

## Supplemental Figure 1. AGL16 expression was repressed in m3.

Relative accumulation of *AGL16* transcripts was quantified with real-time RT-PCR and normalized to the transcript level of *Tubulin2* (**A**) or *PP2A* (**B**) in wild type (white bars), *agl16-1* (black bars) and *m3* (gray bars) seedlings at DAG9 grown under long-day conditions. **A** in Col-*FRI* and **B** in Col-0 backgrounds. Bars are standard deviation of three biological replicates. \*\* and \*\*\* indicate the significant difference comparing to wild types (Students' t-test; \*\*, p<0.01; \*\*\*, p<0.001).



## Supplemental Figure 2. *miR824* target mimicries flowered later under long-day conditions (supplementary to Figure 4).

Histograms with the y-axis indicating the number of individual plants as a function of the number of rosette leaves upon flowering (shown on x-axis). **A** for wild type Col-0 transformed with an empty binary vector and **B** for seven independent *MIM824* lines. In brackets: mean rosette leaf numbers, standard deviation and the total number of plant individuals tested (see Supplemental Dataset 1).



Supplemental Figure 3. *Promoter-miR824:GUS* staining reveals the expression of *miR824* in guard cells.

*Promoter-miR824:GUS* activity in guard cells of two stomata (taken from **Figure 5B**) is shown.



## Supplemental Figure 4. The expression of *AGL16* in wild type and mutants in both Col-0 (A) and Col-*FRI* (B) backgrounds.

Real-time PCR following reverse transcription was used to quantify the expression of *AGL16*, which was normalized to the expression level of *PP2A*, as shown on the y-axis. Aerial parts of nine-day-old seedlings grown under LD conditions was used to quantify the expression at each zeitgeber time points (from ZT0 to ZT24). From ZT0 to ZT16 is day time, while from ZT16 till ZT24 is night time as shown below the x-axis with open (day) and filled (night) bars. Bars indicated standard deviation of three technical replicates.



Supplemental Figure 5. The relative *FT* expression in a second independent trial confirming the pattern shown in Figure 5. A for Figure 5D, B for Figure 5E, and C for Figure 5F. See Figure 5 for detailed information.



Supplemental Figure 6. The relative expression in an indepdent trial confirming the expression pattern for *AGL16* observed in Figure 6A (A) in the *flc-3* mutant and for *FLC* (B) in the Col-0 background (supplemental for Figure 6B).



Supplemental Figure 7. Polymorphisms at *AGL16* are associated with flowering time variation in common garden conditions.

Flowering time (measured in photo-thermo-units (PTU) accumulated until flowering by Brachi et al. (2011); Supplemental Dataset 3), as a function of allelic combinations at *AGL16*, *FRI*, and *FLC*. Each box encloses the 25-75% quantiles of the distribution, with the horizontal line marking the median. The lines extending from each box mark the minimum (5%) and maximum (95%) of the distribution. Circles mark the outliers (outside of the 5-95% distribution). The number of accessions included is given for each allelic combination. Some allelic combinations are rare or absent from the set of accessions used by Brachi et al. (2011). *AGL16* genotypes were grouped in four haplotypes: C24 (77 accessions), Col-0 (71 accessions), SF-2 (7 accessions) and UK-4 (16 accessions); *FRI* alleles are grouped into F (functional) and N (non-functional); and *FLC* alleles are group in A and B alleles (see supplemental tables 3 and 4 for statistical analysis).

Brachi, B., Faure, N., Horton, M., Flahauw, E., Vazquez, A., Nordborg, M., Bergelson, J., Cuguen, J., and Roux, F. (2010). Linkage and association mapping of *Arabidopsis thaliana* flowering time in nature. PLoS Genet **6**, e1000940.

## Supplemental Table 1. Statistical significance for pairwise mean

flowering time differences among lines presented in Figure 3B.

| comparisons                                                     | t-test p-value | Bofferroni corrected |
|-----------------------------------------------------------------|----------------|----------------------|
| agl16/fri/FLC/miR824 (agl16-1) vs. AGL16/fri/FLC/miR824 (WT)    | 0.000168608    | 0.001854692          |
| AGL16/fri/FLC/miR824-OX (m3) vs. AGL16/fri/FLC/miR824 (WT)      | 0.004062761    | 0.044690368          |
| AGL16/fri/flc/miR824 vs. AGL16/fri/FLC/miR824 (WT)              | 0.00191289     | 0.021041793          |
| agl16/FRI/FLC/miR824 vs. AGL16/FRI/FLC/miR824 (Col-FRI)         | 1.87326E-09    | 2.06058E-08          |
| AGL16/FRI/FLC/miR824-OX vs. AGL16/FRI/FLC/miR824 (Col-FRI)      | 7.12298E-06    | 7.83528E-05          |
| agl16/fri/flc/miR824 vs. AGL16/fri/FLC/miR824 (WT)              | 3.75172E-09    | 4.12689E-08          |
| agl16/fri/flc/miR824 vs. agl16/fri/FLC/miR824 (agl16-1)         | 0.000720086    | 0.007920949          |
| agl16/fri/flc/miR824 vs. AGL16/fri/flc/miR824                   | 4.74972E-06    | 5.2247E-05           |
| AGL16/FRI/flc/miR824 (flc-3) vs. agl16/FRI/flc/miR824           | 1.16049E-05    | 0.000127654          |
| agl16/FRI/flc/miR824 vs. agl16/FRI/FLC/miR824                   | 4.00558E-14    | 4.40613E-13          |
| AGL16/FRI/FLC/miR824 (Col-FRI) vs. AGL16/FRI/flc/miR824 (flc-3) | 2.74129E-13    | 3.01542E-12          |

Supplemental Table 2. Primers used in this study. \* for expression; \*\* for genotyping; \*\*\* for cloning.

Note that sequences underlined indicate the attB adaptor sequences.

| primer   | gene    | sequence (5' to 3')                                                            |
|----------|---------|--------------------------------------------------------------------------------|
| m151*    | AGL16   | ACCTCCACAAGAAAGTAAACCTAATGC                                                    |
| m152*    | AGL16   | TGGCTGAGCTGAAGATGGACATG                                                        |
| m177**   | AGL16   | CCGAGAGGTGGGACTATGGTT                                                          |
| m178**   | AGL16   | TCTCCATGCATTTTCGGTTTT                                                          |
| m698***  | AGL16   | ggggacaagtttgtacaaaaaagcaggcttcatgggaaggggcaagatcgcga                          |
| m915***  | AGL16   | ggggaccactttgtacaagaaagctgggtcttatgcaatgaaggaaaaatagttgagttgg                  |
| m169*    | FLC     | TTCAACTGGAGGAACACCTTGA                                                         |
| m170*    | FLC     | CATGAGTTCGGTCTTCTTGGC                                                          |
| m185**   | FLC     | TCATGCGGTACACGTGGCAA                                                           |
| m186**   | FLC     | TCGCCGGAGGAGAAGCTGTA                                                           |
| m1068*** | FLC     | $\underline{ggggacaagtttgtacaaaaaagcaggcttc} \\ ATGGGAAGAAAAAAACTAGAAATCAAGCG$ |
| m1069*** | FLC     | ggggaccactttgtacaagaaagctgggtcCTAATTAAGTAGTGGGAGAGTCACCGG                      |
| m187**   | FRI     | TTGATAAGGATGAGTGGTTCGA                                                         |
| m188**   | FRI     | TGTCAACAAAAGGAACCACCTT                                                         |
| m141*    | FT      | CTTGGCAGGCAAACAGTGTATGCAC                                                      |
| m142*    | FT      | GCCACTCTCCCTCTGACAATTGTAGA                                                     |
| m179**   | miR824  | TGATCCGTGTGGTCCTTCAA                                                           |
| m180**   | miR824  | GTCGGAAAAAGCCGTGATGTG                                                          |
| m165*    | PP2A    | TAACGTGGCCAAAATGATGC                                                           |
| m166*    | PP2A    | GTTCTCCACAACCGCTTGGT                                                           |
| P004**   | T-DNA   | TGGTTCACGTAGTGGGCCATCG                                                         |
| m149*    | TUBLIN2 | GAGAATGCTGATGAGTGCATGG                                                         |
| m150*    | TUBLIN2 | AGAGTTGAGTTGACCAGGGAACC                                                        |
| FTRe**   | FT      | TGGAGATATTCTCGGAGGTG                                                           |
| FTFw**   | FT      | TGTTCCTCCTACCTAATAAT                                                           |
| LHP1F*** | LHP1    | ggggacaagtttgtacaaaaaagcaggcttcATGAAAGGGGCAAGTGGTGCTG                          |
| LHP1R*** | LHP1    | ggggaccactttgtacaagaaagctgggtcAGGCGTTCGATTGTACTTGAGATG                         |
| m147*    | SVP     | CAAGGACTTGACATTGAAGAGCTTCA                                                     |
| m148*    | SVP     | CTGATCTCACTCATAATCTTGTCAC                                                      |
| m189**   | SVP     | acccactagttatcagctcagttcctatc                                                  |
| m190**   | SVP     | Ccataatgatctaaagctcaactctctacac                                                |

**Supplemental Table 3.** Statistical test of *AGL16* allele association with flowering time in field conditions (Data from Brachi et al. 2011). Final model used for the *glm* analysis in R is (FT ~ AGL16 + FRI + FLC + PC1 + PC2 + AGL16:FLC + FRI:FLC + AGL16:FRI:FLC), following the recommendations by Crawley (2005). The flowering time data PTU was considered as count data. As a poisson fit gave signs of over-dispersion, quasipoisson correction was applied.

|                        | Estimate  | Std. Error | t_value | Pr(> t ) |       |
|------------------------|-----------|------------|---------|----------|-------|
| (Intercept)            | 6.304433  | 0.216149   | 29.167  | < 2e-16  | * * * |
| AGL16_COL              | 0.008211  | 0.025385   | 0.323   | 0.74681  |       |
| AGL16_SF-2             | -0.160863 | 0.049302   | -3.263  | 0.00137  | **    |
| AGL16_UK-4             | -0.032530 | 0.038131   | -0.853  | 0.39495  |       |
| FRI_N                  | 0.029749  | 0.032379   | 0.919   | 0.35969  |       |
| FLC_B                  | 0.092755  | 0.033414   | 2.776   | 0.00621  | **    |
| PC1                    | -2.490262 | 2.854973   | -0.872  | 0.38446  |       |
| PC2                    | 0.015051  | 0.111857   | 0.135   | 0.89315  |       |
| AGL16_COL:FLC_B        | -0.109686 | 0.058954   | -1.861  | 0.06477  |       |
| AGL16_SF-2:FLC_B       | 0.001335  | 0.120107   | 0.011   | 0.99114  |       |
| AGL16_UK-4:FLC_B       | -0.020025 | 0.074685   | -0.268  | 0.78897  |       |
| FRI_N:FLC_B            | -0.140403 | 0.049272   | -2.850  | 0.00499  | **    |
| AGL16_COL:FRI_N:FLC_A  | -0.037258 | 0.045272   | -0.823  | 0.41182  |       |
| AGL16_COL:FRI_N:FLC_B  | 0.163533  | 0.065350   | 2.502   | 0.01341  | *     |
| AGL16_UK-4:FRI_N:FLC_B | 0.079913  | 0.090797   | 0.880   | 0.38019  |       |

**Supplemental Table 4.** Wilcoxon rank sum test of pairwise mean flowering comparison for various allelic comparisons. Genotypes at *AGL16* (first position), *FRI* (middle position) and *FLC* (last position) are given.

| Comparison           | Wilcoxon rank sum test<br>W | Wilcoxon rank sum p-value |
|----------------------|-----------------------------|---------------------------|
| SF-2 and C24+Col+UK4 | 1026.5                      | 0.0004                    |
| Col;F;A and SF-2;F;A | 209                         | 0.0012                    |
| C24;F;B and C24;N;B  | 175                         | 0.002                     |
| C24;F;A and SF-2;F;A | 145                         | 0.0063                    |
| C24;F;B and Col;F;B  | 56.5                        | 0.0205                    |
| C24;F;A and C24;F;B  | 101                         | 0.0241                    |
| C24;N;B and Col;N;B  | 59.5                        | 0.0536                    |
| UK4;F;A and SF-2;F;A | 46                          | 0.093                     |
| Col;F;B and Col;N;B  | 19.5                        | 0.2177                    |
| C24;N;A and Col;N;A  | 133                         | 0.2297                    |
| Col;N;A and Col;N;B  | 66                          | 0.2343                    |
| Col;F;A and Col;F;B  | 96.5                        | 0.97                      |