410	NAC2; transcription factor	-0.05	0.30	0.18	yes
AT5G13180	ANAC083 (ARABIDOPSIS NAC	-0.11	0.52	0.61	yes
AT1G60280	ANAC023 (Arabidopsis NAC do	-1.23	0.40	0.15	no
AT1G60350	anac024 (Arabidopsis NAC do	-0.81	0.11	0.23	no
AT5G39820	anac094 (Arabidopsis NAC do	0.14	0.10	0.84	no
AT2G24430	ANAC038 (ARABIDOPSIS NAC	-0.50	0.10	0.82	no
AT3G49530	anac062 (Arabidopsis NAC do	0.61	0.16	-0.18	yes
AT5G66300	NAC105 (NAC DOMAIN CONT	-0.58	-0.23	-0.66	no
A14G10350	ANACU/U (Arabidopsis NAC do	-0.64	-0.20	0.25	yes
AT1G65910	anac028 (Arabidopsis NAC do	0.07	-0.08	-0.12	no
AT4G28530	anac074 (Arabidopsis NAC do	-0.21	-0.25	-0.11	yes
AT1G32770	ANACO12 (ARABIDOPSIS NAC	-1.10	-0.35	1.86	no
A13G18400	anacu58 (Arabidopsis NAC do	0.10	-0.40	-0.43	no
AT1G34190	anacu17 (Arabidopsis NAC do	0.36	-0.05	0.09	yes
A15G1/260	anacuso (Arabidopsis NAC do	-0.26	-0.33	1.86	no
A15G04400	anacu77 (Arabidopsis NAC do	-0.72	-0.44	0.25	yes
A15G50820	anacu97 (Arabidopsis NAC do	1.60 v 0.21	-0.41	-0.18	no
AT1662700	ANACO26: transcription factor	-0.31	-0.52	-0.12	yes
AT1002/00	ANACO20, LI aliscriptioni ractor	1.00	-0.55	1 52	110
AT1034330		1.90	-0.10	20 20	110
AT4G01550	anac069 (Arabidonsis NAC do	0.35	-0.20	-0.20	no
AT2G02350	ANACO35 (Arabidonsis NAC do	0.10	-0.51	0.31	no
AT3G04420	anac048 (Arahidoneis NAC do	1 26	-0.54	-0 00	Vec
AT5G/6500	anac096 (Arabidonsis NAC do	-0 92	0.07	-0 44	, no
AT1G12260	ANAC007 (ARABIDOPSIS NAC	-1 27	-0.55	2 71	no
AT3G15510	ATNAC2 (ARABIDOPSIS NAC D	0.49	-0.35	0.12	ves
AT4G28500	ANAC073 (ARABIDOPSIS NAC	0.29	-0.73	0.04	no
AT1G61110	anac025 (Arabidopsis NAC do	-0.11	-0.26	-0.13	no

* according to Supplemental Dataset 1. Genes differentially expressed during senescence. Breeze et al. (2011) PLANTCELL 10.1105/tpc.111.083345