

Supplemental Figure 1. Trichomes on sepals from *Arabidopsis* flowers. (A-D) Scanning electron micrographs (SEM) of sepals. In comparison to (A) wild-type Col in which unbranched trichomes form on sepals, (B) *hdg11-1* sepals display both unbranched and branched trichomes (arrow). (C) *gl2-5* mutant sepals display fewer trichomes that are aborted in differentiation (arrow), while (D) *gl2-5 hdg11-1* double mutants lack visible trichomes.

Supplemental Figure 2. *gl2-1 hdg11-3* double mutants from the Ler ecotype exhibit enhanced trichome differentiation defects. (A-D) Rosettes from 3-week-old plants. (A) Ler wild-type and (B) *hdg11-3* plants display evenly-spaced trichomes on young leaves. (C) *gl2-1* plants exhibit fewer trichomes. Arrows mark trichomes on leaf margins. (D) *gl2-1 hdg11-3* plants have glabrous leaf surfaces. (E-L) Scanning electron micrographs of first leaves reveal trichome morphology details. (E,I) Ler wild-type trichomes exhibit a maximum of 3-4 branches, while (F,J) *hdg11-3* leaves exhibit some trichomes with ectopic branching (arrows). (G,K) *gl2-1* leaves exhibit trichome branching (arrows) at leaf edges. In comparison, (H,L) *gl2-1 hdg11-3* trichomes appear smaller and undifferentiated. (M) Quantification of trichomes and trichome branching on first leaves as described in Figure 2U. Positive error bars indicate standard deviations for n \geq 20 plants. Asterisks indicate significant differences in trichome branching (Two-tailed *t*-test, P < 0.00001).

Supplemental Figure 3. Trichome phenotype of *gl2-5 hdg11-3* **mutants.** F3 progeny from a cross between *gl2-5* plants harboring the *ProGL2:EYFP:GL2* transgene and *hdg11-3* plants were analyzed for phenotypes. *gl2-5* single mutant segregants from an F2 line lacking EYFP expression were compared to the *gl2-5 hdg11-3* double mutants. **(A,B)** Rosette phenotypes of **(A)** *gl2-5* and **(B)** *gl2-5 hdg11-3* reveal trichomes on leaf margins of *gl2-5* plants (arrows) but few or no trichomes on leaf margins of the double mutant. **(C,D)** Magnification of leaf margins shows that **(C)** *gl2-5* plants display some trichomes with branching (red arrows), while **(D)** *gl2-5 hdg11-3* leaves display smaller trichomes that lack branching.

Supplemental Figure 4. Trichomes on first leaves of the *gl2-5 hdg11-1 myb23-3* triple mutant. (A-E) Scanning electron micrographs of first leaves. The double mutants (A) *gl2-5 hdg11-1* and (B) *gl2-5 myb23-3* display trichome differentiation defects that are similar to those observed for (C-E) *gl2-5 hdg11-1 myb23-3* triple mutants.

Supplemental Figure 5. Developmental defects of plants that are heterozygous for *hdg11-1* and/or *myb23-3*. (A-F) Trichome phenotypes of *gl2-5* plants heterozygous for *hdg11-1* and *myb23-3* are similar to those of the *gl2-5 hdg11-5* and *gl2-5 myb23-3* double mutants. (A,C,E) *gl2-5* plants exhibit both branched and unbranched trichomes on leaf margins. (C,E) Arrows indicate branched trichomes. (B,D,F) *gl2-5* plants heterozygous for *hdg11-1* and *myb23-3* exhibit leaves with fewer trichomes that are unbranched. (G) Seeds per silique were counted for 15 siliques from Col wild-type

(WT), *gl2-5* (*g*), *hdg11-1* (*h*), *myb23-3* (*m*), and double mutant and triple mutant combinations, as well as plants heterozygous for *hdg11-1* (*h/+*) and/or *myb23-3* (*m/+*). Standard deviations are indicated by error bars. Asterisks mark significant differences from WT (Two-tailed *t* test, P < 0.0001). (H) Mature siliques from Col WT, the triple mutant and various combinations of *hdg11-1/+ myb23-3/+* with and without the *gl2-5* mutation are shown. (I-L) Anthers were dissected from buds, fixed in Carnoy's solution, and stained as in (Peterson, 2010). Pollen was imaged with a 10x 0.3NA objective on an Olympus BX51WI microscope using a Canon T3i digital camera and DSLR Remote Pro software. (I) Col WT and (J) *gl2 hdg11 myb23* anthers exhibit viable pollen as indicated by magenta-red staining. In contrast, anthers from (K) *gl2-5 myb23-3/+ hdg11-1/+* and (L) *myb23-3/+ hdg11-1/+* plants show fewer viable pollen grains in addition to aborted pollen grains indicated by blue-green staining.

Reference

Peterson, R., Slovin, J.P, Chen, C. (2010). A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology 1.

Supplemental Figure 6. Intermediate trichome phenotype of hdg11-1 myb23-3 double mutants. Quantification of trichomes on first leaves. Green bars indicate the number of trichomes with 3-4 branches. Yellow bars show the number of trichomes with greater than four branches. Blue bars indicate the number of abnormal trichomes with fewer than three branches. Positive error bars indicate standard deviations for $n \ge 20$ plants, and the blue asterisk points to a significant decrease in the number of abnormal trichomes with fewer than three branches in the hdg11-1 myb23-3 double mutant in comparison to the myb23-3 single mutant (Two-tailed t test, P < 0.00001).

Supplemental Figure 7. Root hair density and seed mucilage phenotypes in the Ler ecotype. (A) Ler wild-type and (B) hdg11-3 exhibit normal root hair formation in contrast to (C) gl2-1 single and (D) gl2-1 hdg11-3 double mutants, which display excess root hair formation. Yellow arrows indicate abnormal root hair formation near the tips of the roots in gl2 mutants. (E) Quantification of root epidermal cells. Percentages of trichoblast cells in root hair cell files (R = brown bars), and atrichoblast cells in non root hair cell files (N = grey bars) are indicated (n \geq 20). Asterisks mark significant differences from Ler wild-type (Two-tiered t test, P > 0.0001). (F-H) Seeds were stained with ruthenium red to detect mucilage production upon imbibition. (F) Ler wild-type and (G) hdg11-3 seeds display mucilage in contrast to (H) gl2-1 single and (I) gl2-1 hdg11-3 double mutants which lack mucilage.

Supplemental Figure 8. Crude oil levels in *gl2* **single and** *gl2 hdg11* **double mutant seeds are similar.** In comparison to wild-type Col, *gl2* seeds exhibit higher percentages of crude oil. However, oil levels of *hdg11-1* seeds are similar to those of the wild type, and *gl2-5 hdg11-1* double mutant seeds are comparable to *gl2-5* seeds. A representative experiment from two biological replicates is shown with standard deviations for two 500-mg batches of seeds. The AOAC (Association of Analytical Communities) method 920.39 was used to perform quantitative oil analysis.

Supplemental Figure 9. Leaf and rosette phenotypes of gl2 and gl2 hdg11 mutant lines expressing ProGL2:EYFP:HDG11. (A) gl2-5 rosette leaves exhibit trichomes at leaf margins (yellow arrows). (B) gl2-5 hdg11-1 leaves appear largely devoid of trichomes. (C-E) gl2-5 mutants and (D,F) gl2-5 hdg11-1 mutants expressing ProGL2:EYFP:HDG11 display increased trichome formation on leaves. The trichomes are typically unbranched. (D) gl2-5 hdg11-1 mutants expressing ProGL2:EYFP:HDG11 resemble gl2-5 single mutants (yellow arrows), or (F) exhibit increased trichome differentiation phenotypes similar to those conferred by ProGL2:EYFP:HDG11 in the gl2-5 background (C,E). (G) gl2-5 and (H) gl2-5 hdg11-1 rosettes are shown. (I,K) gl2-5 mutants and (J,L) gl2-5 hdg11-1 mutants transformed with ProGL2:EYFP:HDG11 exhibit transient dwarf rosette phenotypes that appear either (I,J) symmetric or (K,L) notably asymmetric.

Supplemental Figure 10. Expression of HDG11 under the ATML1 epidermis-specific promoter induces trichome differentiation in gl2 mutants. (A,B) gl2-5 rosettes exhibit trichomes at the leaf margins but otherwise appear glabrous. (C) ProATML1:HDG11 construct. (D,F) Two independent transformants that express HDG11 under the ATML promoter are shown at the rosette stage. (D) Leaf curling (yellow arrow) and/or (F) pointy leaves were observed for several of the (E,G) Magnification of leaf lines. trichomes from ProATML1:HDG11 transformants in comparison to (B) untransformed gl2-5 plants indicates a partial rescue of the trichome phenotype.

Supplemental Figure 11. A natural polymorphism in the *MYB23* L1-box I from the **Gu-0** accession is correlated with reduced trichome branching. (A) Alignment of genomic sequence from the *MYB23* promoter in Col-0 and Gu-0 accessions. Single nucleotide polymorphisms (SNPs) are indicated for Gu-0 (yellow) and the L1-box 1 is boxed. (B) Quantification of trichomes and trichome branching on first leaves.

Percentages of trichomes with 2, 3, 4, or 5-branches are shown (n \ge 20) with standard deviations in parentheses. An asterisk marks a significant decrease in the number of 4-branched trichomes in Gu-0 in comparison to Col-0 (Two-tiered *t* test, P < 0.00001). (C) Graphical representation of the data in (B) illustrates numbers of 3-branched trichomes (green bars) and 4-branched trichomes (orange bars). (D) The rosettes of 10-day-old plants and (E) first leaves from Col-0 and Gu-0 accessions show similar leaf shapes. Yellow arrow marks a 4-branched trichome in Col-0. (F) Four-branched and 2-branched trichomes are shown for Col-0 and Gu-0, respectively. (G-H) Quantitative real-time PCR was performed with cDNA from 14-day-old seedling shoots. Data represent 3 biological replicates and normalized units are plotted on the Y-axis. Relative expression levels of (G) *MYB23* in comparison to *GL2*, and (H) *MYB23* and (I) *GL2* in comparison to the *ACT7* reference gene for the Col-0 and Gu-0 accessions. In (G), an asterisk marks a significant reduction of *MYB23* levels in Gu-0 in comparison to Col-0 (Two-tiered *t* test, P < 0.05).

Supplemental Figure 12. Comparison of *GL2* and *HDG11* expression in the developing seed. These data are derived from the Bio-Analytic Resource (BAR) *Arabidopsis* eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Developing seeds from *Arabidopsis* ecotype Wassilewskija (Ws-0) were harvested from reproductive plants grown under continuous light. Subdomains of the immature seeds were separated by laser capture microdissection, followed by RNA extraction and amplification prior to hybridization on the GeneChip *Arabidopsis* ATH1 Genome Array (Affymetrix, Inc.). The data were generated by the Bob Goldberg and John J. Hanada labs (Le et al., 2010). Images are adapted from Meryl Hashimoto.

Reference

Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J., Kwong, L., Belmonte, M., Kirkbride, R., Horvath, S., Drews, G.N., Fischer, R.L., Okamuro, J.K., Harada, J.J., and Goldberg, R.B. (2010). Global analysis of gene activity during *Arabidopsis* seed development and identification of seedspecific transcription factors. Proc Natl Acad Sci U S A 107, 8063-8070. Supplemental Table 1. Pairwise alignments between the homeodomains from GL2/At1g79840 and each of the 15 other class IV HD-Zip family members. Proteinprotein BLAST was performed with compositional score matrix (BLOSUM62) adjustment. The number of amino acids (aa) in each pairwise alignment is indicated. No gaps were found in the alignments. The HD-Zip derived sequences are sorted by % aa identity and % similarity to GL2/At1g79840. HDG11/At1g73360, HDG5/At5g46880 and PDF2/At4g04890 exhibit the largest degree of aa identity and similarity. HD-Zip transcription factors expressed in trichomes are indicated by an asterisk.

HD Domain	aa	% Identity	% Similarity
*HDG11/At1g73360	57	89	74
HDG5/At5g46880	59	88	75
PDF2/At4g04890	58	87	78
ATML1/At4g21750	57	85	65
*HDG2/At1g05230	56	85	70
*HDG12/At1g17920	57	84	68
ANL2/At4g00730	57	84	68
HDG4/At4g17710	59	83	71
HDG1/At3g61150	57	82	67
HDG7/At5g52170	57	80	61
HDG3/At2g32370	56	78	68
HDG9/At5g17320	57	75	65
HDG8/At3g03260	57	75	60
HDG10/At1g34650	50	74	54
HDG6/FWA/At4g25540	52	63	42

Supplemental Table 2. Trichome quantification on the first two leaves of *Arabidopsis* plants. See Figure 2U, Supplemental Figure 2M, Figures 3M, 3Q, 5T, 6H, and Supplemental Figure 6 for graphical representations of the data. Standard deviations for n>20 plants are shown in parentheses. Significant differences for double mutants versus *gl2* single mutants are indicated by a single asterisk, significant differences between control and *HDG11* or *GL2* transgenes are indicated by double asterisks, and a significant difference between *myb23-3* and the *hdg11-1 myb23-3* double mutant is indicated by triple asterisks (Two-tiered *t* test, P < 0.00001).

Genotype	Ave. # trichomes 1 branch (g/2) 1-2 branch (<i>myb23</i>)	Ave. # trichomes 2-4 branch 3 branch (<i>myb23</i>)	Ave. # trichomes >4 branches	Ave. # total trichomes	Ave. % ectopic branched trichomes >4 branches	Ave. % branched trichomes >1 branch for <i>g</i> /2 genotypes 1-2 branch (<i>myb23</i>)
Col wild type	0	67 5 (7 5)	0.2 (0.0)	67 0 (7 1)	0 4 (1 3)	ΝΙΛ
bda11_1	0	40.6 (0.6)	0.3 (0.9) 7 1 (3 0)	56 7 (11 0)	12 6 (5 3)	
al2-5	65(31)	19.0 (9.0) 0 8 (1 4)	n (3.0)	73(36)	12.0 (0.0)	11 0 (19 2)
al2-5 hda11-1	29(34)	0.0 (1. 4) 0*	0	20(34)	0	∩*
Col wild-type	0	68 8 (9 8)	NA	68 8 (9 8)	NA	ΝΔ
myh23-3	24.8 (5.6)	456 (147)	ΝΔ	70.3 (15.9)	NA	35.3 (8.0)
al2-5 myb23-3	10(12)	Λ*	0	10(12)	0	00.0 (0.0) N*
giz o myszo o	1.0 (1.2)	0	0	1.0 (1.2)	U	0
gl2-5	5.7 (3.3)	1.2 (0.9)	0	6.9 (3.3)	0	19.0 (13.0)
gl2-5 hdg11-1	3.4 (2.5)	0*	0	3.4 (2.5)	0	0*
gl2-5 myb23-3	1.4 (1.5)	0*	0	1.4 (1.5)	0	0*
gl2-1 hdg11-3 myb23-3	1.5 (1.6)	0*	0	1.5 (1.6)	0	0*
Ler wild-type	0	227(22)	0 27 (0 46)	23 0 (2 2)	12(20)	ΝΔ
bda11_3	0	22.7 (2.2)	<u>0.27 (0.40)</u>	23.0 (2.2)	1.2 (2.0)	
	29(15)	1 0 (1 8)	4.0 (3.0) A	<u>20.3 (3.1)</u> 4 8 (2 8)	0	30 6 (37 5)
al2-1 hda11-3	0.3*(0.9)	n*	0	03(09)	0	09.0 (07.0) N*
giz i nagi i o	0.0 (0.0)	0	0	0.0 (0.0)	U	0
hdg11-1 + ProGL2:EYFP:hdg11∆	0	55.3 (6.6)	10.9 (3.1)	66.2 (6.4)	16.5 (4.7)	NA
hdg11-1 + ProGL2:EYFP:HDG11	0	56.2 (8.1)	0.3** (0.5)	56.5 (8.1)	0.6** (0.9)	NA
gl2-5 + ProGL2:EYFP:hdg11∆	5.5 (2.6)	2.0 (1.8)	0	7.5 (3.5)	0	26.7 (24)
gl2-5 + ProGL2:EYFP:HDG11	12.8** (3.9)	12.0** (3.8)	0	24.8** (3.9)	0	48.3 (15.3)
gl2-5 hdg11-1 + ProGL2:EYFP:hdg11∆	0.4 (0.6)	0	0	0.4 (0.6)	0	0
gl2-5 hdg11-1 + ProGL2:EYFP:HDG11	7.8** (3.5)	6.1** (3.8)	0	13.9**(5.1)	0	43.9** (27.3)
hdg11-3 (control)	0	37.5 (10.9)	12.5 (4.3)	50.0 (12.6)	25.0 (8.6)	NA
hdg11-3 (no transgene sibling)	0	35.6 (8.7)	9.0 (3.3)	44.6 (10.3)	20.2 (7.4)	NA
hdg11-3 + proGL2::EYFP:GL2	0	73.2** (10.1)	2.0** (2.0)	75.2** (10.2)	2.7** (2.7)	NA

Genotype	Ave. # trichomes 1 branch (g/2) 1-2 branch (<i>myb23</i>)	Ave. # trichomes 2-4 branch 3 branch (<i>myb23</i>)	Ave. # trichomes >4 branch	Ave. # total trichomes	Ave. % ectopic branched trichomes >4 branch	Ave. % branched trichomes >1 branch for g/2 genotypes 1-2 branch (myb23)
Col wild-type	0	54.1 (8.5)	0.3 (0.5)	54.4 (8.3)	0.5 (0.9)	NA
hdg11-1	0	49.5 (8.6)	8.1 (3.4)	57.5 (10.3)	14.1 (5.9)	NA
myb23-3	22.7 (2.8)	36.0 (6.9)	0	58.6 (7.5)	0	38.7 (4.8)
hdg11-1 myb23-3	7.7*** (2.2)	47.4 (12.3)	0	55.1 (12.4)	0	14.0 ***(4.0)

Supplemental Table 3. Quantification of trichoblast and atrichoblast hair cell files on roots. See Figure 4 and Supplemental Figure 7. Ten cells were counted in pairs of root hair (R) and non root hair (N) cell files. Standard deviations for $n \ge 20$ are shown in parentheses. Significant differences between wild-type and mutant are marked by a single asterisk. Significant differences between control and wild-type *HDG11* or *GL2* transgenes are indicated by a double asterisk (Two-tiered *t* test, P < 0.0001).

Genotype	% Trichoblast in R position	% Atrichoblast in N position
	it position	n position
Col wild-type	97.5 (4.4)	98.8 (3.4)
hdg11-1	96.7 (4.8)	92.1 (8.8)
gl2-5	97.1 (5.5)	34.6* (15.0)
gl2-5 hdg11-1	95.8 (7.2)	30.8* (19.9)
myb23-3	97.1 (6.9)	92.9 (6.9)
gl2-5 myb23-3	96.5 (6.7)	43.0* (17.0)
Ler wild-type	98.0 (4.1)	97.5 (5.5)
hdg11-3	96.0 (5.9)	98.0 (4.1)
gl2-1	99.5 (2.2)	20.0* (18.0)
gl2-1 hdg11-3	99.5 (2.2)	21.5* (17.2)
hdg11-1 +	96.0 (6.0)	96.0 (6.8)
ProGL2:EYFP:ndg11A		
ProGL2:EYFP:HDG11	97.5 (4.4)	95.5 (6.9)
gl2-5 +	96.5 (5.9)	30.5 (18.2)
$ProGL2:EYFP:hdg11\Delta$		
gl2-5 +	96.3 (5.8)	97.1** (5.5)
ProGL2::EYFP:GL2		
g/2-5 +	95.4 (6.4)	62.1** (16.4)
ProGL2:EYFP:HDG11		
gl2-5 hdg11-1 +	96.3 (6.0)	35.3 (19.0)
ProGL2:EYFP:hdg11∆		
gl2-5 hdg11-1 +	95.0 (8.3)	48.0 (20.1)
ProGL2:EYFP:HDG11		

Supplemental Table 4. Oligonucleotides used in this study. Nucleotide bases shown in bold denote restriction sites used for cloning or changed bases from site-directed mutagenesis.

I. Primers for removing <i>Kpn</i> I and <i>Sal</i> I restriction sites from <i>HDG11</i> cDNA sequence using				
site-directed mutagenesis. U	nderlined bases show introduced mutation.			
Name				
HDG11_Sall_F(1602-32)	C AIG AAI GCI AIG GCA CII GI<u>G</u> GAC AIG IIC AIG G			
HDG11_Sall_R(1602-32)				
HDG11_Kpnl_F(1704-34)	GGA ATG GGA GG<u>C</u> ACC CAT GAG GGT GCA TTG C			
HDG11_Kpnl_R(1704-34)				
HDG11_Kpnl_F(2075-2107)	T GUT TUT UTA TU G GI<u>G</u> CU A GUG TUT TUA TUT UG			
HDG11_Kpnl_R(2075-2107)	LG AGA TGA AGA LGL TGG LAL LGA TAG AGA AGL A			
II. Primers for amplification	and cloning of HDG11 cDNA in binary vector SR54			
HDG11_Kpnl_F	GAAAGAG GGTACC AGAAGAAGAGGGGAAGAGAGC			
HDG11_Sall_R	GAAACATTAA GTCGAC AAAATGAGTTTCGTCGTCGGCG			
	iliantian of UDC11 aDNA in ProCLA EVEDUDC11			
III. Primers for sequence ver				
HDG11_(804-23)_seq				
HDG11_(1223-45)_Seq				
HDG11_(1935-56)_Seq				
HDGTT_(2471-92)_Seq				
B0_(ETFF)_seq	CAA GGA CGA CGG CAA CTA C			
IV. Primers for cloning in pE	NTR [™] /D-TOPO (Start codons, italics; Stop codons, red)			
GL2_TOPO_F	CACC ATG TCA ATG GCC GTC GAC ATG			
GL2_TOPO_R	TCA TTA GCA ATC TTC GAT TTG TAG ACT TC			
HDG11_TOPO_F	CACC ATG AGT TTC GTC GTC GGC GTC GGC G			
HDG11_TOPO_R	GTG TCA AGC TGT AGT TGA AGC TGT AGG			
V. Primers for real-time PCR	to monitor transcript levels of GL2, HDG11, and MYB23			
ACT7_PCR(94)_F	TCGCACATGTACTCGTTTCGCTTTC (amplifies 94 bp)			
ACT7_PCR(94)_R	TCGAGAAGCAGCGAGAGAGAAAGATAGA			
GL2_PCR_F	ATGAAGCTCGTCGGCATGAGTGGG (ampifies 106 bp) (Ishida et al., 2007)			
GL2_PCR_R	TGGATTGCCACTGAGTTGCCTCTG (Ishida et al., 2007)			
HDG11_RT(125)_F	TGGGGCTGATCGTTGGGTTACCA (amplifies 125 bp)			
HDG11_RT(125)_R	TGCTTCTCTTCCCGGTGA			
MYB23_RT(126)_F	CATCAGACTCCACAAGCTCCTCGG (amplifies 126 bp)			
MYB23_RT(126)_R	TCTCCGAGACCAAGTTTCTTGCTGAG			
VI. Primers for genotyping n	nutants			
GL2 F 112	ATGTCAATGGCCGTCGACATGTC (Wang et al., 2007)			
GL2 R 1462	TCTCGCAGCTTCTCTAGTTCCG (Wang et al., 2007)			
En8130 (3'outward) (g/2-5)	GAGCGTCGGTCCCCACACTTCTATAC (Baumann et al., 1998)			
0AR283 hdg11-1 F	ATT CTA TCA CCG GAA GGG AAG (Roeder et al. 2012)			
0AR284 hdg11-1 R	TGA AGA GAA AGA GAC ACC CAG (Roeder et al. 2012)			
SLB1 (SAIL B1) (hdg11-1)	GCCTTTTCAGAAATGGATAAATAGCCT (Roeder et al. 2012)			
oAR300 hdg11-3 F	GTG AAG ATC CTT ACT TTG ATG AT (Roeder et al. 2012)			
oAR301 hdg11-3 R	TCA AGC TAT GCA AAA AGA TCA AA (Roeder et al. 2012)			
myb23-3 SALK 018613 I P	CAC CGA ACA ACA AAA CAC ATG			
myb23-3 SALK 018613 RP	TTT ACG TGG ACG TTT TTG CTC			

LbB1 (for <i>myb23</i> -3)	GCG TGG ACC GCT TGC TGC AAC T
VII. Primers for sequencing	g <i>ProATML1</i> constructs in <i>pAR176</i> (Roeder et al., 2010)
Name	5'-3' sequence
0AR204	CTT CCC TTT CTC CTA AGT TCC T
0AR424	GGA GAA AAA TAG AGA GAG ATA G
VIII Primers for screening	and sequencing inserts in <i>pAbAi</i> vector
pAbAi Seg F	GTTCCTTATATGTAGCTTTCGACAT (amplifies 298 bp without
p/ (b/ (i_00q_)	insert and 323 with insert)
pAbAi R	CAGAGCACATGCCTCGAGG
IX. Primers for L1-boxes fr	om <i>MYB23</i> promoter (L1-boxes, bold; first L1-box out of three,
underlined; mutations, low	ercase)
proMYB23_LI-box-I_F	
proMYB23_LI-box-I_R	
proiving B23_mutLi-box-i_F	
prowie B23_mutLi-box-i_R	
prom B23_LI-box-II_F	
prowit B23_LI-b0X-II_R	
proMYR22 mut box ll F	
	TEGAC <u>CACGGITACACGGITACACGGITA</u> GGIAC
X. Primers for construction	n of pGAD-T7 constructs for HD-Zip expression in yeast (Start
codons, italics; Stop codor	ns, red)
GL2_747aa_EcoRI_F	GACAGG GAATTC ATG TCA ATG GCC GTC GAC ATG TCT
GL2 231aa BamHI R	ATCGTC GGATCCTCA AGC CTG CAG GGG ATA GGG
HDG11 722aa EcoR1 F	TAATTA GAATTC ATG AGT TTC GTC GTC GGC GTC GGC
	GG
HDG11_169aa_BamH1_R	TGTAG GGATCCCTA TTG CGA TAT CGG TCT TCC CAT GTA
	C
XI Brimore for constructio	n of nGAD T7 control construct for expression of GL2 (STAPT
+ SAD) (Stop codons red)	in or pGAD-17 control construct for expression of GE2 (START
GL2 253aa EcoBL E	GTCTTT GAATTC GAG AAG TCC CGT ATT GCC GAG ATT
011_100000_100101_1	TC
GL2 747aa BamHI R	TGCTGT GGATCCTCATCA GCA ATC TTC GAT TTG TAG AC
XII. Primers for real-time P	CR of ChIP DNA
ACT7_ChIP_F	
ACT7_ChIP_R	AGCGAACGGATCTAGAGACTCACCTTG
proCESA5_ChIP_F	GTATAGTCATCACTCAGGAGAC
proCESA5_ChIP_R	GACTCACTGAGTCTTTTATCGG
proMYB23_ChIP_F	
promyB23_ChiP_R	GCTATICACATTIAGATTITCCATC
XIII. Primers for deletion of	L1-Box Lin ProMYB23:mGFP5-ER
ΔL1-box F	
$\Delta L1$ -box R	GGTACCCATTTTTGTTGTATTTTAGTC
IX. Primers for sequencing	ProMYB23:mGFP5-ER
MYB23pro_2703_F	TCTAGAGTTTGGTATCACGG
MYB23pro_1836_F	TATTAGTATAGTTTGTTGTTCAAACGG
MYB23pro_seq_2082_R	TTCTTACATTTCATCTCATTGC
MYB23pro 3450 F	

REFERENCES

- Baumann, E., Lewald, J., Saedler, H., Schulz, B., and Wisman, E. (1998). Successful PCR-based reverse genetic screens using an En-1mutagenised *Arabidopsis* thaliana population generated via single-seed descent. Theor Appl Genet **97**, 729-734.
- Ishida, T., Hattori, S., Sano, R., Inoue, K., Shirano, Y., Hayashi, H., Shibata, D., Sato, S., Kato, T., Tabata, S., Okada, K., and Wada, T. (2007). *Arabidopsis* TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of *GLABRA2* transcription in epidermal differentiation. Plant Cell **19**, 2531-2543.
- Roeder, A.H., Cunha, A., Ohno, C.K., and Meyerowitz, E.M. (2012). Cell cycle regulates cell type in the *Arabidopsis* sepal. Development **139**, 4416-4427.
- Roeder, A.H., Chickarmane, V., Cunha, A., Obara, B., Manjunath, B.S., and Meyerowitz, E.M. (2010). Variability in the control of cell division underlies sepal epidermal patterning in *Arabidopsis thaliana*. PLoS Biol **8**, e1000367.
- Wang, S., Kwak, S.H., Zeng, Q., Ellis, B.E., Chen, X.Y., Schiefelbein, J., and Chen, J.G. (2007). TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134, 3873-3882.